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Evolution sculpts both the body plans and nervous systems of agents together

over time. By contrast, in artificial intelligence and robotics, a robot’s body plan

is usually designed by hand, and control policies are then optimized for that

fixed design. The task of simultaneously co-optimizing the morphology and

controller of an embodied robot has remained a challenge. In psychology, the

theory of embodied cognition posits that behaviour arises from a close coupling

between body plan and sensorimotor control, which suggests why co-

optimizing these two subsystems is so difficult: most evolutionary changes to

morphology tend to adversely impact sensorimotor control, leading to an

overall decrease in behavioural performance. Here, we further examine this

hypothesis and demonstrate a technique for ‘morphological innovation

protection’, which temporarily reduces selection pressure on recently morpho-

logically changed individuals, thus enabling evolution some time to ‘readapt’

to the new morphology with subsequent control policy mutations. We show

the potential for this method to avoid local optima and converge to similar

highly fit morphologies across widely varying initial conditions, while sustain-

ing fitness improvements further into optimization. While this technique is

admittedly only the first of many steps that must be taken to achieve scalable

optimization of embodied machines, we hope that theoretical insight into the

cause of evolutionary stagnation in current methods will help to enable the

automation of robot design and behavioural training—while simultaneously

providing a test bed to investigate the theory of embodied cognition.
1. Introduction
Designing agile, autonomous machines has been a long-standing challenge in the

field of robotics [1]. Animals, including humans, have served as examples of

inspiration for many researchers, who meticulously and painstakingly attempt

to reverse engineer the biological organisms that navigate even the most dynamic,

rugged, and unpredictable environments with relative ease [2–4]. However,

another competing approach is the use of evolutionary algorithms to search for

robotic designs and behaviours without presupposing what those designs and

behaviours may be. These methods often take inspiration from the evolutionary

method itself, rather than the exact specifications of any given organism produced

by it.

The use of an evolutionary algorithm for automated design comes with many

benefits: It removes the costly endeavour of determining which traits of a given

organism are specific to its biological niche, and which are useful design features

that can provide the same beneficial functions if instantiated in a machine. It can

yield machines that do not resemble any animals currently found on earth [5], as it

allows for machines that are specialized for behaviours and environments that

differ from those of the model organism. Additionally, the optimization process

can serve as a controlled and repeatable test bed for the study of evolutionary,

developmental, or behavioural theory [6–8].
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However, the generalization of design automation to

include both the optimization of robot neural controllers and

body plans has proved to be problematic. While recent

successes have demonstrated the potential of effective optimiz-

ation for the control policies of agents with fixed morphologies

(body plans) [9–11] or—to a lesser extent—the optimization of

morphologies for agents with minimal and fixed control pol-

icies [12–14], the co-optimization of the two has seen very

limited success [15,16].

This inability to perform robot brain–body co-optimiz-

ation at scale has been experienced and noted informally by

many researchers involved with robot optimization, yet pub-

lished rarely. Thus the lack of publication is presumably

because the field lacks incentives for the publication of nega-

tive results [17], rather than a lack of negative results in

unpublished works. Joachimczak et al. provide an anecdotal

example of premature convergence in the co-optimization of

robot brain and body plan (fig. 19 of [18]). Cheney et al. [16]

further analyse the phenomenon of premature convergence

in embodied machines and suggest that traditional evolution-

ary algorithms are hindered in this setting primarily in their

ability to perform continued optimization on the morphology

of the robot. They hypothesized that the premature conver-

gence may be due to an effect of embodied cognition, in

which an individual’s body plan and brain have an incentive

to specialize their behaviours to complement one another.

This specialization makes improvements to either subsystem

difficult without complementary changes in the other

(a highly unlikely event given current algorithms) and thus

results in an embodied agent which is fragile with respect to

design perturbations. They support this hypothesis by

demonstrating an asymmetry between the ability to optimize

the morphology and the controller of their robot, but do not

demonstrate the increased effectiveness of an algorithm that

addresses this hypothesized co-dependence, as we do here.
2. Background
Attempts to solve this problem of fully automated robot evol-

ution are frequently traced back to the work of Sims [19].

This work introduced the use of evolutionary algorithms to

produce goal-directed behaviours and morphologies simul-

taneously. Despite the advance this work represented, the

evolved robots tended to be composed of a small number of

components (figures show a mean of 6.042 segments per

robot, with each typically controlled by a few neurons). It has

been suggested that current computational power should

have vastly increased the scale and complexity of robots

evolved using Sims’ and similar methods. Yet surveys of

evolved robots (e.g. [15,20]) fail to exhibit any significant

increase in size or complexity.

A wide range of hypotheses for the lack of scalability have

been proposed. Some focused on a lack of efficient evolution-

ary search algorithms [21–23] or genetic encodings [13,24,25],

while others pointed to a lack of incentives for complexity in

the simple tasks and environments [14,26]. Yet attempts to

evolve robots using methods designed to overcome these

challenges have yet to obviously surpass Sims’ work in

terms of complexity and scale. This work investigates a differ-

ent hypothesis, first suggested in [16], that considers the way

in which an agent’s brain and body plan interact during the

optimization process.
In the simulated soft robot platform we employ here, pre-

vious works have demonstrated the evolution of effective

locomotion behaviour. However, these works did not address

the co-optimization of the morphology and control of robots,

as control-specific parameters were not optimized in those

systems. Behaviours of those robots were instead implicitly

specified by the material type and position of cells in the

morphology (where different ‘muscle’ cells simply oscillated

counter-phase to one another and with a fixed ampli-

tude) [13,26] or by physically encoding pathways of spiking

electrical activity through the placement of conductive and

insulating cells in the morphology [27].
3. Material and methods
We investigate the notion that the specialization of brain and

body plan to one another during evolution creates a fragile co-

dependent system that is not easily amenable to change. This

specialization creates local optima in the search space and prema-

ture convergence to suboptimal designs. In this paper, we explore

a direct solution to the problem of fragile coupled systems: expli-

citly readapting one subsystem (e.g. the body plan or the brain)

after each evolutionary perturbation to the other. The proposed

method differs from a traditional evolutionary algorithm, which

evaluates the fitness of a newly proposed variation immediately

(i.e. with no readaptation), and uses only this valuation of fitness

to determine the long-term potential of that variation.

By rejecting morphological mutations that are immediately det-

rimental to fitness, traditional methods fail to consider the full long-

term potential of the new morphology—as the initially poor fitness

may be due to the robot controller’s specialization for producing

behaviour in the old morphology, rather than any structural fea-

tures of the new morphology itself. Our proposed method

enables new morphological mutations to be temporarily protected

from morphological selection pressures while the robot’s controller

readapts its function to produce behaviour in this new mor-

phology. Thus we judge the benefit of new structural features by

their ability to produce fit behaviour only after they are coupled

with a well-suited controller—as we believe this to be a better

indicator of the potential benefits of this morphological mutation.

3.1. On the dichotomy between brain and body plan
It should be noted that the dichotomy between ‘brain’ and ‘body

plan’ is certainly a false one, as computation is known to occur at var-

ious levels throughout an entire organism [28]. Indeed the explicit

separation between ‘brain’ and ‘body plan’ in this set-up draws

attention to the difficulties that occur when we frame optimization

with this dichotomy. In our soft robot platform, we simply define

the presence and material of the physical voxel cells that make up

the robot as its morphological parameters, and define the amplitude

and phase offset at which each of these cells oscillate (expand and

contract) as their controller parameters. We define a genome as

two separate neural-network-like functions (one encoding the

brain and one encoding the body), as this explicit separation

allows evolution to make isolated adaptations to either subsystem.

Future works will need to explore the impact of this particular seg-

mentation of robot features into ‘morphological’ and ‘control’

parameters.

3.2. Controller readaptation
The most obvious method for modelling controller readaptation

would be to protect any lineage that has recently experienced a

mutation to the body plan by allowing it to undergo several

generations of evolutionary change restricted to the control subsys-

tem. If any member of the lineage achieves higher fitness than the
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pre-mutation ancestor during that time period, the descendant is

retained. Otherwise, the new morphological variant dies out.

However, it is unclear how to set the time period for this pro-

tection a priori. Surely the amount of time a controller takes to

readapt to a new morphology depends on many specific features

of the complexity, genetic encoding, desired behaviour, and cur-

rent ability level of the robot (which changes over optimization

time). Determining the correct value of this parameter would

require a full parameter sweep over various values of readaptation

time for each new combination of brain, body and environment. If

our goal is simply to optimize a robot, then searching for this value

in each unique optimization scenario is intractable.

3.3. Multi-objective morphological innovation
protection

In response to the unintuitive nature of the optimal value for

readaptation length, our proposed approach is free of this par-

ameter. Descendants of robots that experience morphological

mutations are retained in the population and the number of gen-

erations that have elapsed since that mutation occurred are

tracked (referred to as the ‘morphological age’ of the robot). If

two individuals are found in the population such that the latter

robot exhibits better performance on the desired task and has

experienced fewer generations since a morphological mutation

than the former robot, this latter robot is said to ‘dominate’ the

former robot in this mutli-objective optimization (on ‘age’ and

‘fitness’)—and the former robot is removed from the population.

Inspiration for this technique comes from [21,29], where com-

pletely random robots are inserted into the population at each

generation of the evolutionary algorithm. The presence of these

new random robots may increase the diversity of the population

(and potentially lead to more desirable local optima, if these

robots are protected from global selection pressure long enough to

climb their local fitness peaks). Our proposed method differs from

[21,29], as we do not insert new robots into the population, but

rather treat robots with newly mutated morphologies as though

their controllers had been randomly scrambled (as the behaviour

of these controllers are specialized to their previous morphologies)

and are in need of protection in the form of temporary reduction of

selection pressure while the controllers climb uphill in the fitness

landscape of behaviours for that new morphology.

This procedure has the effect of ‘protecting’ new mor-

phologies with poorly adapted controllers, and will henceforth

be referred to as ‘morphological innovation protection’. Various

other methods also exist for encouraging diversity in an evolving

population (e.g. fitness sharing, crowding, random restart paral-

lel hillclimbers [30], novelty [22] or speciation [31]); however, age

was chosen for its simplicity of implementation and because it

helps to avoid the cost of extended control re-optimization for

non-promising morphologies—since the age-pareto optimization

allows fitness comparisons between all new ‘child’ morphologies

that have had equal readaptation time, even if they are not yet

fully readapted (rather than making comparisons only after a

predefined amount of readaptation).

3.4. Evolutionary algorithm
All optimization is performed by a population-based evolu-

tionary algorithm. All trials follow a (m, l)-Evolutionary

Strategy [32] with m ¼ 25 parents and l ¼ 25 mutants for a popu-

lation size of 50. Trials last for 5000 generations. Crossover was

not considered in this work. Mutation had a 50% chance of creat-

ing a variation to either the morphology or the controller of a

given robot, but not both. Other ratios of morphology : controller

mutations were considered (1 : 99, 20 : 80, 50 : 50, 80 : 20 and 99 : 1),

but none showed a significant effect on resolving the premature

convergence and resulting fitness in preliminary trials without

innovation protection.
3.5. Genetic encoding for soft robot morphologies
Consistent with prior work studying the co-optimization of robot

morphologies [13] and controllers [16], we choose soft robots as

our model system due to the open-ended complexity of deform-

able voxel-based morphologies and distributed controllers. The

soft robot morphologies are encoded with a compositional pat-

tern producing network (CPPN) [33]. The CPPN encoding

produces the cell fate of each voxel in the robot through a type

of neural network that takes each cell’s geometric location (x, y,

z Cartesian coordinates and r radial polar coordinate) and out-

puts a variety of ‘morphogens’ (in this work, there is one to

determine whether a cell is present in that location and one to

determine whether a present voxel should be a muscle or a pas-

sive tissue cell). As nearby voxels tend to have similar coordinate

inputs, they also tend to produce similar outputs from the

network—creating continuous muscle or tissue patches. CPPNs

also produce complex geometric patterns, as the activation func-

tions at each node can take on a variety of functions (here:

sigmoid, sine, absolute value, negative absolute value, square, negative
square, square root and negative square root). These functions tend

to produce regular patterns and features across the coordinate

inputs (for example: an absolute value node with an x input would

produce left–right symmetry, or a sine node with a y input

would produce front-to-back repetition).

This network is optimized to produce high performing mor-

phologies by iterating through various proposed perturbations to

it. These include the addition or removal of a node, or edge to the

network, as well as the mutation of the weight of any edge or the

activation function at each node.

3.6. Soft robot resolution
As the CPPN genetic encoding is a continuous function (mapping

the location of a cell to its cell fate) it may be discretized into a

phenotype at any resolution (i.e. creating any number of voxels

in the morphology, and a unique controller for each voxel), and

in practice, this resolution is only limited by computational

resources (as more elements are more computationally expensive

to simulate). In the default lower-resolution treatment, this discre-

tization occurs over a 5 � 5 � 5 space. The higher-resolution robots

use phenotypes created at a 10 � 10 � 10 resolution.

3.7. Controllers and their genetic encoding
A unique controller is optimized for each muscle cell in the

robot’s morphology. For each voxel’s controller, two parameters

are optimized (the outputs of a separate CPPN with the same

inputs as before). One is the phase offset between each individual

cell’s muscle oscillations and that of the global sinusoidal oscil-

lator (which acts as a central pattern generator), and the second

is the frequency of this global clock (since CPPNs do not currently

enable global parameters, this is done by averaging the local

values at each cell to produce a single global value).

All controllers output a value between 21 and 1 at each time

step, which corresponds to a linear change in each dimension of a

muscle cell (+14% of its original length, or+48% of its original

volume), defining a robot’s behaviour. Passive tissue cells remain

at their original size (though they also deform based on their

intrinsic compliance).

While this encoding is simple and straightforward, it has the

ability to produce complex behaviours, such as multiple patches

of muscle groups that are in sync, counter-sync, or any real-

valued phase offset from each other. It also has the ability to

produce gradually varying sweeps of phase offset, resulting in

propagating waves of excitation across large muscle groups. Fur-

thermore, the optimization of the global frequency is able to

produce oscillation speeds which are fine-tuned to the properties

of individual morphologies (such as optimizing the resonance of

soft tissues in appendages).
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3.8. Physics simulation for evaluation
Once the morphology and controller for a given robot are specified,

the fitness (locomotion distance) of that robot is determined by con-

structing and simulating that robot in the VoxCad soft-body

physics simulator [34]. Simulations last for 20 actuation cycles.

3.9. Statistical analysis
All treatments were performed for 30 independent trials. All plots

show mean values averaged across the most fit individual of

30 trials for each condition with shaded areas representing 95%

bootstrapped confidence intervals. All p-values are generated by

a Wilcoxon rank-sum test [35].
optimization time (in generations)

Figure 1. The fitness impact (distance travelled, in voxels) over optimization
time (in generations) for various types of brain/body plan protection mech-
anisms. Values plotted represent the mean value of 30 independent trials,
with 95% bootstrapped confidence intervals denoted by colorized regions.
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4. Results
4.1. The effect of morphological innovation protection

on fitness
For the taskof locomotion ability (a standard task in evolutionary

robotics [20]), we first optimize the robots using the traditional

method of ‘greedy’ fitness evaluations for our selection criteria

(where immediate locomotion ability determines survival in

the population of candidate morphologies—i.e. with no ‘inno-

vation protection’). In this set-up, the traditional method

produces robots with an average fitness of 21.717 voxels.

Additionally, we optimized robots in the same task and

environment set-up, but this time using ‘morphological inno-

vation protection’ for our selection method—in which

individuals can only be out-competed by those with equal

or lesser amounts of controller (re)adaptation to their current

morphologies. This treatment produces significantly more

effective robots ( p¼ 6.067 � 1026), with a mean distance

travelled of 31.953 voxels.

The increase in fitness shows that morphological inno-

vation protection is a more effective way of optimizing

robots, yet it does not conclusively demonstrate that the

intuition of [16] is correct, as that work demonstrated the asym-

metric difficulty in optimizing the morphology of a robot (as

compared to optimizing its controller) and drew the conclusion

that this was because the morphology encapsulated the con-

troller (acting as a translator between the ‘language’ of the

‘cognitive’ functions and the outside environment). While the

above experiment does help to support the intuition that

the controller must readapt to a new morphological encod-

ing, it also introduces confounding effects, such as the

added population diversity afforded by ‘protection’ and

the added dimensionality of the search space from this

protection age—moving search from a single-objective to

multi-objective optimization problem.

To tease apart the influence of these two confounds,

we present a treatment where the controllers of the robot

undergo an equivalent protection to which the morphologies

did in the above experiment. In this treatment, individuals

can only be out-competed by others whose morphology

has had equal or lesser amounts of readaptation to their

newly mutated controllers—deemed ‘controller innovation

protection’. This condition provides the potential advantages

of multi-dimensional search and the added diversity from

temporary reductions in selection pressure. Yet it does not

rely on the idea of a broken ‘morphological language’. In this

treatment, robots locomote 22.049 voxels on average, which

fails to show a significant improvement over the single-

objective case of no protection ( p ¼ 0.240), and performs
significantly worse ( p ¼ 1.211 � 1024) than the protection of

morphological innovations.

The fitness trajectories over evolutionary time (figure 1)

demonstrate a typical logarithmic fitness improvement over

approximately the first 1000 generations, but then show a

stagnation for the traditional optimization procedure without

innovation protection. The mean fitness value of the treat-

ment without protection shows no significant improvement

( p ¼ 0.085) from generation 1000 to 5000 (with average

fitness values of 20.988 and 21.717 voxels, respectively).

Contrary to this, the treatment with morphological inno-

vation protection shows significant improvements over this

time ( p ¼ 0.013) from 25.925 at generation 1000 to 31.953

voxels at generation 5000.

The rapid improvement in the controller innovation protec-

tion and no protection cases during the first 1000 generations

does not contradict the hypotheses of a fragile ‘morphological

language’, as the coupling between the morphology and con-

troller takes time to become established—and would not

introduce fragility into the system before then.

4.2. The effect of morphological innovation protection
on population stagnation

Perhaps more telling than the average locomotion ability at the

end of optimization time is the examination of the optimization

process within each individual run. Figures 2 and 3 represent

typical runs, and help to give an intuition of the optimization

process. In these figures, each randomly coloured line rep-

resents a unique morphology, plotted by its locomotion

ability over optimization time.

Note the continued improvement in performance of the most

fit individual over optimization time in the case of morphological

innovation protection (figure 2)—which is consistent with the

trend seen on average in figure 1. This is not seen in the case with-

out innovation protection (figure 3), where the best individual

was found before generation 2000—and by generation 1000,

fitness has reached 99.6% of its final value.

Consistent with the above observation, we see that the most

fit individual in figure 2 changes rapidly in the trial with

morphological innovation protection. As each colour in the

figure represents a unique morphology, we note that a wide

variety of different morphologies hold the title of ‘best-so-far’.

On average, in runs with morphological innovation protection,
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24.179 unique morphologies are the best-so-far at some point

in optimization, where the runs without protection show

significantly (p ¼ 1.555 � 1026) less turnover of morphologies,

with just 10.115 unique robot body plans doing so.
The question of how temporary reduced selection

pressure (via the morphological-age dimension) of morpho-

logical innovation protection may help to improve overall

fitness and continued optimization may be best demonstrated
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in the pop-out box for figure 2. Here, we see the current best mor-

phology, in teal. This morphology was unable to improve on

itself for some time, as we see its fitness value (y-axis) flatlining.

This ‘parent’ morphology has a ‘child’, a new proposed variation

of its morphology, highlighted in red. As the original fitness

value of this morphology falls below its parent, this individual

empirically shows worse performance than its parent—and

thus would not be considered as a viable solution in a tra-

ditional evolutionary method. However, since this new

morphology does not have a controller that is well adapted to

it (as the controller is specialized for the previous morphology,

in teal), morphological innovation protection does not expect

this new robot to immediately outperform its parent, and

keeps this individual in consideration as one which could hold

long-term potential but does not show immediate promise.

Indeed, we see that after a number of controller optimiz-

ation iterations later (occurring in equal amounts to both the

parent and child during this intermediate period), the child

morphology (in red) overtakes the parent morphology (in

teal)—achieving higher fitness and demonstrating that it did

indeed hold a better long-term potential than its parent, despite

the immediate drop in fitness. We will call this phenomenon a

morphological ‘overtake’. As the fitness of the parent is outper-

formed by the child (which has had less time to fine-tune its

controller to its morphology), we assume that the parent is

unlikely to be the most promising robot body plan in the

long run, and thus remove it from the population.

We see this trend of overtakes continuing throughout this

run (as the blue child then overtakes the red parent, and

green overtakes blue in the pop out of figure 2). On average

across all runs, we see morphological overtakes significantly
( p � 6.939 � 10210) more often in runs with morphological

innovation protection (an average of 76.714 overtakes in

the first 5000 generations) than without any innovation pro-

tection (where there are only 1.432 overtakes). We also see

more morphological overtakes in the morphological inno-

vation protection treatment than in the trials with controller

innovation protection (where there are just 1.333 morphological

overtakes on average).

We could also consider controller ‘overtakes’ occurring

in the treatment for controller innovation protection. In that

case, an overtake would consist of an initial mutation to the

controller of a robot that leads to worse fitness than its

parent, which is then followed by subsequent iterations of

morphological readaptation, eventually overtaking the fitness

of its parent. Interestingly, the number of morphological over-

takes in the morphological innovation protection treatment

is not significantly different ( p ¼ 0.533) than the number of

controller overtakes in the controller innovation protection

treatment (74.542 times on average). Combined with the find-

ing in figure 1 (that morphological innovation protection leads

to more fit robots than controller innovation protection),

this suggests a greater potential for the relative importance

of morphological overtakes over controller overtakes—and

again reinforces the asymmetry between morphologies and

controllers from an optimization perspective.

4.3. The effects of morphological innovation protection
on the progression of morphologies over
evolutionary time

Visual inspection of actual morphologies over evolutionary

time further supports the proposed method’s improved

optimization efficiency and ability to escape local optima.

Figure 4 shows the current best individual at various
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points over evolutionary time for each of the top 10 runs in

the treatment with morphological innovation protection.

Note how the fitness values of the robots increase over

time (from left to right, and indicated by the colour of

each robot). Also note how the final morphology of

some robots (e.g. runs 24, 27, 18, 11, and 16) results in

identical morphologies, despite starting from a variety of

initial conditions and not finding this convergent mor-

phology until hundreds or thousands of generations into

the optimization process.

In contrast with the sustained turnover of morphologies

shown above, figure 5 shows the snapshots of the 10 best

runs in the treatment without innovation protection. Note

how the fitness/colours of the robots tend to show little

change over the evolutionary process, mirroring the stagna-

tion shown in figure 1. While convergence of the final

morphologies is present here as well, the gross morphologies

found here (variants of the full cube with no appendages) are

found early on in the search—and often provided in the set of

random initial morphologies. In this treatment, gross mor-

phological changes tend to be absent after generation 50

(just 1% into the full 5000 generations).

The differences between figures 4 and 5 suggest that the

traditional method without morphological innovation protec-

tion tends to converge prematurely to morphologies early in

the evolutionary search, while morphological innovation pro-

tection may allow search to escape these local optima and

converge to ‘more global’ optima.
4.4. The potential for convergence across initial
conditions

To explore the question of scale, we apply morphological

innovation protection to the evolution of robots with higher

resolution morphologies—up to 103 ¼ 1000 voxels rather

than the lower resolution morphologies (53 ¼ 125 voxels)

employed in the previous experiments.

The increased number of voxel cells that make up each robot

allows for greater expressiveness and finer details in its

morphology. However, this also presents a challenge for the

above algorithm. As the number of cells increases, the effect

of changing a single voxel (the minimum morphological vari-

ation) is reduced. In the extreme, the concept of readapting

controllers since the last ‘morphological change’ is less straight-

forward—as increasingly small changes can modify minor

details of the morphology without affecting its overall function.

To help address the problem of non-functional morphology

changes, we introduce a parameter to represent the minimum

percentage of voxels that must be varied in order to qualify as a

‘gross morphological change’. This parameter is specific to the

voxel-based soft robot implementation employed in this work.

But the general concept of a threshold for the minimum

morphological change is a universal concept that could be

applied to any robot instantiation, as necessary.

In the case of robots with higher-resolution morphologies,

we find that resetting the ‘morphological age’ of an individual

only after a mutation that changes more than 20% of their voxels

produces optimal results. The value was found via a parameter

sweep (of minimum age-resets of 0%, 5%, 10%, 20%, 30%, 40%

and 50% of voxels changed). We also investigated a minimum

change threshold for controller innovation protection and

found that its benefit falls as the threshold increases (showing
optimal performance with no threshold), so we ignore the

threshold for minimum controller change here.

In this high-resolution setting, basic morphological inno-

vation protection (with no threshold) travels significantly

farther (60.728 voxels) than the case with no protection

(32.575 voxels, p ¼ 1.208 � 1024). Basic morphological inno-

vation protection (with no threshold) also travels farther than

the case with controller innovation protection (35.375 voxels,

p ¼ 0.018). While morphological innovation protection with a

threshold (60.728 voxels) did achieve higher average fitness

than morphological innovation protection without a thres-

hold (43.340 voxels), this difference was not significant at the

p ¼ 0.05 level ( p ¼ 0.063).

As a side note, in a more difficult set-up (where the robots

need to optimize a closed-loop neural network controller),

trials with the morphological change threshold significantly

outperform all other treatments (travelling 31.313 voxels—

while trials with no protection, controller protection, and

morphological innovation protection with no threshold

travel 13.941, 15.356, and 17.224 voxels, respectively; all p �
7.287 � 1028).

Visualization of these soft robot morphologies over time in

the trials with a 20% morphological-change threshold is

depicted in figure 6 and compared to the case with no protection

in figure 7. The ability of evolution to converge to the same high-

performing morphology across many independent trials,

despite starting from different initial conditions, suggests

that the inclusion of thresholded morphological innovation pro-

tection may help to escape local optima around these starting

conditions and find ‘more global’ optima in this search space.

In the case without any protection, search stagnates quickly

and again appears unable to escape the local optima near its

initial conditions (figure 7).

Interestingly, the low resolution soft robot implemen-

tation (figures 4 and 5) does not benefit from the inclusion

of a threshold. As presumably the more discrete construction

of these robots mean that all mutations are large enough to

create a meaningful ‘morphological change’.
5. Discussion
The above results demonstrate a new method for entire robot

evolution (i.e. both brain and body plan) that is more scalable

in terms of continued optimization for longer periods of time

and better resulting fitness than the traditional evolutionary

methods. This method for ‘morphological innovation protec-

tion’ helps prevent premature convergence to the many local

optima which appear to be present in the rugged search space

of robot morphologies and controllers [16].

The hypothesis from [16] that the fragile co-optimization of

brain and body plan caused by specialization of one sub-

component to the other is consistent with the findings above.

Furthermore, the benefits of temporarily reduced selection

pressure provided by morphological innovation protection

suggest that the long-term potential and immediate fitness

impact of a morphological mutation are not always correlated.

Thus, we require a form of diversity maintenance to help

evolution to rate proposed solutions based on their long-term

potential rather than on immediate fitness impact. As was

shown here, using morphological innovation protection for

this purpose can help to reduce premature convergence in

the search space and stagnation at suboptimal values.
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We believe this to be the first example of a design automation

algorithm for robotics that considers the interdependence of

neural controllers and body plans arising from the psycho-

logical theory of embodied cognition [36] and uses this

intuition to propose a method to escape local optima in

the fitness landscape.

5.1. Analogies to biological systems
The foundational motivation of this method, that brain and

body are tightly coupled in creating behaviour, is well appreci-

ated in biomechanics and neuromuscular control. In a review

of this area, Nishikawa et al. [37] state that ‘the inevitable coup-

ling between neural information processing and the emergent

mechanical behaviour of animals is a central theme in neuro-

biology today. Such ‘neuromechanical’ approaches ask how

mechanical systems may offload some tasks of the neural

system; how size, shape, structural properties and even the

physics of the medium may determine how the neural

system functions to control movement.’ They note that ‘From

a design perspective, it seems clear that algorithms for control-

ling a system must take into account the details of how that

system works.’ They provide numerous examples of the coup-

ling between physical structure/layout and dynamic control in

nature, such as how the hind-limb muscles of the death-head

cockroach appear to have similar properties and positioning,

yet ‘their mechanical functions during dynamic contractions

differ considerably’ [37,38]. They also suggest examples of

the converse, how physical embodiment affects control in natu-

ral systems, such as noting that the physical lag of insect visual

systems increases the gain on the responses to such stimuli,
resulting in a resonant-like behaviour [37,39]. A review of

‘why neuroscience needs biomechanics’ by Tytell et al. echos

this idea that ‘together, the nervous system, body, external

environment, and sensory systems form a set of distributed,

nested feedback loops’ [40]. They note that control changes,

such as muscle activations that lengthen or stiffen that muscle,

cause substantial changes in the kinematics and dynamics of

the structure’s motion and behaviour—and that these subsys-

tems should not be considered independent of one another.

The biological analogues of the proposed method for

reduced selection pressure on new morphological innovations

are also interesting. In biological evolution, new morpho-

logical innovations are thought to open up previously

inaccessible niches [41], potentially leading to rapid inno-

vations in the style of a punctuated equilibrium [42]. With

little competition in these new niches, individuals with these

new morphological innovations may have the potential to

experience temporarily reduced selection pressure until com-

petition within that niche builds. Morphological innovations

may potentially increase the degrees of freedom within a struc-

tural system [43], which can also reduce the selective pressure

on individual aspects of the morphology and lead to further

evolutionary changes [44].

The notion that an individual’s brain learns to control its

body during its lifetime through sensorimotor exploration [45]

also fits well within the framework of this proposed algorithm.

If gross morphological changes tend to occur more slowly

than the rate of learning in the brain (e.g. morphological

changes through evolutionary adaptations or gradual lifetime

growth), then the bias seen in these robotic results towards

greater success when controllers rapidly readapt to more

gradual morphological changes (rather than vice versa,

where morphologies rapidly adapt to more gradual controller

changes) may be consistent with the rates of change in their

biological analogues as well.
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5.2. Future work
Despite the significant improvement to our ability to simul-

taneously optimize the brain and body plan of embodied

robots, there is much work still to be done. The proposed

method was only applied to one class of robot. This class

may represent a fairly straightforward version of brain–body

co-optimization, as the distributed sensing and actuation para-

digm was designed to possess helps to blur the line between

physical interactions of the morphology with the environment

and information processing of a controller [13,27]. In the case of

centralized controllers and robots composed of rigid com-

ponents, topological (rather than parametric) changes to the

cognitive architecture would be required for control readapta-

tion if morphological mutations add or remove physical

components (e.g. limbs, joints, sensors). Future work should

explore the effect of morphological innovation protection in

such a paradigm, where there is the potential for morphologi-

cal changes to more drastically change the function of the

robot—and thus for readaptation to those morphologies to

play an even more critical role in optimization.

We do not believe that the methods introduced here are

restricted to this particular domain. The above algorithm is

simple to implement (requiring only: an age counter, a

check for variations in brain and/or body for each mutation,

and—optionally—a criterion for the minimal gross morpho-

logical change), and thus we believe it will be widely

applicable. Future work will test this supposition.

Due to the recent interest in co-optimization of neural

network topology and weights [46,47], we should also note

that our domain—an agent’s controller embodied within its

morphology—is closely related to that of a neural network’s

weights embodied within its topology. Future work will show

whether the method proposed here will show similar optimization

gains in the design of neural network topologies as well.
6. Conclusion
We demonstrate an example of a robot design automation

algorithm that considers the interdependence of neural

controllers and body plans (due to the theory of embodied

cognition) on the optimization process. We use this intuition

to temporarily reduce selection pressure on newly mutated

robot morphologies, thus allowing the agents to readapt

their controllers and better escape local optima in the fitness

landscape. We have shown that this technique—deemed

‘morphological innovation protection’—produces evolution-

ary optimization which delays premature convergence and

stagnation, and results in more efficient evolved robots. We

showcase the ability of this technique to escape local

optima in the search space by demonstrating the convergence

to a similar morphology across many independent trials from

random initial conditions. While we hope that this technique

will be surpassed in the future by a developmental process

with feedback loops between the body and brain, we propose

the above algorithm as a short-term improvement over the

current techniques for the co-optimization of morphology

and control in virtual creatures.
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