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Abstract— Tensegrity-based robots use compression ele-
ments and tension cables to create lightweight structures
that can reconfigure their shape. These characteristics are
especially suited for planetary exploration, including for
hard to traverse areas, such as lava tubes. While these
capabilities are desirable for transporting these robots
beyond Earth as well as reducing material costs, they
complicate the control process. With such dynamic and
reconfiguring parts, both simulating the motions of the
tensegrity robot and planning future motions become
challenging. New simulation tools for tensegrity rovers
and state-of-the-art planning algorithms have been recently
developed which can help to address these challenges,
but have yet to used in tandem. This work integrates a
recent sampling-based motion planner, which has been
shown to converge to asymptotically optimal solutions
even for systems with dynamics, with a novel tensegrity
rover simulation tool, which has been verified in terms of
accuracy against a hardware prototype. This paper shows
that it is possible to get complex, long-duration trajectories
for planetary navigation through this integration. At the
same time, this integration is computationally demanding
which motivated a parallel implementation of the proposed
integration. With the parallel implementation, it is possible
to observe improving path quality as computation time
increases. This framework allows the consideration of
planning under uncertainty to compute robust solutions,
which is even more computationally demanding.

I. INTRODUCTION

Tensegrity-based structures have been proposed as
flexible robotic systems [1], [2]. They provide compli-
ance and load-sharing, which allow for dynamic ma-
neuvers and reconfiguration over difficult terrains while
maintaining structural integrity. In addition, it is possible
to change the shape of the robot to allow for move-
ment in previously unexplored areas, such as caves and
lava tubes. Nevertheless, controlling tensegrity robots is
challenging relative to other robot classes. There has
been exciting progress on providing locally valid gaits
[3], in some cases through the use of central pattern
generators [1], [4], and has been evaluated on physical
robots (see Fig. 1). These breakthroughs allow moving
the robot in a desired direction in limited scenarios. It
is harder, however, to achieve long-term navigation or
reconfiguration.

Fig. 1. SUPERball prototype from NASA Ames Research Center
[3].

The generation of purposeful motions requires global
planners, which reason over long horizons, consider
terrain complexity, and provide diverse paths for sci-
ence teams. Such methods have to deal with the high-
dimensionality of the robot, the effects of contacts
with the ground on the robot’s dynamics, and noisy
actuation. Rover navigation typically looks to search-
based methods for providing long-term motion plans
(see [5] for one example of such a method). It is helpful
for these methods if the rover is as simple as possible,
or can be simulated with simplified models. In addition,
these methods rely on state or control discretizations, po-
tentially disregarding solutions. For more sophisticated
robots, such as tensegrity robots, these methods may not
scale well.

A promising solution to this planning problem in-
volves using sampling-based motion planners [6], [7],
which have been shown to be successful when deal-
ing with high-dimensional robots. Most sampling-based
methods also can also use simulation tools as models
of the robot. These sampling-based methods can also
achieve asymptotic optimality under certain conditions
[8]. The asymptotic optimality property states that given
enough computation time, these sampling-based algo-



rithms can return the optimal solution with probability
approaching one. It also means that the solutions re-
turned by these algorithms practically improve as more
computation is provided. Until recently, these desirable
properties could not be achieved in the case of highly
dynamical systems.

A more recent development is an algorithm that pro-
vides asymptotic optimality for systems with dynamics
[9]. While the theoretical properties require that the
robot conform to certain smoothness assumptions, good
performance is achieved in other cases as well. Using
this method, finding paths of increasing quality for
systems with dynamics or physically-simulated systems
is now possible in a reasonable amount of time. In
addition, this method can operate while planning under
uncertainty by using a particle representation to model
multimodal belief distributions and nonlinear dynamics
[10]. As a sampling-based planner, it is possible to use
a physics simulator as the robot model, but in order for
the motion plans computed to be useful, the simulator
must accurately model the robot to reasonable degree.

For simulating the high-dimensional tensegrity robots,
a new software tool called the NASA Tensegrity
Robotics Toolkit (NTRT) has become available to simu-
late tensegrity robots through the use of a physics engine
[11]. Such simulations require significant computational
resources due to the complex dynamics and contacts
(tension cables, terrain contacts, shared force loads). The
benefit of this expensive simulation is that it is shown to
accurately approximate the real-world prototypes [3].

II. PROPOSED INTEGRATION

This work integrates the NTRT simulator [11] with
the recent sampling-based framework [9] to perform
long-horizon planning for tensegrity robots. To the best
of the authors knowledge, this is the first time it has
become possible to plan for tensegrity robots while
taking dynamics into account, i.e., not just in a quasi-
static manner as in [12].

A. Simulator and Robot

The tensegrity evaluated in the planning method is
the SUPERball [3], which is a prototype robotic plat-
form being built at NASA Ames Research Center. This
structure has six rigid components arranged to mimic
a icosohedron shape. This rigid elements are modeled
as dynamic rigid bodies with 12 degrees of freedom
each (three translational components, three rotational
components, and their corresponding velocity terms).
Movement is achieved by contracting the cables that
connect the rigid elements. These contractions create

forces on the rigid elements that cause the entire struc-
ture to reconfigure. Given enough change in the struc-
ture, rolling will occur, thus achieving locomotion.

The physical prototype at Ames is currently rigged
with 12 actuated cables and 12 passive (not actuated)
cables. An actuated cable is one that has motors that
can actively contract the cable and release the tension of
the cable. A passive cable maintains a maximum length,
but can contract freely. This limitation for actuated
cables was mainly due to the original prototype design
having limitations for each rod. Future prototypes will
have all cables actuated, thus providing more movement
capabilities. The integration results presented here use
24 actuated cables.

B. Algorithm

The high level planning methodology is derived from
recent work on Stable Sparse-RRT (SST) [9]. SST
works in a similar fashion to other sampling-based tree
planners, in that it follows a basic structure. First, a
randomly sampled state is generated. Then, this node
helps select which existing tree node is going to be
expanded. The expansion step, otherwise known as a
propagation, creates new nodes in the tree. SST has
an intelligent selection of tree nodes and only adds
nodes that have good path quality relative to other nodes
nearby. These modifications allow for SST to achieve
path quality guarantees, even for systems with dynamics.
For more details about the algorithm, see [9], [10], [13].

One advantage that SST has relative to other
sampling-based planners that can achieve asymptotic op-
timality is that SST only requires a forward propagation
module versus the other that require a steering module.
The main difference between these components is that
a forward propagation only requires a start state while
steering requires both a start and an end state. In the
case of tensegrity-robots, the constant interaction with
the environment’s terrain and obstacles that impact the
robot’s dynamics make a steering function impossible
to develop. On the other hand, NTRT provides all the
necessary components for forward propagation, making
SST uniquely tailored to the task of finding high quality
motion paths for tensegrity robots.

C. Implementation Details

In order to improve the efficiency of the planner, a
parallel implementation was used. Because the forward
propagation for the tensegrity robot is costly relative
to the other algorithm steps, if many of these prop-
agations are done in parallel, the overall performance
of the planner improves. A substantial improvement
is observed in the number of iterations that can be



performed in a given amount of time. In Figure 2, the
number of iterations executed in two minutes is plotted
versus the number of parallel propagation nodes. For the
experimental evaluation, 20 parallel nodes are used.

Fig. 2. Algorithmic performance for different number of parallel
nodes. All runs ran for two minutes, and all nodes are on the same
machine with 32 execution cores.

When moving to planning under uncertainty, the cor-
rect representation of uncertainty must be chosen. In
many other domains, a Gaussian distribution is chosen,
but is not appropriate for highly dynamical systems,
such as tensegrity robots. This is due to their nonlinear
behavior that likely will cause the uncertainty to follow
multi-modal distributions, i.e. have multiple probability
peaks rather than one. For this reason, a particle-based
representation is chosen, where a set of particles approx-
imate the underlying probability distribution.

Because a particle representation is used when plan-
ning under uncertainty, the computational cost of plan-
ning is increased significantly. Each particle must be
simulated independently of the other particles, meaning
NTRT must be called for each particle. Since this simu-
lation is the dominant computation even when planning
without uncertainty, improvements need to be made to
make simulations faster. By taking advantage of the
independence of the particles, a parallel extension is
performed, where multiple particles can be extended at
the same time, similar to the original setup. Instead of
having propagations happen from anywhere in the search
tree, many propagations are performed from the same
start set. Then, all resulting states are composed together
into one updated belief distribution.

III. EVALUATION

The integration of NTRT with a sampling-based plan-
ner requires significant computational resources. This is

Fig. 3. An example path for the SUPERball tensegrity robot. This
path also considers the terrain effects through the physics simulator.

mostly due to a basic primitive that a sampling-based
planner requires, the forward propagation primitive. This
forward propagation primitive in most cases is fast, but
is a computational bottleneck when a physics engine
is used. This is the case when using NTRT and this
influences the planning execution time.

In this section, different scenarios are constructed
where the tensegrity robot must traverse from its start
position to a goal region. A simple problem is shown
first, which is only the task of moving from the start
to the goal. Then, more complex scenarios are in-
troduced where terrain and obstacles are introduced.
Terrain affects the basic movement of the robot, while
the obstacles impose hard constraints on the robot that
require reconfiguring to traverse around. Finally, some
of the difficulties relating to planning under uncertainty
are presented.

A. Traversal Planning

For an initial test, a plan for moving without invalid
regions is performed. The best path in this setup is
as close to a straight-line between the start and goal
as possible. This is not directly achievable given the
dynamics of the robot. An example planned trajectory
that considers terrain is shown in Fig. 3.

An example path planning tree is shown in Fig. 4
where the paths shown are for the center of a rod in the
structure. The goal for the robot is the top right of the
figure. The tree illustrates the inherent dynamics of the



Fig. 4. An example tree computed from the motion planner. This
example has no invalid regions.

SUPERball and how moving in straight lines is difficult
even on flat terrain.

B. Terrain and Obstacles

In order to get closer to real mission objectives, tests
were conducted with altered terrain and obstacles. The
task to solve here is still to traverse to a goal region,
but the terrain causes new behavior to occur. The effect
of gravity influences the motion of the robot going up
hills, but can also propel the robot down slopes.

Another setup that is shown here is a traversal around
obstacles. These obstacles can represent the irregular
topography of a cave-like environment. This highlights
the need for high-level planners, since other methods
may not be able to effectively reconfigure to achieve
motion through tunnels. An illustration of the motion
planner’s tree is shown in Fig. 5.

C. Planning Under Uncertainty

A trajectory computed in the belief space is shown in
Fig. 6. Due to noise in actuation, different final states
states may be reached, which composes a belief over
the actual state of the robot, illustrated as transparent
shapes of the robot. Planning in belief space has higher
computational cost relative to state space planning, but
provides the benefit of robustness to errors.

Another interesting property that was discovered
while planning under uncertainty is that the SUPERBall
can inherently reduce its uncertainty with specific mo-
tions. This behavior arises due to the different faces that

Fig. 5. An example tree computed from the motion planner. This tree
has to avoid the red region, which causes the robot to traverse around
it. Invalid regions could correspond to craters or inescapable areas.

Fig. 6. An example trajectory computed when planning under
uncertainty. The transparent versions of the SUPERball show different
possible futures given uncertain actuation.

can be touching the ground at any given time. Even with
small errors in actuation, a similar resting state can be
achieved by not changing control inputs too rapidly. In
addition, the set of particles quickly diverges and clusters
into multiple modes (see Fig. 7 for an example). It may
be possible to exploit this behavior in an intelligent
way to help reduce overall uncertainty when executing
a trajectory in the real world.

IV. DISCUSSION

The demonstrated integration of a sampling-based
motion planner with an accurate robot simulator enables
path planning for tensegrity robots. This allows for paths
that take into account both terrain effects and any other
environmental obstacles, due to considering the dynamic



Fig. 7. A single set of particles that represent one belief distribution.
This distribution is multi-modal The dynamics of the system naturally
create these situations.

effects that contacts introduce on the robot. There are
several pending research directions however to make the
integration more effective.

A. Implementation Efficiency Concerns

One of the most obvious drawbacks discovered when
planning with the physics engine is that the computa-
tional cost of planning is large. Especially in the case of
planning under uncertainty, there is a lot of work to be
done to make planning faster. This work takes advantage
of parallelism to achieve faster times, but alternatives
should be explored. It might be possible to find a
different representation for the probability distributions
that isn’t particle-based. If this is possible, much of the
computational cost can be reduced. Another possible
direction is looking into more approximate models of
tensegrity robots for long horizon planning. Then, the
full simulator can be used more as a verification tool
than planning primitive.

B. Algorithmic Additions

Much of the integration between the simulator and
the planner assumes that there is no knowledge of the
other component. The planner considers the simulator
as a “black box” that given a start state, an end state
is provided as output. If more knowledge about the
underlying workings of the simulator is given to plan-
ning, more efficiency may be gained. By maximizing the
usefulness of each iteration of the planner, the resulting

paths will have better quality. This additions could be
further parallelization, biasing the search region using
heuristics, or even moving into a replanning framework
where the planning horizon is shorter, but planning is
done in more frequent stages.

Another way to improve the integration is to better
focus the search process to promising controls and
integrating this high-level planning method with efficient
local gaits that have been recently developed [3]. This
work uses random control inputs to the robot, while
more intelligent control inputs will more effectively
move the robot. The question then becomes, what is the
set of diverse local gaits that allows for locomotion in
the largest amount of cases? This question is the focus
of ongoing work.
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