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Abstract

The Dynamic Tensegrity Robotics Lab (DTRL) at
NASA Ames Research Center is developing a compliant
and distributed tensegrity robotic platform for planetary
exploration. Working in collaboration with Ghent Uni-
versity, the DTRL built an untethered prototype robot, the
SUPERball. In this work, multiple issues with the cur-
rent SUPERball design are addressed, when considering
an example mission to Titan. Specifically, engineering re-
quirements for the mission are empirically validated, and
the current design is extended under these requirements
to meet expanded goals. Survival of impact forces un-
der entry, descent, and landing are verified with a physi-
cal experiment performed in collaboration with the Uni-
versity of Idaho. Then, concepts for a fully-actuated re-
design of SUPERDall are generated, compared, and vali-
dated against current engineering requirements. This ex-
ploratory work moves the SUPERball project toward an
eventual flight-ready design.

1 Introduction

NASA is supporting research into tensegrity robotics
for emerging space missions. Pure tensegrity systems, a
portmaneau of “tensile-integrity,” contain rigid rods in a
network of tension such that no two rigid elements are
in contact. Their high strength-to-weight ratio and de-
ployability from compact configurations, which enable
them to fit into small constrained launch fairings, have
inspired studies of deployable antennae and other large
space structures [1]. For planetary exploration, the global
force redistribution property of tensegrity structures is a
property NASA is quite interested in researching [2]. Sci-
ence has even emerged showing that tensegrity structures
are found in a wide gambit of nature from cells to hu-
man anatomy [3][4]. A tensegrity mission can have a high
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mass fraction between science payload and overall weight
(as measured at atmospheric entry) due to its ability to
perform EDL and mobility. This will enable cheaper and
new forms of surface exploration that utilize their natural
tolerance to impacts [5].

Figure 1. Ghent ReCTeR

University’s
tensegrity robot, the ideological prede-
cessor to DTRL’s SUPERball, which
maintains the same geometry.

SUPERDball, the Spherical Underactuated Planetary
Exploration Robot Ball, is a distributed robotic system
design prototype in active development at the Dynamic
Tensegrity Robotics Lab (DTRL) at NASA Ames Re-
search Center [6]. This robot’s distributed communica-
tion, control, and structure stems from the decentralized
nature inherent to tensegrities. Each rigid rod is a self-
contained robotic system consisting of two smaller intelli-
gent nodes, which the DTRL has termed “endcaps.” Such
intelligent actuated elements are at the core of any dis-
tributed tensegrity robot, like SUPERDball. Figure 2 shows
a current hardware prototype of a SUPERDball endcap that
is currently being tested. The goal configuration for SU-
PERDball is a 6-bar icosahedron, with 24 cables in its ten-



sion network much like its ideological predecessor, Ghent
University’s ReCTeR robot in Figure 1.

Figure 2. Current version of a prototype
rod from NASA’s tensegrity robot, SU-
PERball.

In order to execute a tensegrity-based space mission,
there are numerous challenges that have yet to be ad-
dressed. Here, two of these outstanding issues are re-
searched, and progress is made toward eventual solutions.
This work discusses the current state of our work validat-
ing the dynamic landing force estimates from SunSpiral et
al [5] as well as exploring actuation specifications based
on Icsen et al’s [7] control scheme. These controls, which
are designed to pull on specific cables such that the robot
rolls forward in dynamic locomotion, are the state of the
art in mobile control of tensegrity robots. First, current
and previous the specifications are discussed. This will be
followed by a section on the current structural validation
tests, and a section on concept designs to expand the ac-
tuation of SUPERDball to meet the requirements for better
versions of the current published control schemes.

These two areas of work are tied by the same cru-
cial link of structural integrity for a future physical robot.
The validation of forces on the structure in section 3 is
envisioned to be used in more advanced development of
engineering requirements, of which a preliminary set are
used in the fully-actuated redesign in section 4. The on-
going work to estimate, predict, and analyze the impact of
forces on the structure of an envisioned tensegrity plane-
tary lander guide this research.

2 Motivation and Prior Work

Exploration of scientifically interesting planetary
bodies, such as Saturn’s moon Titan, will require rovers
which are capable of traversing unmapped or low reso-
Iution mapped terrain and diverse terrain profiles, adapt-
ing to long communication delays, and efficiently shut-
tling long distances through our solar system. Tensegrity
robotics show promise in efficiently addressing all these
high-level requirements. NASA has funded this idea,
embodied in the SUPERball, through an Innovative Ad-
vanced Concepts (NIAC) grant [2]. This NIAC project
seeks to build a tensegrity robotic system that is capable of
performing EDL (Entry, Descent, and Landing) tasks and
then moving around on Titan’s surface once it has landed.
The outer structure performs both landing and locomotion
functions, saving weight and cost. While the tensegrity
structure will be for EDL and mobility, a payload with
various science equipment will be suspended within the
middle of the structure. Building a rover capable of ex-
ecuting diverse EDL scenarios gives the exploration mis-
sion more freedom to explore areas inaccessible or dan-
gerous for current rover platforms, e.g. lava tubes.

2.1 Drop Test Work

The DTRL team has already explored a tensegrity
EDL concept design validation through simulations and
an initial drop test of a basic tensegrity robotic structure
in [5]. It was shown that a tensegrity structure has the
potential to handle various landing orientations during an
EDL scenario on Titan while protecting the scientific pay-
load from large deceleration forces due to impact dynam-
ics. This result was achieved by utilizing two separate
simulation environments: an Euler-Lagrange formulation
of system dynamics [8] and a real-time physics based sim-
ulator tool kit developed in the DTRL called the NASA
Tensegrity Robot Toolkit (NTRT). There was also an un-
instrumented physical drop test conducted, showing that
a tensegrity robot could be built to withstand an impact
force relative to that of Titan’s terminal velocity. Though
the simulator and initial drop test showed promising re-
sults, more extensive physical system validation is essen-
tial to prove that the system will function as expected.

2.2 Current SUPERDball Prototype Build

As mentioned in section 1, SUPERball is a tenseg-
rity robot in development in the DTRL. This prototype
robot is a six bar tensegrity structure which forms an
icosahedral geometric shape when all 24 cable lengths
are equal. Every endcap is equipped with a micro-
controller which monitors tensile forces in actuated and
non-actuated endcap cables, 9-DOF IMU, wireless com-
munication (2.4GHz and 900MHz), CAN 2.0B bus com-
munication, battery/power monitoring, and 25 general



purpose expansion pins for extra peripherals. For the cur-
rent iteration, each rod endcap is an active endcap capa-
ble of actuating one unique cable, thus 12 of the 24 ca-
bles within the main tensegrity structure are actuated. Al-
though this scheme should enable us to achieve basic dy-
namic mobility, a 24 actuated structure will expand the
manipulation and mobility space of the robot to maneuver
across a multitude of terrain profiles, as well as comply to
the state of the art in tensegrity robotic control schemes.

3 Drop Test Simulation Validation

In our previous work, we validated that a tensegrity
structure would be able to survive an EDL senario on Ti-
tan [5]. This validation was based on a simulated tenseg-
rity structure with relatively realistic material prosperity
specifications. In this work, we continue with physical
drop testing and model refinement. This work is being
conducted in collaboration with the University of Idaho.

3.1 Experimental Setup

For this drop test validation, a static tensegrity struc-
ture is used with various force and acceleration sensors as
seen in figure 3. A test rig is used where the structure is
suspended a known distance from a flat hard concrete sur-
face such that two parallel rods impact the surface exactly
orthogonal to the surface. This is a worst case landing
senario as stated in [5].

Figure 3. 1 meter tensegrity structure with
linear springs for drop test validation.
The structure is equipped with an ac-
celeration sensor to monitor the payload
and force sensors to monitor the cable
forces.

Initially, the structure used parachute shock cord for
the spring like elements in the structure, though the non-
linear nature of the cord made the impact simulations in-

consistent with the simulation results due the simulator’s
model of linear springs. A non-linear spring model was
implemented within the simulation environment, but the
team was unable to fully determine the system identifica-
tion for the non-linear model’s coefficients. Consequently,
the current structure utilizes external extension springs in
line with relatively high stiffness cord, to model a known
spring constant. This improved the simulation’s linear
spring results to match to the drop test experimental re-
sults.

3.2 Current Results

Initial data from the drop test structure, in comparison
to the simulation model results, are promising for sim-
ulation validation. Figure 4 shows three repeated drop
tests from the same height matching the simulated re-
sult’s pattern. There are noise inconsistencies with the re-
sults, though this is most likely due to small mis-modeling
in system identification parameters and unforeseen varia-
tions due to external environmental interference.

6lb/in Springs 2 Meter Drop

\ \ | —— 2m 6lbiin model | |
gt W % —— 2m 6lbiin -

Acceleration (Gs)

| i i i i i i i i
0 001 002 003 004 005 006 007 008 009
Time (s)

Figure 4. Accelerometer data from three
identical drop tests overlaid with the
simulated drop test in red.

4 Design for Full Mobility

Though a partially-actuated structure is adequate for
basic mobility in the first generations of SUPERball, it
is expected that more efficient and flexible control could
be developed for future generations with a fully actuated
system. Thus, this section explores work on creating a
SUPERDball with a fully actuated outer shell, one actuator
for each of the 24 cables. This requires two actuators for
each node of the structure, instead of the single motor. The
same original set of engineering requirements were used
for this redesign as for SUPERball [6], listed in Table 1,
with the exception of the mass of each rod. Based on fur-
ther simulations since the development of these criteria,
it was determined that the initial weight requirement had



a much more variable relationship to system performance
than was expected. And, since this design iteration is a
proof-of-concept prototype, we did not want to limit our
ability to find robust actuation schemes with this hard con-
straint. Thus, only two of these three criteria are catego-
rized as hard constraints for our designs. The performance
comparison table below contains other soft constraints of
which weight is now one, relating to other important pa-
rameters of the designs.

Table 1. Original SUPERball Engineering
Design Requirements. [6]

Parameter: Value:
Mass Per Rod (kg) 1.5
Maximum Actuator Speed (cm/s) 60
Maximum Cable Force (N) 100

4.1 Concept Generation and Concept
Evaluation

Working up from the current SUPERball design, five
design concepts were developed and ranked according to
these engineering specifications. The metrics are weight,
movement, force, simplicity, manufacturability, and abil-
ity to obtain practical sensor measurements. Each of these
design concepts use the same method of force generation,
a brushless DC motor, but are different in their transmis-
sion mechanisms and modes of use. Each contained two
actuators per endcap, instead of the single one currently
on SUPERball.

4.1.1 Design Concepts

The aligned pulley block concept in Figure 5 has two
motors attached to power screws that adjust cable lengths
over pulley blocks, each with a fixed pulley interacting
with a moving unit.

Since there is very limited space on a rod-like robot,
and the stroke of the power screw is relatively short, these
pulleys are used to magnify movement from the power
screw nut. This design involves a long section of moving
cable for the bottom (or inverted) motor, which leads to
disadvantages in routing and supporting those cables un-
der tension.

The parallel pulley block concept in Figure 6 uses a
similar method of actuation as the aligned pulleys, but
a different orientation. The pulley block units are now
parallel to each other in a relative space-efficient orienta-
tion that does not require extensive routing of either set of
high-tension cables.

The aligned winch concept in Figure 7 is a variation
of the simple winch on the current SUPERDall. It has the

FIXED PULLEY |
FIXED PUTEY 2
o/

|
it OVABLE

%f’ gE | /MWLLEYZ

[PULEY Block  Sciup| (@)

Yougrin Chen,  Feb:20. 2l

Figure 5. Design Concept 1: Aligned Pulley Block

Yowtin Chen  Feb 20,

F!YW PULLET |

FIXED PULLEY 2

Figure 6. Design Concept 2: Parallel Pulley Block

| Aummg;j

in Chov  Tebh2o,
WINCH LS il
I

Figure 7. Design Concept 3: Aligned Winch



same disadvantages as the current design, such as diffi-
culty of wrapping the cable reliably around the spindle,
but also the cable routing difficulties in the aligned pulley
concept.

Note that like the pulley blocks in figures 5 and 6, par-
allel winches were initially considered as an additional de-
sign concept, but was disregarded after a qualitative anal-
ysis of the space requirements of that orientation.
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Figure 9. Design Concept 5: Twisted Cable

The rigid belt concept in Figure 8, also known as a
zipper belt, is a specialized mechanical linear actuator that
uses two reinforced plastic ribbed belts for force transmis-
sion. This technology is patented [9] [10], and the actu-
ator can be purchased off-the-shelf. However, the belt is
a performance hindrance: its rigidity causes issues for the
required compliance of tensegrity systems. Another dis-

advantage is that there is no room to store the unzipped
belts on the current robot design.

The twisted cable concept in Figure 9 is a version
of a novel actuation technology that is under rapid de-
velopment for robotic systems. Prior work has found
twisted cable systems to be a simple but effective method
of applying tension and displacement in robotic appli-
cations; the two most needed controls in a tensegrity
robot [11] [12] [13] [14]. However, it is hindered by the
unconstrained environment under which it will be used in
the SUPERball design, which cannot prevent unwanted
transverse deformations. Additionally, current technology
does not have shortening and lengthening percentages and
speeds which would meet current design requirements for
SUPERDball. Due to its excellent performance in other ar-
eas, though, it will likely be an excellent choice for tenseg-
rity robotics in the future if these two main tradeoffs are
resolved.

4.1.2 Concept Comparison and Selection

Table 2 shows a performance comparison matrix that
compares these designs’ features with those of the current
12-actuated SUPERDball as the reference. Each compar-
ison (positive, negative, or zero) arose from discussions
and a qualitative analysis of each design’s features. A neg-
ative/positive rating indicates that the proposed design is
less/more favorable than the SUPERball reference. A zero
indicates no difference.

The “parallel pulleys” design was qualitatively seen to
be most promising. Consequently, it was chosen for fur-
ther analysis. Future work on detail design, construction,
and testing will be needed to make a final design decision.

4.2 Final Design Details

A version of the parallel pulleys design, having
researched more details and designed sub-modules, is
shown in the left figure in Figure 10. As was intuited dur-
ing the comparison and selection process, this design re-
tains simplicity of outer structure with easily-constructed
components. Pulleys, bearings, leadscrews, slides, and
rods are all sourced as off-the-shelf components. The right
image in Figure 10 shows the actuation mechanism itself
without any supporting structure.

Simple calculations were performed to confirm that
this design would meet the engineering requirements.
The power screws, part number SFK00801 from Dea-
woo Bearing Co., have a diameter of 8mm and pitch of

= S5mm. They are paired with a set of same 100W
Maxon 386674 brushless DC motors as are in the current
SUPERDball. The initial concept has a series of n. = 4 ca-
bles per pulley assembly. It was calculated using standard
power screw analysis techniques [15] that the force on the
cable would be 98.5N at a motor speed of 3000rpm and
a cable output speed of 1m/s. This is within the Maxon
motor’s speed-torque curve for 100W operation. These



Table 2. Performance Comparison of Design Concepts.

Design Name: Aligned | Parallel | Aligned | Rigid | Twisted | Current SUPERDball
Pulleys | Pulleys | Winch | Belt Cable as Reference

Weight: - - - - 0 0
Movement Range: 0 0 + 0 - 0
Output Force: + + 0 + 0 0
Simplicity: - 0 - - + 0
Manufacturability: 0 0 0 - 0 0
Ease of Sensing: + + 0 + - 0
Net Performance: | 0 + - -1 - 0

two metrics, 98N and 1m/s, satisfy the hard constraints in
table 1.

In comparison to the current partially-actuated design
of SUPERball, this design does have certain disadvan-
tages.

Figure 10. Left: Rendering of detail design
for parallel pulleys concept found in fig-
ure 6. Right: Core of redesign without
housing.

This was to be expected: this redesign adds an enor-
mous amount of functionality, that was expected to in-
crease cost and complexity while sacrificing weight and
potentially speed. However, although this may not have
been captured in our performance comparison, full actua-
tion is seen as critical enough to our mission’s success that

it will allow for these affordances.

The same principles of design for manufacturing and
assembly were applied to parallel pulleys as were applied
to the current SUPERDall. Both designs are certain to be
prototyped in research phases, which limited the availabil-
ity of expensive materials. Consequently, certain aspects
of the current SUPERball were carried over into the par-
allel pulleys redesign, such as the endcap shaft collar and
sheet metal housing design. However, more analysis must
be performed in future work to confirm the structural in-
tegrity of these carry-over designs for the new actuation
configuration.

Some details in the SUPERball design were neglected
when developing this concept of parallel pulleys. For ex-
ample, the passive cable-spring system [6] [16] was not
included here. Consequently, there are anticipated chal-
lenges with fully integrating this new redesign into the
current system. Components such as the attachment shaft
collar will need to be re-sized for a larger rod, as will all
the structural parts, for practical use. These details will be
more informed once data is collected on the end actuator
weight, as tests are performed on the current SUPERDball.

5 Conclusions and Future Work

Two important steps have been taken in this work
toward realization of a tensegrity-based planetary explo-
ration mission. First, prior simulation results of forces
on a payload in a 6-bar tensegrity icosahedron were vali-
dated against a physical model. This data and subsequent
analysis allows for continued development of more so-
phisticated engineering requirements. Additionally, the
current set of engineering requirements were applied in
the process of developing and evaluating concepts for a
fully-actuated redesign of the current 6-bar icosahedron
SUPERDball. A promising design was developed that met
the most important requirements.

However, both the development and use of these en-
gineering requirements require future work. Though the
structural forces on a center payload have been tested, a



model is required that relates these forces to those within
the outer structural members. Work continues on applying
a physics-based analytical model that would be appropri-
ate for interpreting the variety of other sensor data that
was recorded in these drop tests. Certain other drop test
experiments may be necessary, including those with the
SUPERBDall itself once a full structure has been assembled.

For the 24 actuator redesign, continued work is
needed on more in-depth detail design, analytical struc-
tural calculations, and testing. Any outstanding conflicts
with the current SUPERball design must be resolved, and
a more thorough design for assembly must be performed
once these details have been specified.
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