
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Simulating DuCTT and optimizing control for DuCTT with machine learning

A Thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in

Computer Science

by

Alexander Lawrence Xydes

Committee in charge:

Professor Yoav Freund, Chair
Professor Thomas Bewley
Professor Ryan Kastner

2015

Copyright

Alexander Lawrence Xydes, 2015

All rights reserved.

The Thesis of Alexander Lawrence Xydes is approved and is acceptable

in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2015

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita . x

Abstract of the Thesis . xi

Introduction . 1

Chapter 1 Literature Review . 4
1.1 Duct-Inspection Robots . 4
1.2 Tensegrity Robots . 5
1.3 Robotic and Tensegrity Simulation . 7
1.4 Tensegrity Control . 8

1.4.1 Central Pattern Generators . 9
1.4.2 Learning the Controller Parameters . 11

1.5 Acknowledgments . 12

Chapter 2 Approach . 14
2.1 Overview . 14
2.2 Target Platform . 15
2.3 Simulation . 15

2.3.1 Libraries . 16
2.3.2 Robot . 18
2.3.3 Environment . 21

2.4 Control . 22
2.4.1 Control Strategies . 24
2.4.2 Controllers . 27
2.4.3 Low-level Controllers . 27

2.5 Mechanical Test and Validation . 28
2.5.1 Lagrangian Model . 28
2.5.2 Control . 33
2.5.3 Tests . 35

2.6 Learning Algorithms . 36
2.6.1 Monte-Carlo . 37

iv

2.6.2 Genetic Algorithm . 37
2.6.3 Other learning approaches . 39

2.7 Cost Functions . 40
2.8 Acknowledgments . 41

Chapter 3 Experimental Results . 42
3.1 Mechanical Validation . 42
3.2 Learning Results . 45

3.2.1 Vertical Duct Climbing . 46
3.2.2 Horizontal Duct Traverse . 48
3.2.3 Horizontal Plane Traverse . 48
3.2.4 Robustness Testing . 48

3.3 Acknowledgments . 51

Chapter 4 Conclusion . 53

Bibliography . 54

Appendix A Appendices to Section 3.1 . 59
A.1 Mechanical Test and Validation Results . 59

v

LIST OF FIGURES

Figure 1.1. SUPERBall rendered in the NTRT toolkit. 6

Figure 1.2. Representation of one set of bars of the tail structure for the CPG
swimmer. Bars are in black, cables in red. 6

Figure 1.3. TetraSpine3 built by In Won Park and Vytas SunSpiral in the Intel-
ligent Robotics Group at NASA Ames Research Center. [25] 7

Figure 1.4. Tetraspine rendered in the NTRT toolkit. 8

Figure 2.1. DuCTT robot: hardware and render . 16

Figure 2.2. Simulation of DuCTT Prototype in NTRT . 19

Figure 2.3. Three different environments used for testing control strategies. . . 23

Figure 3.1. Average nodal error between the models. Calculated by averaging
the distance between all the nodes of the two models. 43

Figure 3.2. Test case 5: average nodal error . 44

Figure 3.3. Test case 6: state variable comparison . 44

Figure 3.4. Test case 6: Comparison of φ state variable 45

Figure 3.5. Starting position of simulated DuCTT. Green lines are the corners
of the duct. 46

Figure 3.6. Controller 3 making DuCTT climb. 47

Figure 3.7. DuCTT on a horizontal plane. 49

Figure 3.8. Starting positions of positional robustness test. (0,0) is the center
of the duct. 49

Figure 3.9. Results of duct size robustness test. 51

Figure A.1. Test case 1: average nodal error . 59

Figure A.2. Test case 1: state variable comparison . 60

Figure A.3. Test case 1: Comparison of φ state variable 60

Figure A.4. Test case 2: average nodal error . 61

vi

Figure A.5. Test case 2: state variable comparison . 61

Figure A.6. Test case 2: Comparison of φ state variable 62

Figure A.7. Test case 3: average nodal error . 62

Figure A.8. Test case 3: state variable comparison . 63

Figure A.9. Test case 3: Comparison of φ state variable 63

Figure A.10. Test case 4: average nodal error . 64

Figure A.11. Test case 4: state variable comparison . 64

Figure A.12. Test case 4: Comparison of φ state variable 65

Figure A.13. Test case 5: average nodal error . 65

Figure A.14. Test case 5: state variable comparison . 66

Figure A.15. Test case 5: Comparison of φ state variable 66

Figure A.16. Test case 6: average nodal error . 67

Figure A.17. Test case 6: state variable comparison . 67

Figure A.18. Test case 6: Comparison of φ state variable 68

vii

LIST OF TABLES

Table 2.1. Robot simulation parameters and their values for this work. 22

Table 2.2. The inputs and outputs available from the simulated parts of the robot. 23

Table 2.3. Control groupings considered. 25

Table 2.4. The sine wave parameters used for each test case. 36

Table 2.5. Value ranges for each parameter of the two controller strategies. . . 37

Table 3.1. Performance of each controller at climbing vertical duct after learning. 47

viii

ACKNOWLEDGEMENTS

Figure 1.3 has been reproduced with permission from B. T. Mirletz, I.-w. Park,

T. E. Flemons, A. K. Agogino, R. D. Quinn, and V. Sun- spiral, Design and Control of

Modular Spine-Like Tensegrity Structures, in 6WCSCM: Sixth World Conference on

Structural Control and Monitoring, no. July, 2014.

I would like to acknowledge Jeffrey Friesen for his work on the Lagrangian

dynamics model of the robot and his contributions to Section 2.5.

Section 3.1, in part, has been submitted for publication of the material as it

may appear in The Second Generation Prototype of A Duct Climbing Tensegrity Robot,

DuCTTv2, in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International

Conference on, 2015, J. Friesen, P. Glick, M. Fanton, P. Manovi, A. Xydes, and T.

Bewley. The thesis author was a co-author of this paper.

ix

VITA

2010 Bachelor of Science, California Polytechnic State University, San Luis
Obispo

2015 Master of Science, University of California, San Diego

x

ABSTRACT OF THE THESIS

Simulating DuCTT and optimizing control for DuCTT with machine learning

by

Alexander Lawrence Xydes

Master of Science in Computer Science

University of California, San Diego, 2015

Professor Yoav Freund, Chair

Air duct inspection frequently requires mobile robots to visit areas inaccessible

to humans. Tensegrity robots, with their small mass and cross-section are highly suited

to inspecting air ducts without impeding the flow within the duct. One tensegrity robot

designed at the UCSD Coordinated Robotics Lab for this task is the Duct Climbing

Tetrahedral Tensegrity (DuCTT) robot. This robot consists of two tetrahedral sections

connected by eight cables.

This work presents a way to simulate this robot in the NASA Tensegrity Robotics

Toolkit (NTRT). Once the robot is simulated, control strategies can be explored in a

xi

variety of different environments. These strategies can get the robot to climb and traverse

air ducts. and ways to optimize controllers based on those strategies.

The two different strategies are using sine waves to control the actuators, and a

state-machine controller. Each controller is optimized using one stage of Monte-Carlo

parameter estimation and a second stage genetic algorithm to improve the parameters

found by the first stage. The state-machine controller ends up with better performance,

6.77 cm
s , compared to the sine wave controller’s 0.38 cm

s .

xii

Introduction

Inspecting pipes can discover cracks before a spill of the pipe contents occur and

many times the pipes are inaccessible to humans. Air ducts also need to be inspected to

search for wiring shorts or other damage that can occur during years of use. Robots are

increasingly being used to do this job and provide an eye inside the duct or pipe because

they can reach the places inaccessible to humans. They can be designed specifically for

the job at hand. Some designs use magnetic wheels, others use spring-loaded wheels to

press against the walls, while still others use an inchworm motion. Tensegrity principles

provide yet another design paradigm that can lead to lighter more efficient robots.

Tensegrity principles were first used in the art world during the 1960s to create

standing structures. A tensegrity (tensile integrity) structure consists of members that

are under compression or tension only [16, 32]. Without the bending or shear forces that

come from being under both compression and tension, tensegrity structures can be made

of lighter-weight materials without sacrificing robustness. The compression members

(rods) are suspended between the members under tension (cables) leading to a web of

tension and compression members. External forces are distributed along the web of

tension members, reducing the amount of force each individual compression member

undergoes. This light-weight and robust nature makes robotic tensegrities very suitable

for missions like air duct-inspection where this is an advantage.

The University of California, San Diego (UCSD) Coordinated Robotics Lab

has been developing a tensegrity-based robot for this task of duct-inspection. Their

1

2

robot, called the Duct Climbing Tetrahedral Tensegrity (DuCTT) robot, is a class three

tensegrity where three compression members (rods) come together at a joint [19]. Class k

tensegrities have k rods touching at each joint. This group has designed and implemented

a force density based inverse kinematic control algorithm to get the Duct Climbing

Tetrahedral Tensegrity (DuCTT) robot to climb a duct. This method is complex, involving

a lot of parameters. It is also currently slow, with the robot climbing at a speed of 1.4 cm
s ;

although it has not yet been optimized for speed [18].

The tasks for this work include: simulating the DuCTT robot to provide a platform

for controls development, validating that simulation. The last task is developing control

algorithm(s) to make DuCTT climb a vertical air duct, traverse a horizontal duct and a

horizontal plane. These three environments represent the three basic areas of a duct that

this robot is likely to encounter in the real world. The horizontal plane is also a good

proxy for air ducts that are substantially larger than the robot.

There are many different simulation environments for games and robotics to

choose from, even a few designed specifically for tensegrities. However, there’s only

one modern simulation environment designed for tensegrity robotics: NASA’s Tenseg-

rity Robotics Toolkit (NTRT) [3]. This toolkit provides a lot of tensegrity specific

constructions that make it easier to model a tensegrity robot and test it out in various

environments.

To validate the simulation, an Euler-Lagrange model of the robot is constructed

and then compared to the NASA Tensegrity Robotics Toolkit (NTRT) simulated robot.

This involves controlling the NTRT simulation and Euler-Lagrange model in the same

manner, and comparing the nodal positions of each model after the dynamics are calcu-

lated. The nodal positions of each model should match closely if the model’s agree with

each other.

Finally, machine learning is used to optimize three different controllers to find

3

the best control scheme for the DuCTT robot. Tensegrity robots include a large number

of actuators, at least one per cable, which leads to a complex control problem. Machine

learning is ideally suited to test out large numbers of controller parameter values and

compare their performance. A combination of Monte-Carlo parameter estimation and

genetic algorithm is used to search the parameter space and find the best set of parameter

values. The Monte-Carlo parameter estimation finds a good basic set of parameters and

then the genetic algorithm improves on those to get much better performance.

To compare the different controllers, average speed and distance traveled over a

minute are the metrics used. While more complicated metrics are possible to develop,

these two basic ones provide good performance without much computational cost. The

metrics are also very intuitive and not ambiguous. Before exploring these methodologies

in detail, it’s worth looking at what else is available to provide some context.

Chapter 1

Literature Review

This work explores the use of different machine learning algorithms to a robot

designed for pipe-inspection. The target robot is a hybrid of tensegrity and traditional

mobile robots. Given that designing control policies for tensegrity robots is much harder

than for traditional mobile robots because of the high degrees of freedom, it seems

appropriate to use machine learning to optimize the control policy of this robot.

1.1 Duct-Inspection Robots

Inspecting pipelines, air ducts and similarly small enclosed spaces is hard or

impossible for a human to do. Small mobile robots can successfully access these spaces

and perform the desired tasks. There is a high degree of variability in the design of these

robots as the geometry of the specific duct, pipeline or enclosed space combined with the

desired task greatly affects the best design of a robot. Some robots built for inspecting

pipelines use wheels, pressed against the sides of the enclosed space, to move. Others use

magnetic wheels to stick to the sides of suitably ferrous enclosures [24]. Unfortunately,

these wheeled robots can not handle irregularities such as sharp corners, changing duct

shape or obstacles very well.

One approach to handling irregularities uses an inchworm motion to propel the

robot along the duct. This motion involves securing one part of the robot to the duct,

4

5

pushing another part forward, securing the second part of the robot to the duct, then

releasing the first part and pulling it forward. These robots take many forms, some using

wheels [30], while others use complicated legs to press against the walls [23].

Another class of robot uses mechanical legs to handle irregularities like sharp

corners and obstacles [34]. One such robot, whose design is based on a spider, has been

shown in a 2D simulation to handle multiple types of such irregularities in ducts [27].

Mechanical legs are currently heavy and power-hungry, which limits their potential in

an untethered mobile robot. One potential solution to this problem is the use of mobile

robots based on tensegrity principles [31].

1.2 Tensegrity Robots

Tensegrity principles are used in a variety of manners to achieve different goals in

regards to robotics. The elements of a tensegrity structure are only under compression or

tension, not both; neither do the elements experience bending or shearing forces. Because

of this, the materials making up such a structure can be more mass-efficient than in a

regular robot. This means that more of the robot’s weight can be taken up by power

sources which should lead to a longer operating duration.

A good example of tensegrity principles allowing for lighter materials involves

designing a robotic leg. The authors design a robotic leg and foot modeled after the

human leg and foot connection [7]. The MIT Robotic Cheetah leg is redesigned to

include cables and then tested for performance and stress induced on the leg materials. A

finite element analysis indicates that the tensegrity cable reduces the stress on the leg and

foot materials [7]. This means that the materials making up the leg and foot can be more

lightweight as they do not have to withstand as much force while in use.

One robot based on the principles of tensegrity is designed to absorb the impact

from landing on a planet and then be able to navigate the planet’s surface. This SU-

6

PERBall robot is a 6 rod icosahedron tensegrity robot with 24 cables connecting the

rods and allowing it to deform and move [11]. The control algorithm is evolved via

co-evolutionary algorithms to optimize the motion of a single flop when applied in series

to form a rolling motion [11].

Figure 1.1. SUPERBall rendered in the NTRT toolkit.

Another robot uses tensegrity principles to create a tail structure used to propel

the robot. This structure consists of two sets of 6 bars in a pair-wise “X” configuration,

where one set is stacked vertically on top the other [10]. Cables connect the bars forming

a square. Tensegrity principles allow the tail structure to be light-weight and to retain its

structure under plane loading and it’s own weight when oriented perpendicular to gravity.

Figure 1.2. Representation of one set of bars of the tail structure for the CPG swimmer.
Bars are in black, cables in red.

Another group explored the control of spine-like tensegrity structures. These

structures consist of repeated rigid substructures connected by cables, where the rigid

substructures could be shaped like tetrahedrons (a.k.a. Tetraspine, Fig. 1.3), ribs, or other

structures [25]. In the tetrahedron case six cables connected each segment, in the rib

7

case 7 active cables and 4 passive (non-actuated cables). In all morphologies, the authors

used twelve segments total to balance the need for behavioral flexibility and limiting

computational complexity. Only the tetrahedron segment was prototyped in hardware

(Fig. 1.3) as it provides lots of space for circuitry, motors and sensors [25].

Figure 1.3. TetraSpine3 built by In Won Park and Vytas SunSpiral in the Intelligent
Robotics Group at NASA Ames Research Center. [25]

1.3 Robotic and Tensegrity Simulation

Robotic simulations provide great environments to test and validate a robotic

design. They also allow machine learning algorithms to test a design thousands of times

without the difficulties of setting up a physical robot.

One way of simulating tensegrity-based robots and structures is to build a custom

simulator, which is sometimes done in Matlab [13]. However, this strategy usually does

not include collision physics and therefore cannot be used to investigate how a tensegrity

robot interacts with an environment.

Some standard simulation environments include the Bullet Physics Engine, Havok,

8

ODE, and PhysX [15]. None of these were designed with tensegrity simulation in mind.

They are either game engines that have been re-purposed for robotic simulation or they

are designed for rigid robots. When they do include soft-body dynamics (Bullet, Havok

Cloth, PhysX), they are either designed for game elements, like clothing, or are not quite

accurate enough for tensegrity simulation [12].

Tensegrity specific simulators (Springie [6]) and simulators that support tensegrity

structures do exist (Push-Me-Pull-Me [5]). Unfortunately, both of these are oriented

towards static structures and not mobile robotics, which is necessary for this work. As

a result there is no support for motors nor for programmatically moving the tensegrity

structure.

Fortunately, a good candidate exists in the form of the NASA Tensegrity Robotics

Toolkit (NTRT) [3]. This library adds tensegrity specific features to the Bullet Physics

Engine (Bullet) [1] to enable fast prototyping and accurate simulation of mobile tensegrity

robots. It is described in more detail in Section 2.3.1.1.

Figure 1.4. Tetraspine rendered in the NTRT toolkit.

1.4 Tensegrity Control

Controlling mobile tensegrity robots is more difficult than traditional skid-steer or

ackermann drive robots. This comes from the fact that the tensegrity based robots contain

more degrees of freedom and more actuators than the traditional robots. A tensegrity

robot could potentially have an actuator for each cable in the robot, and some of these

contain a lot of cables (SUPERBall has 24 cables for instance [11]).

9

1.4.1 Central Pattern Generators

One way of coordinating all these cables takes inspiration from the animal neurons

that produce rhythmic outputs. These central pattern generators (CPGs) produce their

patterns on their own, without any sensory input. Several of the central pattern generator

(CPG) properties are useful for mobile robots including that they allow for distributed

control with fast control loops [12]. CPGs are also resistant to disruptions [12].

The SUPERBall bot started with just CPGs for control and with their parameters

learned via evolutionary algorithms [21]. It then moved to a hybrid CPG and inverse

kinematic (IK) control algorithm that performed better in terms of the quality of the

path than with just CPGs alone [12]. The inverse kinematic (IK) algorithm provides

feedback that help correct the cable rest-lengths as well as provide a way to follow a

desired trajectory. The CPG equation (Eq.1.1) that governs the rest lengths of the cables

for this robot only contains four parameters [21]:

y(t) =C+A∗ sin(ωt +φ) (1.1)

where C is the center position of the sine wave, A is its amplitude, ω is the angular

frequency and φ is the phase.

The swimmer with a tensegrity tail uses CPGs with closed loop control to develop

target propulsive gaits. The author starts with open-loop control of the CPGs to gather

characteristics and metrics about the structure and control [10]. Then a closed loop

control method with some time delay is developed which demonstrated robustness and

the ability to target different gaits.

The tetraspine robot also uses CPG nodes to control the crawling motion of the

robot. The authors group the CPGs in sets of three with one set per robot segment,

leading to 11 sets of 3 CPGs for a total of 33 CPGs [33]. The equations driving these

10

CPGs are based on the equations from the salamander robot in [20]:

θ̇i = 2πvi +∑
j

r jwi jsin
(
θ j−θi−φi j

)
(1.2)

r̈i = ai

(ai

4
(Ri− ri)− ṙi

)
(1.3)

Vi = ri (cos(θi)) (1.4)

In the equations above, v is a frequency term, r is the amplitude of a node, θ is

the phase of a node, w is the coupling weight between two nodes and φ is a phase offset.

The calculated amplitude (Eq. 1.3) reaches a constant value after the setpoint Ri, and ai

is a positive constant. The CPGs provide target velocities (Vi) based on the calculated

phase (θ̇i) and amplitude (r̈i) for the low-level impedance controllers attached to each

outside cable. These impedance controllers output a target tension for the cable they

control according to the following formula [33]:

T = T0 +K (L−L0)+B(V −V0) (1.5)

In Equation 1.5, the authors define T0 as an offset tension, K as a stiffness gain, L

as the actual length of the cable, and L0 as the rest length of the cable. They also define

B as the velocity gain, with V being the actual velocity and V0 being the target velocity.

With this architecture, the robot achieves a speed of about 6.6 cm/s on flat terrain.

CPGs have been used extensively in the past to control tensegrity based robots

[9, 11, 10, 25] and therefore were investigated as a good approach to distributed control

for this work.

11

1.4.2 Learning the Controller Parameters

A common approach for mobile tensegrity robots is to learn the parameters

via Monte Carlo parameter estimation [25] and/or some sort of evolutionary algorithm

[21, 29, 22]. This is done because of the large number of parameters in control policies

for typical tensegrity morphologies, which makes hand-tuning the control policy difficult.

One exploration of the SUPERBall robot compares the results of control policies

developed by hand, with a centralized evolution and a decentralized evolution algorithm

[21]. The fitness function for all algorithms is the distance moved by the robot in

the given time. For this robot, with 24 different actuated cables and 96 parameters,

developing a control policy by hand is extremely difficult. Their solution performed very

poorly compared to the two evolutionary algorithm approaches, moving just under 100

meters in 60 seconds compared to 450 meters and 850 meters for the two evolutionary

algorithms [21]. The centralized evolutionary algorithm learns a single control policy

which sets all 96 parameters for their CPG controllers. The worst k policies are removed

at the end of each generation and replaced by mutated versions of the best k policies.

In the decentralized evolutionary algorithm, each agent only searches through the four

parameters of its own CPG equation (Eq. 1.1). However, an agent’s choice of parameters

also affects the value of the choices of the other agents. The authors handle this by taking

a fixed number of samples of the population of control policies for each agent at each

generation. Then, to evaluate the samples they explore using the generational average, the

max value and an historical average of the evaluations of the fitness function for a sample.

The historical average strategy reaches the best score fastest and is more consistent than

the other two strategies [21].

An earlier approach to controlling a simple three or four rod tensegrity uses

a fixed length genetic algorithm. This algorithm optimizes the controllers over their

12

parameter space (10 parameters for the 3 rod, 13 for the 4 rod) [29]. The algorithm is run

for 200 generations with a population size of 200 and keeping the 100 best population

members after each generation. Those 100 best members are used to produce 50 mutated

versions of those members and 50 new members using a pairwise one-point crossing.

The fitness function is again the distance traveled over the time period, which in this case

is 10 seconds. Different runs of the evolutionary algorithm produce different gaits of the

robot, some are like the inchworm motion described in Sec. 1.1, some are closer to a

bounding gait. This bounding gait of the three rod robot achieves a speed of 0.45 m/s

which is about double that of the 0.26 m/s from the inchworm gait [29].

An alternative to genetic algorithms involves the use of Monte Carlo parameter

estimation. One example applies this procedure to the Tetraspine robot introduced in

Sec. 1.2 [25]. The authors explore multiple different spine morphologies in this paper,

with the highest number of parameters being 202 for the tetrahedral complex morphology.

Again, the fitness function is the distance moved by the robot under test. The Monte Carlo

parameter estimation is run for between 10 thousand and 20 thousand trials. Afterward,

the authors use Gaussian sampling with a standard deviation of 0.005 on the highest

performing parameter sets. This is done to discover possibly better sets of parameters and

allows the procedure to do limited hill-climbing without actually calculating the gradient

[25].

For this work, both Monte Carlo parameter estimation and genetic algorithms

seem to be the most relevant. These two procedures should provide everything needed to

find reasonable control policies.

1.5 Acknowledgments

Figure 1.3 has been reproduced with permission from B. T. Mirletz, I.-w. Park,

T. E. Flemons, A. K. Agogino, R. D. Quinn, and V. Sun- spiral, Design and Control of

13

Modular Spine-Like Tensegrity Structures, in 6WCSCM: Sixth World Conference on

Structural Control and Monitoring, no. July, 2014.

Chapter 2

Approach

2.1 Overview

The goal of this thesis is to develop controllers for navigating the Duct Climbing

Tetrahedral Tensegrity (DuCTT) robot within multiple types of ducts or pipes. These

environments include:

• a vertical duct

• a horizontal duct

• a horizontal plane (no duct, or duct with walls bigger than robot)

The controller developed and optimized here allows the simulated model of the

robot to climb a duct with a speed of about 6.7 cm
s . This is about 4x faster than the

physical robot has ever climbed. This controller is a state-machine based controller with a

small number of parameters. To do this, we first construct a physically and mechanically

accurate simulation of the DuCTT robot (Fig. 2.1). Then we design control algorithms to

get the simulation to climb or traverse a duct or plane. Finally we use machine learning

to optimize the control algorithms we designed.

The robot platform is described in more detail in Section 2.2. The steps needed

to simulate this robot and the desired environments are explained in Section 2.3. Section

14

15

2.4 describes the various controllers designed and tested for this work. Section 2.5

details how the validation of this simulation’s mechanics and dynamics is carried out.

Finally, Section 2.6 details the learning algorithms and cost function used to optimize the

controllers.

2.2 Target Platform

The chosen platform for this work is the Duct Climbing Tetrahedral Tensegrity

(DuCTT) robotic platform. This platform has been prototyped and developed over the

past couple of years by the UCSD Coordinated Robotics Lab [19, 18]. With three rods

touching at each joint, it is considered a class 3 tensegrity structure. It consists of two

tetrahedral frames connected via eight actuated cables along with a linear actuator on

the topmost and bottommost rods (Fig. 2.1). End-caps are placed on the ends of the

linear actuators to provide greater friction between the platform and the walls of the

environment as well as to protect the linear actuators.

The four cables going between two parallel rods are labeled vertical cables, and

the four connecting two perpendicular rods are labeled saddle cables (Fig. 2.1b). The two

linear actuators and the eight cable actuators are the only means of locomotion for this

platform. In the past these were used to develop an open-loop controller using inverse

kinematics [19] that was capable of traversing a vertical duct.

2.3 Simulation

While a physical platform is technically available to work with, it makes using

machine learning techniques to discover an optimal controller harder. Without simulation,

one would have to gather data from lots of different test runs and play it back during the

machine learning. Simulation is also much safer than testing algorithms on a physical

robot. This limits any possible damage to the physical robot while bugs in the algorithm

16

(a) DuCTTv2 prototype hardware
(b) Render of DuCTTv2 Prototype
highlighting the two types of cables

Figure 2.1. DuCTT robot: hardware and render

are ironed out. It also increases the speed of iteration between algorithm versions,

since it’s easier to test the algorithm in simulation, make changes then test again, all

without needing to repair or maintain a physical robot. Another benefit of working with

simulation is that it decouples the algorithm development from the hardware development.

In other words, the algorithm development is not dependent on having the physical robot

in working order.

2.3.1 Libraries

The NASA Tensegrity Robotics Toolkit (NTRT) performs the simulation duties

for this thesis. This toolkit was chosen because it provides good tools to build models of

tensegrity structures as well as a machine learning framework that can be leveraged for

running the learning algorithms.

17

2.3.1.1 NASA Tensegrity Robotics Toolkit (NTRT)

The NASA Tensegrity Robotics Toolkit (NTRT) [3] is an open-source library

developed by the Intelligent Robotics group at NASA Ames to facilitate simulation of

robots based on tensegrity principles. It is built to run on top of the open-source Bullet

Physics Engine (Bullet) (Sec. 2.3.1.2). The developers have added tensegrity specific

physics to the engine related to cables that make it easier to simulate the cables that

make up a tensegrity structure. Since NTRT is a wrapper around the Bullet Physics

Engine (Bullet) not all of Bullet’s features are natively supported by the NTRT tools

(have wrappers). However, one can always use Bullet’s features in raw form if needed.

NTRT contains two main libraries and some peripheral libraries at this time. The

main library ”core” provides all the physical modeling and simulation capabilities. In

the ”core” library the default Bullet softbodies for cables are not used because they are

not physically accurate enough for the needs of NTRT. Instead NTRT developers added

their own two point linear cable model that uses Hooke’s law forces and a linear damping

term.

The other main library ”tgcreator” provides tools to make building tensegrity

structures easier. These tools allow the specification of rods and cables as sets of points

in Cartesian space. These rods and cables can be linked together to form substructures,

and these substructures are linked in a tree to form the complete structure.

The peripheral library ”learning” contains tools to run learning algorithms on

tensegrity structures. These tools include Monte Carlo parameter estimation, Gaussian

sampling, co-evolution and genetic algorithms. These tools also provide the ability for

mutation of a set of parameters, controller elitism and varying the number of children a

controller has. The tools relevant to this work are detailed in Section 2.6.

The peripheral library ”controllers” contains low-level controllers useful for

18

directly controlling cables. These controllers include an impedance controller, a PID

controller and a tension controller. The impedance controller is the only controller used

in this work and is detailed in Section 2.4.3.

2.3.1.2 Bullet

The Bullet Physics Library is an open-source real-time physics simulator [1]. The

simulator is written in C++ and is mostly used by game developers and movie studios. It

provides the underlying physics for collision detection, and rigid body modeling. It also

contains a simple graphical viewer for debugging simulations in real-time.

2.3.2 Robot

A simulated robot was built up using the nodes, pairs and tags syntax of the NTRT

toolkit (Fig. 2.2). This involves specifying nodes as < x,y,z > positions in space and

then connecting two nodes as a pair and assigning that pair a tag or series of tags. Each

tag is a string, and the tags allow one to assign a single rigid body builder to a series of

pairs without creating a new builder for each pair of nodes. Each builder represents a

single type of Bullet object, whether that be a rigid body cylinder, or a slider constraint.

One tetrahedron of the robot is completely specified, then the other is created

by copying the first specification and moving it some vertical distance away. Then the

cables between tetrahedrons are specified using the same nodes already created for the

tetrahedrons, adding four vertical cables and four saddle cables between the tetrahedrons.

The caps on the ends of the linear actuator rods are simulated via sphere rigid bodies

half-embedded in the ends of the simulated linear actuator rods. This way the simulated

robot ends up with half-spheres on the ends of those rods just like the physical robot. In

order to properly simulate the target platform in NTRT, features had to be added to the

toolkit. These included two Bullet constraints, and touch sensors.

19

Figure 2.2. Simulation of DuCTT Prototype in NTRT

2.3.2.1 Constraints

Bullet Hinge and Slider constraints were added to the toolkit in a generic manner

so that other developers could leverage the work done for this thesis. The hinge constraints

are more limited than those provided directly by Bullet, this was done to simplify adding

them using the NTRT builder tools. The Bullet hinges can be specified using arbitrary

axes of rotation, however that proved too complicated to correctly port into the NTRT

builder tools. Instead, the hinge constraints added for this thesis can only have X ,Y , or Z

axes of rotation. This limitation does not affect the quality of the simulated robot, and in

fact improves it. Because the horizontal rods of the robot are specified parallel to the X

and Z axes, these limited constraints better represent the axes of rotation on the joints of

the physical robot.

The Bullet slider constraints faced a similar axis problem when porting to NTRT.

The slider constraint axis of rotation is also limited to the X , Y , and Z axes because it

simplifies the port and allows for easier specification of the constraint using the NTRT

20

builder tools. While these NTRT constraints could be modified to take in any valid

vector representing an axis, a better improvement would be to automatically configure

the axis of rotation for both constraints based on the location of the nodes that they

are connected to. At the same time developers should be able to provide an axis via

configuration that would override this automatically calculated axis. That improvement

is in the development road map for the NTRT toolkit.

2.3.2.2 Touch Sensors

While touch sensors are not currently present on the physical DuCTT robot, they

are an improvement that would help it actually navigate HVAC ducts. Touch sensors will

provide valuable information about when the linear actuators actually come in contact

with the walls in a HVAC duct. Currently, the physical robot estimates contact with a

wall via the current driving a linear actuator. When the linear actuator starts stalling, the

physical robot decides that it has hit a wall and stops expanding the linear actuator. For

this reason, they are added to the simulated version of the DuCTT robot.

In Bullet, there are a few ways of doing collision detection, which is necessary

for implementing a touch sensor. These include btGhostObjects, iterating over all contact

manifolds, and ray tracing [2]. Ray tracing is a good approximation of real world LIght

Detection And Ranging (LIDAR) systems, but does not represent the type of sensor

desired for this simulation. Iterating over all the contact manifolds would be done at

multiple times during a single simulation step and is therefore not as efficient as the

btGhostObject method.

The method that’s closest to real world touch sensors and can be efficiently

implemented is the btGhostObject method. This method involves adding btGhostObjects

to the Bullet dynamics world and attaching them to the rigid bodies that are desired to be

touch sensors. The btGhostObjects should have a collision shape that represents the 3D

21

area desired to be a touch sensor, the easiest way to do that is to make the ghost shape

the same as the collision shape of the rigid body that the btGhostObject is attached to.

The btGhostObject keeps track of only the other objects that overlap with itself. This

greatly limits the number of contact manifolds that need to be iterated over and provides

an efficiency that the other contact manifold method does not posses.

The btGhostObject method was chosen as the desired method of adding touch

sensors to the simulation. Therefore, btGhostObjects are attached to the spheres at the

end of the prismatic joints and given sphere collision shapes to match the physically

simulated spheres. In addition, each touch sensor contains a list of objects to ignore when

activating. This is done so that the sensors would not activate when they are touching the

ground object.

2.3.2.3 Robot Simulation Parameters

The simulated DuCTT robot contains a good amount of parameters that can be

varied to explore how they would affect the physical structure of a hardware version or

the locomotion capabilities of the robot. These include: how far apart the tetrahedrons

are from each other, the height of one tetrahedron, rod radius, rod length, rod density

and more. All of these parameters are set to values that are as close to the values for the

physical prototype (DuCTTv2, Fig. 2.1a) as possible. Table 2.1 gives a listing of the

parameters and their values for this work.

2.3.3 Environment

Three different environments are used for testing. All of them contain a planar

ground, and for the third environment, the horizontal plane is all that exists. The second

environment contains a simulation of an horizontal air duct created by combining four

thin long boxes at their corners (Fig. 2.3b). These boxes extend along one of the two

22

Table 2.1. Robot simulation parameters and their values for this work.

Parameter Value
triangle length 32 cm
duct distance 15 cm
duct height 23 cm
linActRadius 1.524 cm
linActExtent 10.16 cm
linActDensity 0.001943 kg

cm3

vertRodRadius 1.27 cm
vertRodDensity 0.000895 kg

cm3

innerRodRadius 2.0955 cm
innerRodDensity 0.001359 kg

cm3

tipRadius 1.524 cm
tipDensity 0.00001943 kg

cm3

cableStiffness 5000 kg
s2

cableDamping 25 kg
s

maxVertCableVel 25.4 m
s

maxSaddleCableVel 8.5 m
s

maxCableForce 5000 kg cm
s2

minCableRestLength 1.2 cm

horizontal axes (X or Z axes) of the simulation environment. This forms a rectangular

duct that can be used to explore traversal strategies for a robot. All of the boxes are static

objects in Bullet, meaning they cannot move but they can be interacted with. The first

environment contains a vertical duct simulated in the same manner as the horizontal duct,

but extending along the vertical axis of the simulation (Y axis).

2.4 Control

All controls development done for this thesis assumes perfect state information is

available to the algorithm. This limits the scope of the problem to be solved to just the

controls problem and leaves the state estimation work to be done separately. In addition,

some state estimation work has already been done by the team at UCSD [18].

23

(a) Vertical duct (b) Horizontal duct (c) Horizontal plane

Figure 2.3. Three different environments used for testing control strategies.

There are many contemporary methods for controlling a robot, as well as some

developed specifically for tensegrity-based robots [12, 21, 22, 19]. Two options are

open-loop and closed-loop controllers. The inputs and outputs available on the robotic

system can also help guide the choice of type of controller. Table 2.2 details the inputs

and outputs available from the simulated robot of this thesis.

Table 2.2. The inputs and outputs available from the simulated parts of the robot.

Simulated Part Number Used Inputs Outputs
Cable 8 tension start length

rest length rest length
current length
tension
velocity

linear actuator 2 length length
max velocity of motor
max force of motor

Touch sensor 4 N/A contact (yes/no)

Two different strategies are explored for controlling the DuCTT robot. One

involves using sine waves to control the linear actuators and groups of cables, the other

uses a state machine. Two slightly different controllers are implemented for the first

strategy, and one for the second, leading to a total of three different controllers.

24

2.4.1 Control Strategies

The two strategies for control have two different parameter spaces that determine

the degrees of freedom of each controller. This also impacts the space that the machine

learning algorithms have to search through for an optimal solution.

2.4.1.1 Strategy 1

The first strategy uses simple sine waves as the control method. This limits the

amount of control variables per cable that need to be set compared to CPGs and also

simplifies the equations used for control. This scheme has also been used to successfully

control the SuperBall tensegrity robot [21]. The output of Equation 2.1 can be used to

control the rest length, or velocity of a cable; as well as the desired length of the linear

actuator or any other actuator input as desired. This strategy uses the output as the desired

velocity of a cable and the desired length of a linear actuator.

y(t) =C+A∗ sin(ωt +φ) (2.1)

The sine wave parameters of Equation 2.1 are:

• C: center of sine wave

• A: amplitude

• ω: angular frequency

• φ : phase, i.e. where in the cycle the oscillation begins (at t=0)

Once the state space has been defined, there are three main options for how

exactly to control the different parts of this robot (Tbl 2.2). The linear actuators are never

grouped up because they need to be actuated separately to provide the desired inchworm

motion for climbing. If they were in the same group and therefore used the same sine

wave, then they would always be at the same length and the robot would not climb

25

anywhere. Option 1 provides the most stability, as all the vertical cables are grouped

together and all the saddle cables are grouped together. This should should prevent the

saddle cables from oscillating against each other and destabilizing the robot. It will also

keep the vertical cables at the same length, which should provide the most distance per

wave period. Option 3 provides the best flexibility with a sine wave for each cable and

linear actuator. Options 1 and 3 are both explored in this thesis.

Table 2.3. Control groupings considered.

Option Cables Linear Actuators # Sin Waves # Parameters
1 2 groups of 4 1 group of 2 4 16
2 4 groups of 2 1 group of 2 6 24
3 8 groups of 1 1 group of 2 10 40

There are two options for how to make the touch sensors affect the sine waves

controlling the robot. Either pause the sine wave when the touch sensor is triggered, or

saturate the sine wave when the touch sensors are triggered. The second option seems

like it might result in better performance so that is the option implemented. In this

second option, when both touch sensors connected to the bottom tetrahedron trigger,

the controller saturates the sine wave associated with the linear actuator on the bottom

tetrahedron. This means that all control input for that sine wave is ignored, but the wave

still oscillates. Then, when both touch sensors connected to the top tetrahedron trigger,

the controller unsaturates the sine wave on the bottom linear actuator and saturates the

sine wave on the top linear actuator.

In addition, some hysteresis is added to the touch sensors in the form a small

amount of lag between when they first activate and when they actually saturate the sine

wave. This takes the form of another parameter (τ) that indicates how many seconds to

lag. Once that time period has passed, then the sine wave is actually saturated.

26

2.4.1.2 Strategy 2

The second strategy was developed because the first one was not having much

success in getting the robot to climb. It would climb with the first strategy, but it was

very slow and the movement was vibration-like. This strategy towards controlling the

DuCTT robot also takes advantage of the fact that its climbing behavior is very periodic.

However, instead of using sine waves to recreate that periodicity, it uses a state machine

and cycles through a set of six states:

1. EXPAND BOTTOM

2. RETRACT TOP

3. PUSH TOP

4. EXPAND TOP

5. RETRACT BOTTOM

6. PULL BOTTOM

Each state actuates either the cables or the linear actuators, but not both. When

moving the linear actuators, the same hysteresis affect on the touch sensors used in

strategy one is used in this strategy. However, the desired length for a linear actuator at

each time step is not the output of Equation 2.1. Instead, this strategy sets it to the length

that can be reached by moving the linear actuator at maximum velocity.

When actuating the cables, there are a total of four parameters for this strategy.

This includes the τ parameter for determining how many seconds to lag saturation behind

the touch sensor activation. One (µ) determines the minimum length in centimeters

cables should attempt to retract to when attempting to pull the tetrahedrons closer together.

Another (η) determines the maximum length (cm) cables should attempt to reach when

pushing the tetrahedrons away from each other. The last (ε) determines the maximum

difference (cm) between actual length and goal length that will be considered reaching

27

the goal for cables.

State 1 expands the linear actuator on the bottom tetrahedron all the way or until

it hits a duct wall. This will lock the bottom tetrahedron to the duct walls. State 2 retracts

the top linear actuator to its minimum size, thereby releasing the top tetrahedron from the

duct. Then state 3 pushes the top tetrahedron away from the bottom until the cables reach

their maximum length goal, at which point state 4 expands the top linear actuator the

same way that state 1 does the bottom linear actuator. This will lock the top tetrahedron

to the duct, after which state 5 retracts the bottom linear actuator in the same manner

as the top one is retracted in state 2. During state 6, the cables are actuated so that the

bottom tetrahedron is pulled up towards the top. This occurs until the cables reach their

minimum goal length. The state machine then repeats the sequence starting at state 1.

2.4.2 Controllers

Controllers one and two use the first strategy, and controller three uses the second.

In controller one, each grouping contains a separate set of the sine wave parameters from

Equation 2.1. The number of parameters for controller one is the same as in Table 2.3. In

controller two, the angular frequency (ω) for all sine waves is a single parameter which

helps keep the cables and linear actuators from canceling each other’s movements out.

Controller two has 14 total parameters for option 1 (12 for sine waves, 1 for hysteresis,

1 for angular frequency), and 32 total parameters for option 3 (30 for sine waves, 1 for

hysteresis, 1 for angular frequency). Controller three uses the second strategy with no

modifications.

2.4.3 Low-level Controllers

Along with this, all the cables are given an impedance controller by default so that

they maintain their tension. This low-level reflexive control helps maintain the tension in

28

the cables and prevents cables from going slack often. This impedance controller uses the

same equation as the TetraSpine robot does (Eq. 1.5, reproduced here for convenience) to

determine what tension to set the cable to.

T = T0 +K (L−L0)+B(V −V0) (2.2)

2.5 Mechanical Test and Validation

The aim of this experiment is to test and validate the mechanics and dynamics of

the model of the Duct Climbing Tetrahedral Tensegrity (DuCTT) robotic platform built

in the NTRT Library. It does this by comparing the control of the NTRT model against an

Euler-Lagrangian (Lagrangian) model over a series of test cases. Lagrangian dynamics

are often used to model the dynamics of robots and robotic manipulators ([28, 35, 14]).

The Euler-Lagrangian (Lagrangian) model will provide proof that the NTRT model is

mechanically sound and can be used to study control of the Duct Climbing Tetrahedral

Tensegrity (DuCTT) robot.

2.5.1 Lagrangian Model

This simulation model uses Lagrangian mechanics (a specific use of the Euler-

Lagrange equation) to obtain equations of motions from the calculated potential and

kinetic energy. The are 5 point masses for each tetrahedron with offsets from the center

29

of the tetrahedron defined as follows:

t1 = (0,0,0)T

t2 = (0,−l/2,−h/2)T

t3 = (0, l/2,−h/2)T

t4 = (−l/2,0,h/2)T

t5 = (l/2,0,h/2)T

Euler angles determine each tetrahedron’s orientation in space; the angles are defined as

θ ,γ , and φ for rotations about the x,y, and z axes respectively. The rotations are applied

with rotation matrices in the order defined as:

R(θ ,γ,φ) = R(φ)∗R(γ)∗R(θ)

r1 = (x,y,z)T

r2 = r1 +R(θ ,γ,φ) t2

r3 = r1 +R(θ ,γ,φ) t2

r4 = r1 +R(θ ,γ,φ) t2

r5 = r1 +R(θ ,γ,φ) t2

The rotation matrices are applied before translation occurs, so R(θ ,γ,φ)∗ t1 = 0.

If each node is defined to have equal mass and spacing, r[1] is located at the center of

mass; this causes decoupling between rotational and kinetic energy, which is highly

desirable for simplicity of equations. This occurs because the linear actuator is closed

for all trials. Directly computing rotational inertias or angular velocities is not necessary

30

because the model is a point mass model, and a rotation of angle will cause a shift in the

nodal velocities.

Kinetic (T) energy, mechanical potential (V) energy, and the Lagrangian (L) are

defined as follows:

T =
1
2

m
5

∑
i=1

(
d
dt

(ri)
T ∗ d

dt
(ri)

)
(2.3)

V = mg(0,0,1)
5

∑
i=1

(ri) (2.4)

L = T −V (2.5)

Then L is plugged into the Euler-Lagrange equation to get the equations of

motion. Note the spring potential energy is not included in the V equation. Instead, the

spring tension forces will be applied using the concept of generalized forces, so that the

uni-directional forces (strings cannot push) can be handled and cable damping can be

added.

The string anchor points are defined as follows, (where 0.015 corresponds to the

1.5 cm radius of the linear actuator and 0.02 to the 2 cm radius of the midbar). α = π

6 is

the angle from the vertical axis of the cross section of the midbar rod to the mounting

point.

31

anch bot[1] = t2+[0;0;0.015]

anch top[1] = r1+R∗ (t2+[0;0;−0.02])

anch bot[2] = t3+[0;0;0.015]

anch top[2] = r1+R∗ (t3+[0;0;−0.02])

anch bot[3] = t4+[0;0;0.02]

anch top[3] = r1+R∗ (t4+[0;0;−0.015])

anch bot[4] = t5+[0;0;0.02]

anch top[4] = r1+R∗ (t5+[0;0;−0.015])

anch bot[5] = t4+[0;−sin(α) ;−cos(α)]∗0.02

anch top[5] = r[1]+R∗ (t2+[−sin(α) ;0;cos(α)]∗0.02)

anch bot[6] = t5+[0;−sin(α) ;−cos(α)]∗0.02

anch top[6] = r[1]+R∗ (t2+[sin(α) ;0;cos(α)]∗0.02)

anch bot[7] = t4+[0;sin(α) ;−cos(α)]∗0.02

anch top[7] = r[1]+R∗ (t3+[−sin(α) ;0;cos(α)]∗0.02)

anch bot[8] = t5+[0;sin(α) ;−cos(α)]∗0.02

anch top[8] = r[1]+R∗ (t3+[sin(α) ;0;cos(α)]∗0.02)

For all bottom anchor points the bottom tetrahedron is fixed so rotation matrices

etc. are not necessary. The string lengths, tensions and vector forces are calculated as in

Algorithm 1.

32

Algorithm 1. String lengths, tensions and forces
1: for i=1:8 do

2: String vector[i] = anch bot[i] - anch top[i]

3: length[i] = norm(String vector[i])

4: if Tension[i] ¿ 0 && length[i] ¿ restLength[i] then

5: Tension[i] = K ∗ (length[i]− restLength[i])− c∗ d
dt (length[i])

6: else

7: Tension[i] = 0

8: end if

9: F[i] = Tension[i] * (String vector[i])

10: end for

The string lengths, tensions and vector forces are used to compute the generalized

forces for the coordinate system:

Q j =
8

∑
i=1

(
d

dq j
(anch top[i])T ∗F [i]

)
(2.6)

The subindex j represents cycling through the chosen coordinates, in this case

x,y,z,θ ,γ,φ .

Generalized equations of motion:

Q j =
d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
(2.7)

Then Eq. 2.6 is substituted into Eq. 2.7 which results in a set of six equations.

This system of six equations is solved to get equations for each coordinate’s second

derivative and then these equations are used to step the simulation forward using the

predictor-corrector method twice. Once per time step to get the first derivative of the

33

generalized coordinates, then a second time to step forward the actual coordinates.

2.5.1.1 Matching Lagrangian to NTRT

Upon initial testing of the Lagrangian model, several discrepancies were discov-

ered which were preventing the two models from being in agreement. After extensive

tuning and trial and error, the greatest contributor to model disagreement was found to

be a difference in cable mounting locations. The NTRT model assumed all cables were

mounted along the perimeter of the ends of the rod elements while the Lagrangian model

had them fixed at the rod center points. This equated to a discrepancy of only roughly a

centimeter error, but upon moving the cable mount points in the Lagrangian model to the

proper locations a dramatic increase in model agreement occurred.

A second smaller contributor to model disagreement was the method for checking

the slack cable event. Instead of just checking for negative tension, the Lagrangian model

had to check to see if the rest length was greater than the length between nodes which

would more accurately describe a slack string.

2.5.2 Control

The model agreement tests focus on inducing dynamic excitations with the cable

elements and not the linear actuator, which is fixed at a given length. This decision was

made because the actuation bandwidth of the linear actuator within the physical prototype

is low when compared with the bandwidth of dynamics of the robot, and its mechanical

stiffness is orders of magnitude larger than the cable elements. As such, an accurate

dynamic model of the linear actuator is not necessary to produce a reasonably accurate

model of the system dynamics. Therefore, the effectiveness of this test is not greatly

reduced by simply locking the linear actuator into a single position during the dynamics

comparison testing, as it generally behaves as a rigid member regardless.

34

Sine waves control the rest lengths of the cables with the following parameters:

• l: offset length (cm)

• C: center of sine wave (cm)

• A: amplitude (cm)

• Ω: angular frequency (Hz)

• p: phase, i.e. where in the cycle the oscillation begins (at t=0) (rad)

This control is all done to the NTRT model using the following equations, with

target being the target rest length of the cable:

cycle =sin((timestep)∗Ω+2∗C ∗π + p) (2.8)

target = l + cycle∗A (2.9)

i f (target < l) target = l (2.10)

At every timestep, the NTRT controller output the rest lengths of each cable

as well as the < x,y,z > positions of each node. These outputs were then given to the

Lagrangian model.

In the Lagrangian model, at each time step the rest lengths provided from the

NTRT data are used to set the rest length variables in the Lagrangian simulation. The

rest lengths are the only input to the actual Lagrangian model.

The Lagrangian model uses the nodal coordinates to compare the state of the

NTRT model to the state of its own model. It uses these nodal coordinates to back out

the generalized coordinates described above. First, it calculates 8 lengths corresponding

to where the 8 strings would be if they stemmed directly from the nodes; it then uses a

process similar to trilateration.

This process is used because a tool already exists to use this method, and it works

35

quite well. It was built for backing out the robot’s state given the absolute string lengths.

The problem with trilateration is the solution is often ambiguous between two points and

exactly 3 lengths are used to determine a location. Instead this process uses a non-linear

least squares optimization to do the job. Essentially, it computes a function that describes

the 8 string lengths in terms of the 6 generalized coordinates (x,y,z,θ ,γ,φ); then it

also computes the Jacobian of this function. After that it just uses this function to fit a

state variable to each time step of the NTRT simulation using a non-linear least squares

optimization.

2.5.3 Tests

During all tests, the bottom tetrahedron of the DuCTT model is artificially con-

strained to a static position. This is done to simplify the testing and the Lagrangian

model. Six tests are conducted on the models to validate the dynamics of the NTRT

model (2.4). All tests lasted for 30 seconds, with no actuation during the first 5 seconds

to allow the NTRT model to settle into a stable position. During all tests, if the target rest

length went below an offset length, then the target rest length was set to the offset length.

This prevents the rest lengths from going negative, as well as prevents collisions from

occurring between rigid bodies, since the Lagrangian model was not set up to handle

those.

The first test consists of actuating all the cables using the same sine wave. The

second test consists of actuating the top two vertical cables of the DuCTT model with the

same sine wave, but at different offsets (p−1 and −2 in 2.4). This leads to an oscillation

motion in the top tetrahedron that tests more of the model dynamics than the first test.

The third test is a lot like the second, only it actuates the bottom two vertical cables. The

last three tests are duplicates of the first three, except instead of using a single frequency

for the sine wave, the tests sweep over a range of angular frequencies. These frequencies

36

started at 10 and increased to 50 in steps of 5, with each frequency running for 3 seconds.

Table 2.4. The sine wave parameters used for each test case.

Parameter Case 1 Case 2 Case 3
l 3 3 3
C 1 1 1
A 5 15 10
Ω 50 50 50
p−1 π

4 0 0
p−2 - π

2
π

2

2.6 Learning Algorithms

The NTRT library has support for an evolution scheme which can use Monte-

Carlo, Gaussian sampling, co-evolutionary and genetic algorithm machine learning

methods [4]. This work uses the Monte-Carlo parameter estimation to find the first set of

good parameters. In past works, Gaussian sampling was then used to build on the first

set and find better sets without needing to compute a gradient [25]. However, seeding a

genetic algorithm with the set of parameters generated by the Monte-Carlo method and

running that produced better performing parameters for this work.

Both methods use algorithms included in the NTRT library and are available

online [3]. For all methods, each run produces a final set of parameters after a number of

trials, where the performance of a trial is defined by the cost function (Sec. 2.7). Each

trial gives the robot a specific number of seconds to do what it can in the environment,

then measures the performance with the provided cost function.

The parameters in both methods vary between 0 and 1, but this is just a stan-

dardized range for the algorithm to search through. The controller then takes that value

and transforms it into a range defined for that controller. Each parameter has a different

37

Table 2.5. Value ranges for each parameter of the two controller strategies.

Strategy Parameter Min Value Max Value
1 C 0 40
1 A 0 40
1 ω 0.01 20
1 φ −π π

1,2 τ 0 2
2 µ 0 10
2 η 5 20
2 ε 0 5

range of values that are hand picked to allow the best possible movement (Tbl. 2.5). The

parameters for strategy one will be replicated, with different values, for each cable based

on the grouping option picked.

2.6.1 Monte-Carlo

The Monte-Carlo algorithm is multi-level and brute-forces the best parameters

for the controller given the cost function, robot and environment over many trials. To

initialize, it selects the value of each parameter for a controller from a uniform distribu-

tion between zero and one. It also mutates all controllers in the population after each

generation. A controller mutates by drawing a new value for parameters in the same way

they are initially selected. The number of parameters that are changed when a controller

mutates is defined by the number of controllers to mutate hyperparameter.

2.6.2 Genetic Algorithm

Genetic algorithms are based on the natural selection process, and are used to find

solutions to optimization problems. They involve evaluating a population of potential

solutions and mutating or breeding the most promising ones together. Each member

is evaluated based on the desired fitness function. In addition, each member of the

38

population is defined by a genome; this genome can be a series of bits, a series of

numbers, or even a series of letters. The fitness function is the main driver of complexity

for genetic algorithms, and having a simple function helps limit the time required to

complete the algorithm. Genetic algorithms have been used to order sets of DNA

fragments, predict protein structure [26], and to evolve controllers for tensegrity robots

[21]. They have also been used to evolve the network architecture of a neural network

[26].

The NTRT genetic algorithm run to establish a second set of better controller

parameters based on the set generated by Monte-Carlo is a standard genetic algorithm

[26]. This algorithm evolves, via an iterative process, a population of possible solutions

to an optimization problem into better solutions. Each member of the population contains

a set of doubles between 0 and 1 that make up its genome. If the population is seeded, the

genome of one member of the population takes on the values of the seed genome. This

genome can be mutated at the end of a generation, where a generation consists of the

population of one iteration. Before any mutations occur, the fitness of each member is

evaluated using the provided cost function (Sec. 2.7). This evaluation determines which

individuals are the most fit and should be used for recombination and mutation. For

this work, each trial of a run tests a single member of a population which means that

the maximum number of generations is determined by the number of trials to run and

population size.

At the end of a generation, two processes occur depending on the values of

the hyperparameters number of children, and number of controllers to mutate. The

number of children hyperparameter determines how many population members of the

next generation to generate via uniform crossover. Uniform crossover uses two population

members of the last generation as parents to make a single population member (the child)

for the new generation. These parents are chosen from the last generation randomly, and

39

the child’s genome is made from half the parameters of each parent. In addition, the child

has a 10% chance to mutate in the normal manner (when combined with the 50% chance

of mutation below this leads to a total 5% chance to mutate).

The number of controllers to mutate hyperparameter determines how many mem-

bers of the last generation to mutate in the normal manner. Each controller has a 50%

chance to actually mutate, and each gene of that controller’s genome has a 50% chance to

mutate. If a gene is actually mutating, then the mutation amount is drawn from a normal

distribution with a mean of 0 and a standard deviation of 0.03. This mutation amount is

then added to the value of the gene to form the new gene.

2.6.3 Other learning approaches

There are a variety of modern learning approaches and derivative-free optimiza-

tion algorithms not considered in the present work, including boosting methods and

generalized pattern searches, that would be worthy to consider in future work, and

ultimately to include in NTRT itself.

Boosting methods search an ensemble of algorithms for a heuristic that can solve

an optimization problem sufficiently. They involve combining weak learners iteratively

into a final strong learner. When combining, weights are used to take into account each

weak learner’s accuracy. AdaBoost is a boosting algorithm that can adapt to the weak

learners as they are iterated through [17]. In other words, successive weak learners are

formulated to concentrate more on instances misclassified by previous weak learners.

Another derivative-free optimization algorithm is Generalized Pattern Search

(GPS). This is a type of pattern search that involves exploratory movements in parameter

space [8]. These movements take place on a lattice of points in parameter space, com-

monly a Cartesian grid. The search begins by using a guess in parameter space to identify

a local minimum of a function. Typically a model of the actual function of interest is

40

then constructed that is inexpensive to compute and differentiable to help identify the

function’s global minimum. This model is used to identify the trends in the available data

over the feasible region in parameter space.

2.7 Cost Functions

Two different cost functions are compared to determine which gives the best

performance. The first cost function is the total distance that the robot’s center of mass

moved (Eq. 2.11). The center of mass is calculated by averaging the center of mass of

all the rods that make up the DuCTT robot (from both bottom and top tetrahedrons).

This is a basic cost function used in many machine learning algorithms for tensegrity

robots [22, 25, 29]. For the two duct navigation tasks it is advantageous to only consider

movement along the axis of the duct being explored. However, for the open plane

traversal true distance in all three dimensions is used so as to not limit the algorithm

needlessly.

dist =



∆y, if duct-axis = y

|∆x|, if duct-axis = x

|∆z|, if duct-axis = z√
∆x2 +∆y2 +∆z2, if horizontal plane

(2.11)

∆x = xt− xt0

∆y = yt− yt0

∆z = |zt− zt0 |

41

The second cost function attempts to smooth out the movement of the robot

while maintaining a high speed. This cost function is only used to try to improve the

performance of a controller that can already successfully make the DuCTT robot climb.

It does this by taking into account both the average speed of the robot, along with the

maximum and minimum instantaneous speed of the trial (Eq. 2.12):

CoIS = s̄+
(

1
max(st)−min(st)

)
(2.12)

s̄ = dist/∆t (2.13)

where s is instantaneous speed, s̄ is average speed calculated by dividing total

displacement by total time. The second term comparing the maximum and minimum

instantaneous speeds will be close to zero when the maximum is much greater than the

minimum. It will then be maximized when the max and min speeds are as close to each

other as possible. The chances of the two being exactly equal are are not significant,

especially when the main component of this cost function is the average speed.

2.8 Acknowledgments

I would like to acknowledge Jeffrey Friesen for his work on the Lagrangian

dynamics model of the robot and his contributions to Section 2.5.

Chapter 3

Experimental Results

Here we detail the results of the mechanical validation experiment as well as the

learning algorithm optimization of the DuCTT controllers. The mechanical validation

experiment shows that the NTRT simulation of the DuCTT robot is robust when compared

to an Euler-Lagrange model. It also shows that some details that were originally not

thought to have a big impact on the results of this validation actually do. The results of

the learning algorithm optimization show that controller strategy 1 does not perform as

well as strategy 2 (the state-machine based controller).

3.1 Mechanical Validation

After the first test was run, a high discrepancy between the models was found

(Fig. 3.1, 2cm mounting error). After investigating the issue, the mounting location of

the cables were discovered to have caused the discrepancy. The NTRT model of DuCTT

located the cable mount points on the circumference of the rods, while the Euler-Lagrange

model located them exactly at the node of the rod. This translated into a 2cm mounting

error between the two models. Before the test was run, this inconsistency was not thought

to have this much of an impact on the results; however, these results (Fig. 3.1) disprove

that notion. Once this inconsistency was fixed by moving the Euler-Lagrange cable

mount locations to the circumference of the bars, the discrepancies mostly disappear and

42

43

the state variables of each model are brought into close agreement.

Simulation Time (s)
17.5 18 18.5 19 19.5 20

A
v
e
ra

g
e
 N

o
d
a
l
E

rr
o
r

(c
m

)

0

1

2

3

4

5

6

7

Average Nodal Error Comparison for Different String Mounting Positions

2cm Mounting error

1cm Mounting Error

Correct Mounting

Figure 3.1. Average nodal error between the models. Calculated by averaging the
distance between all the nodes of the two models.

After fixing the inconsistencies between the models, average nodal error is mostly

< 0.005 m, but reaches as high as 0.01 m in test cases 4 & 5 (Fig. A.10 & A.13) both of

which involve the frequency sweep. The change between frequencies may explain the

relatively high average nodal error in those test cases. Whenever the controller changes

frequencies, there’s a higher than normal deviation in the robot’s motion that may be the

cause of the high nodal errors.

In test case 2, the y,θ , and φ state variables from the NTRT model are essentially

flat (Fig. A.5), whereas the Lagrangian model exhibits oscillations in value. However,

looking at the comparison of the φ state variable portraits between the two models shows

very similar looking tracks (Fig. A.6). So even though on first glance it doesn’t look like

the state variables are tracking closely, the two models are actually similar in behavior.

In addition, the state variables from both models track each other closely most

44

time(s)

5 5.5 6 6.5 7 7.5 8

e
rr

o
r

(m
e
te

rs
)

×10-3

-12

-10

-8

-6

-4

-2

0

2

4

6

8
Average Nodal Error

x error

y error

z error

Figure 3.2. Test case 5: average nodal error

of the time (ex. Fig. 3.3) with the most consistent exception being the φ variable. Even

that variable is within 4×10−5 radians of each other in Fig. 3.3. And for most of the test

cases, the two models have similar tracks for the φ state variable (Apdx. A.1).

time(s)

5 5.5 6 6.5 7

x
(m

e
te

rs
)

×10-5

-2

-1.5

-1

-0.5

0

0.5

1

time(s)

5 5.5 6 6.5 7

y
(m

e
te

rs
)

-0.01

-0.005

0

0.005

0.01

time(s)

5 5.5 6 6.5 7

z
(m

e
te

rs
)

0.1

0.11

0.12

0.13

0.14

0.15

time(s)

5 5.5 6 6.5 7

T
h

e
ta

(r
a

d
)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time(s)

5 5.5 6 6.5 7

G
a

m
m

a
(r

a
d

)

×10-4

-1.5

-1

-0.5

0

0.5

1

Euler-Lagrange

NTRT

time(s)

5 5.5 6 6.5 7

P
h

i(
ra

d
)

×10-5

-4

-2

0

2

4

Figure 3.3. Test case 6: state variable comparison

Most of the differences in the Lagrangian model results occur in the same fre-

quency range as the NTRT model results or are insignificant mechanically. These results

45

z (meters)

0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15

P
h
i
(r

a
d
ia

n
s
)

×10-5

-14

-12

-10

-8

-6

-4

-2

0

2

4

6
Phase Portrait comparison

Euler-Lagrange

NTRT

Figure 3.4. Test case 6: Comparison of φ state variable

indicate that the two models are mathematically similar, which tells us that the NTRT

model is mechanically sound. For the full set of results see Appendix A.1.

Overall, the Lagrangian model matched the NTRT model quite well. This tells us

that the NTRT model is mechanically sound and accurately simulates the robot. While

there were some small differences in the models, these are mostly attributable to the

differences in setup or control of the models. Therefore, using the NTRT model for

research and development of control methods is mechanically sound. Any methods

developed on the NTRT model should translate to the actual physical robot accurately.

3.2 Learning Results

To optimize the parameters for the three controllers, two stages of learning are

performed. During both stages, each trial lasts 60 seconds. The first three seconds of

each trial are used to let the simulated robot reach a stable starting position, and the

last 57 seconds are movement time. Stage 1 consists of the Monte Carlo parameter

search for 20,000 trials and Stage 2 consists of the genetic algorithm seeded with the

46

best performing parameters from stage 1. The Stage 2 hyperparameter population size

is set to 10, number of children is set to 2, and number of controllers to mutate is set to

1. The first environment (vertical duct) is used to compare the performance of the three

controllers. The two other environments (horizontal duct and horizontal plane) are used

to explore the performance of the best controller. For both environments featuring an

air duct, the robot is rotated such that the end-caps of the linear actuators are stuck in

the corners of the duct (Fig. 3.5). This provides the friction required to climb, and better

performance in the horizontal duct. In addition, for these two environments, the duct size

is 33×33 cm unless otherwise stated.

Figure 3.5. Starting position of simulated DuCTT. Green lines are the corners of the
duct.

3.2.1 Vertical Duct Climbing

For the vertical duct climbing task, all three controllers are explored. Controller

1 with both options 1 and 3, controller 2 with option 3 and controller 3 with both cost

functions. Controllers 1 and 2 are only learned using the first cost function. Controller

47

Table 3.1. Performance of each controller at climbing vertical duct after learning.

Controller Speed (cm
s) Distance per minute (m)

1, Option 1 0.38 0.228
1, Option 3 0.55 .318
2, Option 3 0.0089 0.497
3, cost 1 6.1 3.66
3, cost 2 6.77 4.06
DuCTTv2 1.4 .84

3 performs the best out of the three providing a maximum of 17x the performance of

the worst performing controller (Tbl. 3.1). In addition, it gets about a 4x speedup over

the best speed the physical robot can currently climb at using it’s Inverse Kinematic

based controller. The learned parameters for controller 3 have the following values:

τ = 0.002391 seconds, µ = 3.77 cm, η = 18.34 cm, and ε = 4.06 cm.

(a) t = 0 seconds (b) t = 5 seconds (c) t = 10 seconds

Figure 3.6. Controller 3 making DuCTT climb.

48

3.2.2 Horizontal Duct Traverse

For the horizontal duct traverse, two methods were tried for control. The first is

setup much like the horizontal plane traverse, with the bottom tetrahedron resting on the

ground and the linear actuators perpendicular to the duct walls. However, this setup did

not perform very well, with performance similar to that of the horizontal plane (on the

order of .8 cm
s). The next method rotates the robot much like in the vertical duct climbing

task so that the ends of the linear actuators are located in the corners of the ducts. In

this case, the weight of the robot would be resting on the two end-caps on the bottom

corners of the duct. Using controller 3, a speed of 5.19 cm
s is achieved after the two

stages of learning resulting in a displacement of 3.11 meters over a minute. The learned

parameters for controller 3 have the following values: τ = 0.00 seconds, µ = 2.54 cm,

η = 18.82 cm, and ε = 3.26 cm.

3.2.3 Horizontal Plane Traverse

Neither controller 1 (option 1) nor controller 3 could get very good at traversing a

horizontal plane. The performance seems to cap at around .7 to .8 cm
s . Controller 3 with

cost function 2 performed the best, moving at a speed of .84 cm
s and covering a distance

of 0.5 m in a minute. The poor performance might be occurring because the geometry of

the DuCTT robot doesn’t provide many feet-like structures to push off the ground with.

Without more friction between the robot and ground it’s hard to get moving very fast.

The learned parameters for controller 3 have the following values: τ = 0.97 seconds,

µ = 8.07 cm, η = 13.79 cm, and ε = 4.35 cm.

3.2.4 Robustness Testing

All robustness testing is done in the vertical duct environment (Fig. 2.3a) using

the final learned parameters for controller 3, using cost function 2.

49

Figure 3.7. DuCTT on a horizontal plane.

3.2.4.1 Starting Position Robustness

This test explores the relationship between starting location in the duct and final

performance. It does this by varying the starting location of the robot over the grid in

Figure 3.8. Even though the duct itself is 33 cm on a side, because of the size of the robot

the starting location could only vary 5 cm from the center of the duct. If the starting

location was over 5 cm from the center, the robot would bounce off the walls of the duct

towards the center and the starting location would not be deterministic.

Figure 3.8. Starting positions of positional robustness test. (0,0) is the center of the duct.

50

The performance of controller 3 with its final learned parameters did not vary

much based on starting location. The robot’s speed was 6.28±0.34 cm
s over all locations

and the distance covered was 3.58± 0.20 m. This shows that the performance of the

controller does not depend on starting exactly in the center of the duct.

3.2.4.2 Duct Size Robustness

Another test of robustness is varying the size of a duct wall. For this test, the

controller is tested on ducts of size 25 cm to 35 cm. Since the robot is rotated into the

corners, that means that the diagonal of each duct varied from 35 cm to 49.5 cm. Given

the compressed length of a linear actuator with touch sensors is 35 cm, and the extended

length is 45 cm, this should span the widths of ducts that can be negotiated by DuCTT.

As expected, the robot is not able to traverse ducts where the diagonal is larger

than the extent to which the linear actuators can extend (sizes 34cm and above, Fig. 3.9).

This is because there is nothing to push against and lock a tetrahedron to the wall in the

inchworm motion.

In addition, when the duct is smaller or exactly the same size as the robot (sizes 25

and 26 cm), the performance of the controller varies wildly since the collisions between

the robot and the duct walls will occasionally overwhelm Bullet. At 27cm, the duct may

still be too small for the robot to navigate as seen by the large standard deviation on both

speed and distance. However, in the sweet spot (sizes 28cm to 33cm) the performance of

the controller is generally good.

3.2.4.3 Parameter Robustness

The experiment tests the ability of the controller to withstand small variations

in the values of its parameters. It is run for 100 iterations, with each iteration starting

from the final controller 3 learned parameters and giving the controller 57 seconds to

climb the robot as far as it can. In each iteration, all four controller parameters are varied

51

Figure 3.9. Results of duct size robustness test.

by adding to them an amount drawn from a normal distribution with a mean of 0 and

standard deviation of 0.5%.

The results show that while these variations in parameters do affect the quality

of the controller’s performance (as expected), they do not prevent it from climbing

altogether. The mean speed after 100 iterations is 3.34 cm
s with a standard deviation of

1.17 cm
s . The mean distance traveled 57 seconds is 190 cm ± 66.9 cm. Therefore, while

getting the right parameter values is important for maximizing performance, it does not

affect the ability of the controller to do its job.

3.3 Acknowledgments

Section 3.1, in part, has been submitted for publication of the material as it

may appear in The Second Generation Prototype of A Duct Climbing Tensegrity Robot,

DuCTTv2, in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International

52

Conference on, 2015, J. Friesen, P. Glick, M. Fanton, P. Manovi, A. Xydes, and T.

Bewley. The thesis author was a co-author of this paper.

Chapter 4

Conclusion

This work has shown that it is possible to get good climbing performance out

of a well designed robotic controller tuned via machine learning, as well as the validity

of simulating a tensegrity robot via an open-source physics engine designed for video

games. The robustness of the learned controller parameters was then shown over air

ducts of various size and different starting positions.

Controller 3 using strategy 2 (a state-machine) performs the best out of the

controllers and strategies tried. While strategy 1 (sine waves) was thought to be good

because of the previous literature using it or a similar strategy (CPGs), this work has

shown that for the DuCTT robot a higher level control strategy will perform better. This

might be due to the geometry of the robot, with more rods connected by joints than

some of the other tensegrity robots. The state-machine might be able to account for that

better than assigning sine waves to each cable. Or it might be that the desired inch-worm

motion is easier for the state-machine controller to discover than the ones based on sine

waves.

Now that basic climbing and horizontal traversal have been solved, further re-

search could explore navigating an air duct right-angle or T-junction. This might require

designing a new controller, but with the framework developed for this work most of the

basic work is already done leaving just the actual controller design. Additionally, circular

53

54

air ducts could be modeled so that a more realistic simulation could occur. This would

bring the simulation closer to what the physical robot has been tested on.

Also, the simulated robot can take advantage of some recently introduced features

of the NTRT library. First, the cable model could be switched for one which includes an

actual PID control loop inside it. This will provide more realistic cable movement based

on the actual motor parameters for the physical robot. In addition, the cable models could

be made to interact with the environment by using a cable model that collides with rigid

bodies. While this particular shortcoming does not affect the results of this work as the

cables never collide with anything, a future controller could possibly use the collision

cables to help navigate a T-junction.

Bibliography

[1] Bullet physics library. [Online]. Available: bulletphysics.org

[2] Collision callbacks and triggers. [Online]. Available: http://www.bulletphysics.org/
mediawiki-1.5.8/index.php/Collision Callbacks and Triggers

[3] Nasa tensegrity robotics toolkit (ntrt). [Online]. Available: http://ti.arc.nasa.gov/
tech/asr/intelligent-robotics/tensegrity/ntrt/

[4] Ntrt simulator: Learning. [Online]. Available: http://ntrt.perryb.ca/doxygen/
learning.html

[5] Push me pull me. [Online]. Available: expeditionworkshed.org/workshed/
push-me-pull-me/

[6] Springie: A tensegrity simulator using java, vrml, and pov ray. [Online]. Available:
springie.com

[7] A. Ananthanarayanan, M. Azadi, and S. Kim, “Towards a bio-inspired leg design
for high-speed running,” in Bioinspiration & Biomimetics, vol. 7, no. 4. IOP
Publishing, 2012, p. 046005.

[8] P. Beyhaghi, D. Cavaglieri, and T. Bewley, “Delaunay-based derivative-free opti-
mization via global surrogates, part i: Linear constraints.”

[9] T. Bliss, J. Werly, T. Iwasaki, and H. Bart-Smith, “Experimental validation of robust
resonance entrainment for cpg-controlled tensegrity structures,” Control Systems
Technology, IEEE Transactions on, vol. 21, no. 3, pp. 666–678, May 2013.

[10] T. K. Bliss, “Central Pattern Generator Control Of A Tensegrity Based Swimmer,”
Ph.D. dissertation, University of Virgina, 2011.

[11] J. Bruce, K. Caluwaerts, A. Iscen, A. P. Sabelhaus, and V. Sunspiral, “Design and
Evolution of a Modular Tensegrity Robot Platform,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on, 2014, pp. 3483–3489.

55

bulletphysics.org
http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Collision_Callbacks_and_Triggers
http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Collision_Callbacks_and_Triggers
http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/ntrt/
http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/ntrt/
http://ntrt.perryb.ca/doxygen/learning.html
http://ntrt.perryb.ca/doxygen/learning.html
expeditionworkshed.org/workshed/push-me-pull-me/
expeditionworkshed.org/workshed/push-me-pull-me/
springie.com

56

[12] K. Caluwaerts, J. Despraz, A. Içen, A. P. Sabelhaus, J. Bruce, B. Schrauwen,
and V. SunSpiral, “Design and control of compliant tensegrity robots through
simulation and hardware validation.” Journal of the Royal Society Interface, vol. 11,
no. 98, 2014. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/24990292

[13] P. Corke, “A robotics toolbox for matlab,” Robotics Automation Magazine, IEEE,
vol. 3, no. 1, pp. 24–32, Mar 1996.

[14] A. De Luca and B. Siciliano, “Closed-form dynamic model of planar multilink
lightweight robots,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 21,
no. 4, pp. 826–839, Jul 1991.

[15] T. Erez, Y. Tassa, and E. Todorov, “Simulation Tools for Model-Based Robotics :
Comparison of Bullet , Havok , MuJoCo , ODE and PhysX,” 2015.

[16] V. Ferkiss, R. B. Fuller, and E. J. Applewhite, “Synergetics: Explorations in the
Geometry of Thinking,” Technology and Culture, vol. 17, no. 1, p. 104, 1976.
[Online]. Available: http://www.jstor.org/stable/3103256?origin=crossref

[17] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,” Journal-
Japanese Society For Artificial Intelligence, vol. 14, no. 771-780, p. 1612, 1999.

[18] J. Friesen, P. Glick, M. Fanton, P. Manovi, A. Xydes, and T. Bewley, “The Second
Generation Prototype of A Duct Climbing Tensegrity Robot, DuCTTv2,” in Intel-
ligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on,
submitted.

[19] J. Friesen, A. Pogue, T. Bewley, M. D. Oliveira, R. Skelton, and V. Sunspiral,
“DuCTT : a Tensegrity Robot for Exploring Duct Systems,” in Robotics and Au-
tomation (ICRA), 2014 IEEE International Conference on, 2014, pp. 4222–4228.

[20] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From swimming
to walking with a salamander robot driven by a spinal cord model,”
Science, vol. 315, no. 5817, pp. 1416–1420, 2007. [Online]. Available:
http://www.sciencemag.org/content/315/5817/1416.abstract

[21] A. Iscen, A. Agogino, V. Sunspiral, and K. Tumer, “Controlling Tensegrity Robots
through Evolution,” in Proceedings of the 15th annual conference on Genetic and
evolutionary computation, 2013, pp. 1293–1300.

[22] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer, “Flop and roll: Learning robust
goal-directed locomotion for a tensegrity robot,” in Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014, pp.
2236–2243.

http://www.ncbi.nlm.nih.gov/pubmed/24990292
http://www.jstor.org/stable/3103256?origin=crossref
http://www.sciencemag.org/content/315/5817/1416.abstract

57

[23] W. Jeon, J. Park, and I. Kim, “Development of high mobility in-pipe inspection
robot,” in System Integration (SII), 2011 IEEE/SICE International Symposium on,
2011, pp. 479–484. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=6147496

[24] Y. Kawaguchi, I. Yoshida, H. Kurumatani, T. Kikuta, and Y. Yamada, “Internal pipe
inspection robot,” in Robotics and Automation, 1995. Proceedings., 1995 IEEE
International Conference on, vol. 1, 1995, pp. 857–862.

[25] B. T. Mirletz, I.-w. Park, T. E. Flemons, A. K. Agogino, R. D. Quinn, and V. Sun-
spiral, “Design and Control of Modular Spine-Like Tensegrity Structures,” in
6WCSCM: Sixth World Conference on Structural Control and Monitoring, no. July,
2014.

[26] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT
Press, 1998.

[27] W. Neubauer, “Locomotion with articulated legs in pipes or ducts,” Robotics and
Autonomous Systems, vol. 11, no. 3-4, pp. 163–169, 1993.

[28] S. Nicosia, P. Valigi, and L. Zaccarian, “Dynamic modelling of a two link flexible
robot and experimental validation,” in Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, vol. 3, Apr 1996, pp. 1953–1958 vol.3.

[29] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control of tensegrity
robots for locomotion,” IEEE Transactions on Robotics, vol. 22, no. 5, pp. 944–957,
2006.

[30] R. Richardson, S. Whitehead, T. Ng, Z. Hawass, A. Pickering, S. Rhodes, R. Grieve,
A. Hildred, A. Nagendran, J. Liu, W. Mayfield, M. Tayoubi, and R. Breitner, “The
Djedi Robot Exploration of the Southern Shaft of the Queens Chamber in the Great
Pyramid of Giza, Egypt,” Journal of Field Robotics, vol. 30, no. 3, pp. 323–348,
2013.

[31] R. Skelton, R. Adhikari, J.-P. Pinaud, W. C. W. Chan, and J. Helton, “An intro-
duction to the mechanics of tensegrity structures,” in Decision and Control, 2001.
Proceedings of the 40th IEEE Conference on, vol. 5, 2001, pp. 4254–4259.

[32] K. Snelson, “Continuous tension, discontinuous compression structures,” Feb. 16
1965, uS Patent 3,169,611. [Online]. Available: https://www.google.com/patents/
US3169611

[33] B. R. Tietz, R. W. Carnahan, R. J. Bachmann, R. D. Quinn, and V. Sunspiral,
“Tetraspine: Robust terrain handling on a tensegrity robot using central pattern
generators,” in Advanced Intelligent Mechatronics (AIM), 2013 IEEE/ASME Inter-
national Conference on, 2013, pp. 261–267.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6147496
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6147496
https://www.google.com/patents/US3169611
https://www.google.com/patents/US3169611

58

[34] T. White, N. Hewer, B. L. LUK, and J. Hazel, “The design and operational perfor-
mance of a climbing robot used for weld inspection in hazardous environments,” in
Control Applications, 1998. Proceedings of the 1998 IEEE International Conference
on, September 1998, pp. 451–455.

[35] X. Zhang, J. Mills, and W. Cleghorn, “Dynamic modeling and experimental
validation of a 3-prr parallel manipulator with flexible intermediate links,” Journal
of Intelligent and Robotic Systems, vol. 50, no. 4, pp. 323–340, 2007. [Online].
Available: http://dx.doi.org/10.1007/s10846-007-9167-4

http://dx.doi.org/10.1007/s10846-007-9167-4

Appendix A

Appendices to Section 3.1

A.1 Mechanical Test and Validation Results

time(s)

5 5.5 6 6.5 7 7.5 8

e
rr

o
r

(m
e
te

rs
)

×10-3

-3

-2

-1

0

1

2

3

4

5
Average Nodal Error

x error

y error

z error

Figure A.1. Test case 1: average nodal error

59

60

time(s)

5 5.5 6 6.5 7

x
(m

e
te

rs
)

×10-5

-3

-2

-1

0

1

2

3

time(s)

5 5.5 6 6.5 7

y
(m

e
te

rs
)

×10-6

-1.5

-1

-0.5

0

0.5

1

time(s)

5 5.5 6 6.5 7

z
(m

e
te

rs
)

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Euler-Lagrange

NTRT

time(s)

5 5.5 6 6.5 7

T
h
e
ta

(r
a
d
)

×10-5

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time(s)

5 5.5 6 6.5 7

G
a
m

m
a
(r

a
d
)

×10-4

-1

-0.5

0

0.5

1

1.5

2

2.5

time(s)

5 5.5 6 6.5 7

P
h
i(
ra

d
)

×10-4

-1.5

-1

-0.5

0

0.5

1

Figure A.2. Test case 1: state variable comparison

z (meters)

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

P
h
i
(r

a
d
ia

n
s
)

×10-4

-1

-0.5

0

0.5

1

1.5

2

2.5
Phase Portrait comparison

Euler-Lagrange

NTRT

Figure A.3. Test case 1: Comparison of φ state variable

61

time(s)

5 5.5 6 6.5 7 7.5 8

e
rr

o
r

(m
e
te

rs
)

×10-3

-3

-2

-1

0

1

2

3

4

5
Average Nodal Error

x error

y error

z error

Figure A.4. Test case 2: average nodal error

time(s)

5 5.5 6 6.5 7

x
(m

e
te

rs
)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

time(s)

5 5.5 6 6.5 7

y
(m

e
te

rs
)

×10-3

-1

-0.5

0

0.5

1

1.5

time(s)

5 5.5 6 6.5 7

z
(m

e
te

rs
)

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

Euler-Lagrange

NTRT

time(s)

5 5.5 6 6.5 7

T
h
e
ta

(r
a
d
)

×10-3

-4

-3

-2

-1

0

1

2

3

4

time(s)

5 5.5 6 6.5 7

G
a
m

m
a
(r

a
d
)

-0.15

-0.1

-0.05

0

0.05

0.1

time(s)

5 5.5 6 6.5 7

P
h
i(
ra

d
)

-0.05

0

0.05

Figure A.5. Test case 2: state variable comparison

62

z (meters)

0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15

P
h
i
(r

a
d
ia

n
s
)

-0.15

-0.1

-0.05

0

0.05

0.1
Phase Portrait comparison

Euler-Lagrange

NTRT

Figure A.6. Test case 2: Comparison of φ state variable

time(s)

5 5.5 6 6.5 7 7.5 8

e
rr

o
r

(m
e
te

rs
)

×10-3

-5

-4

-3

-2

-1

0

1

2

3

4

5
Average Nodal Error

x error

y error

z error

Figure A.7. Test case 3: average nodal error

63

time(s)

5 5.5 6 6.5 7

x
(m

e
te

rs
)

×10-6

-8

-6

-4

-2

0

2

4

time(s)

5 5.5 6 6.5 7

y
(m

e
te

rs
)

×10-3

-8

-6

-4

-2

0

2

4

6

time(s)

5 5.5 6 6.5 7

z
(m

e
te

rs
)

0.1

0.11

0.12

0.13

0.14

0.15

Euler-Lagrange

NTRT

time(s)

5 5.5 6 6.5 7

T
h
e
ta

(r
a
d
)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

time(s)

5 5.5 6 6.5 7

G
a
m

m
a
(r

a
d
)

×10-5

-5

-4

-3

-2

-1

0

1

2

3

time(s)

5 5.5 6 6.5 7

P
h
i(
ra

d
)

×10-5

-2

-1

0

1

2

3

Figure A.8. Test case 3: state variable comparison

z (meters)

0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15

P
h
i
(r

a
d
ia

n
s
)

×10-5

-5

-4

-3

-2

-1

0

1

2

3
Phase Portrait comparison

Euler-Lagrange

NTRT

Figure A.9. Test case 3: Comparison of φ state variable

64

time(s)

5 5.5 6 6.5 7 7.5 8

e
rr

o
r

(m
e
te

rs
)

×10-3

-2

-1

0

1

2

3

4

5

6

7

8
Average Nodal Error

x error

y error

z error

Figure A.10. Test case 4: average nodal error

time(s)

5 5.5 6 6.5 7

x
(m

e
te

rs
)

×10-5

-2

-1.5

-1

-0.5

0

0.5

1

time(s)

5 5.5 6 6.5 7

y
(m

e
te

rs
)

×10-7

-6

-4

-2

0

2

4

6

time(s)

5 5.5 6 6.5 7

z
(m

e
te

rs
)

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Euler-Lagrange

NTRT

time(s)

5 5.5 6 6.5 7

T
h
e
ta

(r
a
d
)

×10-5

-2

-1

0

1

2

3

time(s)

5 5.5 6 6.5 7

G
a
m

m
a
(r

a
d
)

×10-5

-8

-6

-4

-2

0

2

4

time(s)

5 5.5 6 6.5 7

P
h
i(
ra

d
)

×10-5

-3

-2

-1

0

1

2

3

Figure A.11. Test case 4: state variable comparison

65

z (meters)

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

P
h
i
(r

a
d
ia

n
s
)

×10-5

-8

-6

-4

-2

0

2

4
Phase Portrait comparison

Euler-Lagrange

NTRT

Figure A.12. Test case 4: Comparison of φ state variable

time(s)

5 5.5 6 6.5 7 7.5 8

e
rr

o
r

(m
e
te

rs
)

×10-3

-12

-10

-8

-6

-4

-2

0

2

4

6

8
Average Nodal Error

x error

y error

z error

Figure A.13. Test case 5: average nodal error

66

time(s)

5 5.5 6 6.5 7

x
(m

e
te

rs
)

-0.05

0

0.05

time(s)

5 5.5 6 6.5 7

y
(m

e
te

rs
)

×10-3

-2

-1

0

1

2

3

time(s)

5 5.5 6 6.5 7

z
(m

e
te

rs
)

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Euler-Lagrange

NTRT

time(s)

5 5.5 6 6.5 7

T
h
e
ta

(r
a
d
)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

time(s)

5 5.5 6 6.5 7

G
a
m

m
a
(r

a
d
)

-0.5

0

0.5

time(s)

5 5.5 6 6.5 7

P
h
i(
ra

d
)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Figure A.14. Test case 5: state variable comparison

z (meters)

0.09 0.1 0.11 0.12 0.13 0.14 0.15

P
h
i
(r

a
d
ia

n
s
)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Phase Portrait comparison

Euler-Lagrange

NTRT

Figure A.15. Test case 5: Comparison of φ state variable

67

time(s)

5 5.5 6 6.5 7 7.5 8

e
rr

o
r

(m
e
te

rs
)

×10-3

-5

-4

-3

-2

-1

0

1

2

3

4
Average Nodal Error

x error

y error

z error

Figure A.16. Test case 6: average nodal error

time(s)

5 5.5 6 6.5 7

x
(m

e
te

rs
)

×10-5

-2

-1.5

-1

-0.5

0

0.5

1

time(s)

5 5.5 6 6.5 7

y
(m

e
te

rs
)

-0.01

-0.005

0

0.005

0.01

time(s)

5 5.5 6 6.5 7

z
(m

e
te

rs
)

0.1

0.11

0.12

0.13

0.14

0.15

time(s)

5 5.5 6 6.5 7

T
h

e
ta

(r
a

d
)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time(s)

5 5.5 6 6.5 7

G
a

m
m

a
(r

a
d

)

×10-4

-1.5

-1

-0.5

0

0.5

1

Euler-Lagrange

NTRT

time(s)

5 5.5 6 6.5 7

P
h

i(
ra

d
)

×10-5

-4

-2

0

2

4

Figure A.17. Test case 6: state variable comparison

68

z (meters)

0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15

P
h
i
(r

a
d
ia

n
s
)

×10-5

-14

-12

-10

-8

-6

-4

-2

0

2

4

6
Phase Portrait comparison

Euler-Lagrange

NTRT

Figure A.18. Test case 6: Comparison of φ state variable

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Thesis
	Introduction
	Literature Review
	Duct-Inspection Robots
	Tensegrity Robots
	Robotic and Tensegrity Simulation
	Tensegrity Control
	Central Pattern Generators
	Learning the Controller Parameters

	Acknowledgments

	Approach
	Overview
	Target Platform
	Simulation
	Libraries
	Robot
	Environment

	Control
	Control Strategies
	Controllers
	Low-level Controllers

	Mechanical Test and Validation
	Lagrangian Model
	Control
	Tests

	Learning Algorithms
	Monte-Carlo
	Genetic Algorithm
	Other learning approaches

	Cost Functions
	Acknowledgments

	Experimental Results
	Mechanical Validation
	Learning Results
	Vertical Duct Climbing
	Horizontal Duct Traverse
	Horizontal Plane Traverse
	Robustness Testing

	Acknowledgments

	Conclusion
	Bibliography
	Appendices to Section 3.1
	Mechanical Test and Validation Results

