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Abstract

Tensegrity masts are a network of compressive and tensile elements, composed of multiple

interconnected tensegrity units. Unlike other structures, tensegrities are not limited by fixed

structural properties. The ability to vary cable tension in a tensegrity enables modification

of the structural dynamic properties. This work studies how the natural frequencies of

a tensegrity mast change with changing cable tension. A three-stage tensegrity mast is

modeled and tested. The first several natural frequencies of the structure are tracked across

a range of configurations. The results show the effect of tensioning different sets of cables

on the natural frequencies of the mast. Applications for a tensegrity-based structure with

tunable natural frequencies are discussed.

Index words: Tensegrity Prism, Tensegrity Mast, Form-Finding, Structural
Dynamics, Modal Testing, Tensegrity Construction, Natural Frequency
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Chapter 1

Introduction

1.1 Motivation

The fixed stiffness and structural properties of traditional aircraft wings can be a major

constraint on performance. As the need for aircraft to fly efficiently across a wide range of

conditions increase, there is a growing need for wings to be able to change their structural

properties in flight. Having authority of a wing’s structural properties would result in wings

that are more receptive to control and offers an attractive way to integrate structural design

with control system design. Aircraft wings that are capable of morphing their shape and/or

changing their stiffness properties possess the potential for aeroelastic instability suppression

and, as a result, would enable flight over a wide range of flight conditions.

Aeroelastic considerations, as well as understanding structural behavior, are of impor-

tance for safety as well as improved performance and maneuverability. Aeroelastic instabil-

ities such as flutter and divergence, can cause operating limitations [3] or even structural

failure due to the structure coupling with the aerodynamic loading. Design constraints are

posed on aircraft to avoid repeating many well known aeroelastic failures [4]. For instance,

NASA’s Helios was an Unmanned Aerial Vehicle (UAV) that failed due to an aeroelastic

phenomenon known as divergence [5].

In light of these issues, this research investigation is motivated by the need to develop

a new class of aircraft wings that are more robust in the face of aeroelastic considerations.

It is also hypothesized that the control and instability issues can be largely mitigated by

leveraging structures with adaptable properties. Previous research considers Shape Memory
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Alloys (SMAs) [6], flexible control surfaces, and a morphing trailing edge as potential ways

of making aircraft wings more controllable and adaptable [7]. This work considers a class

of structures known as tensegrities as another potential solution. Their strong, light-weight,

flexible, tunable, and scalable features make tensegrities promising particularly for aerospace

applications.

Tensegrities have adaptable structural properties and can morph shape by changing

their cable tension. The ability to change configurations is another major advantage of

a tensegrity-based framework, which would give a wing adaptable structural features and

may offer an effective way to suppress undesirable vibrational response and/or aeroelastic

instabilities. This also makes them potential candidates for morphing aircraft wings. Unlike

traditional wings which have fixed structural properties, tensegrity wings offer controllable

static and dynamic structural properties. They have also been shown to have the potential

for 25-50% weight savings [8].

Tensegrities are a structural framework characterized by a combination of rigid struts in

compression, linked together through cables in tension, and held together in a self-stabilizing

equilibrium state [9]. In this way, the tensile members stabilize the configuration of the

tensegrity structure without any external forces. When the internal and external forces of

the system are balanced, a tensegrity structure exhibits mechanical stability, enabling the

structure to withstand substantial loading and stress, while, at the same time, maintaining

an exceptionally high strength-to-weight ratio. The term tensegrity was coined by Buckmin-

ster Fuller by combining the words “tension” and “integrity” [10].

The first documented tensegrity structure was built by artist Kenneth Snelson [10], fa-

mous for the “Snelson’s X” tensegrity. Even though the structure has been known for over 50

years, little effort has been made to adapt it to engineering applications [9]. Previously, the

most common considerations of tensegrity structures have been toys [9] and art [11]. How-

ever, now it is known that tensegrity-like structures exist in nature, such as in the human

body, where the bones hold the compressive load and the tendons provide the tension for
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stabilization [12].

Tensegrities are attractive structures because they handle loading by distributing forces

axially through each member [9]. Consequently, members do not have to be designed to

handle shear and bending forces [13]. Moreover, cables are strong in tension, lightweight,

foldable, and can have a variable tension [14]. This means that the structural properties

can be controlled by altering the tension in the structure’s tensile elements. Actuators can

be placed on cables to create an active structure [14]. Tensegrity structures can be changed

substantially without requiring extra energy to hold them in a configuration [15]. They re-

quire less energy to manipulate [10] and are able to achieve multiple equilibrium positions.

This could ultimately lessen the stress on a wing’s structural components, and can ease

the integration of an aircraft wing’s control system. Additionally, the shape of a tensegrity

structure can be changed with small changes of unstressed lengths of the members, which

facilitates high precision control [14].

Figure 1.1: Tensegrity wing structure demonstration hardware made by Skelton [1]

An example static model of a tensegrity wing structure that was built by Skelton [1]

is shown in Fig. 1.1. The tensegrity system incorporates a spar, ribs, and an airfoil profile

similar to those which compose the framework of a traditional wing system. However, in this

investigation, test articles will be built with the idea that the entire internal framework of a

traditional wing could be replaced with the struts and actuated tensile cables of a tensegrity

mast. The objective to this research is to investigate how the natural frequency changes
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with varying cable tension in tensegrity prisms and masts.

1.2 Applications

Tensegrity structures have been considered in a wide variety of applications, from modeling

cell behavior [16–18], including capturing the mechanical behavior of the cytoskeleton [19,20]

and even viruses [20], to mimicking diaphragm motion [21]. They have also been considered

in the context of robotics [8,22–24], space platforms [25], deployable systems [26–30] such as

a deployable antenna [31]. Tensegrities have the potential to be compacted into very small

volumes, which makes them attractive for deployment applications [14]. They can also be

automatically deployed where cables can be tensioned to raise the structure from a collapsed

state to a stable tensegrity position [9]. In the same way, the potential energy of stressed

elastic cables can be used to deploy the structure into a stable configuration [9].

Tensegrity booms have also been considered. Booms are long, slender, lightweight, and

deployable systems frequently used in space missions to accurately position payloads [32].

Typically, booms are structurally efficient, can be packed into a small volume and deployed,

and the most mass efficient long booms have truss-like structural architectures, which make

tensegrities ideal for this application [32].

Figure 1.2: NASA’s “SUPERball Bot”

NASA’s Intelligent Systems Division are in the process of developing a collapsible, terres-
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trial robot that has the potential to contribute toward space exploration goals. Rimoli [33]

looks at the impact tolerance of tensegrities as planetary landers and remarks that an ef-

ficient structural design for a planetary lander should be able to evenly deform and store

elastic strain energy during impact, which makes tensegrities attractive for the application.

NASA’s Super Ball Bot, shown in Fig. 1.2, is a six-strut tensegrity robot landing and mobil-

ity test platform. It is based on the expandable octahedron, a spherical tensegrity [24], with

the purpose of enabling more reliable planetary missions. The advantages of using tenseg-

rity systems for planetary surface explorers are that they are sturdier and can withstand

substantial impact. Once on the planet, the cables can be adjusted to roll the bot in any

direction, while data collecting devices or payloads are housed within its core. The robot

is cable-driven, with 24 cables independently actuated by linear actuators [24]. Caluwaerts

and Carbajal [13] shows the schematic of a robotic tensile actuator.

Other non-aerospace applications include civil structures, such as tensegrity pedestrian

bridges [34–36].

1.3 Tensegrity types

Pin-jointed structures are generally classified as trusses or pre-stressed structures [37]. This

can, in turn, be broken into two categories: tensile structures, such as cable nets, or cable-

strut structures [37], such as tensegrity structures and tensegrity domes [29]. Tensegrity

structures only exist under certain geometries [9]. Tensegrities may have as few as six mem-

bers, such as Snelson’s X, or as many as 90 members [38], though there is no limitation.

Tensegrities can have continuously running cables, where the cables do not connect at the

nodes. These are known as clustered tensgrities [39–41]. They are generally organized

into categories, such as class, redundant [39]/non-redundant, symmetric, active/passive, and

number of self-stress states. Redundant structures have reinforcing cables added to the

structure.
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Figure 1.3: Static and kinematic determinacy and indeterminacy illustrations from Ref. [2]

Static and kinematic determinacy are central to an understanding of the mechanics of

pin-jointed frameworks like tensegrity structures. Fig. 1.3, from Ref. [2], is used to visualize

the meaning of self-stress states and internal mechanisms. In Fig. 1.3 (a), the tension in

every strut can be determined by means of equations of equilibrium. Thus, this frame is

statically determinate, since the number of nodal equations is equal to the number of un-

known tensions, i.e., the solution is unique. Additionally, the frame is also kinematically

determinate in the sense that the position of the joint is uniquely determined by the lengths

of the struts.

Removing a strut results in a mechanism and the node can move as shown in Fig. 1.3 (b).

The location of the joint cannot be uniquely determined by the length of the struts, so it is

kinematically indeterminate. The assembly also has a mode of inextensional deformation.

Meaning, it can distort without changing the length of any member.

Alternatively, an extra bar can be added to Fig. 1.3 (a) instead, as shown in Fig. 1.3

(c). Now the frame is still kinematically determinate but becomes statically indeterminate

as there are now more unknowns than equations, and the solution for the tensions is not

unique. The indeterminacy can be described as having a single state of self-stress. If the bar
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redundant bar in Fig. 1.3 (c) is instead in a state of tension, the conditions of equilibrium

would require other members to be stressed as well. This can be visualized by imagining that

the new member is slightly shorter than the distance between the two joints it is connecting.

Tension is then necessary to provide the small elastic elongation required to make it fit.

If a third bar is added to Fig. 1.3 (b), as in Fig. 1.3 (d.1), the frame becomes statically

and kinematically indeterminante, moving with only small displacements of the inextensional

mechanism. This is the case for tensegrity structures.

The most common tensegrities have symmetric properties, such as prismatic tensegri-

ties [9, 25, 42–45], cylindrical tensegrities [42, 46, 47], tensegrity polygons [28], and spherical

systems [28]. Zhang, et al. [48] investigate tensegrity structures with dihedral symmetry.

Figure 1.4: Tensegrity prism

Classic tensegrities are given names such as: the two-dimensional Snelson’s X or “X-

tensegrities” [37,49,50] (also referred to as tensegrity kites [25]), three-strut or prism tenseg-

rity [9, 32, 49–52] (or sometimes referred to as “triplex” [42, 53]), shown in Fig. 1.4, four-

strut tensegrity [54, 55] (sometimes referred to as “quadruplex” [42, 53]), hexagon [54, 55]

as well as the three-dimensional six-strut tensegrity [51], octahedral cell [51], expandable

octahedron [33, 42, 51, 54–57], and truncated icosahedron [42, 54, 56] and tetrahedral tenseg-
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rity [42,47,54–59].

A class k tensegrity system has k strut(s) connected at one node [60]. A tensegrity system

is considered to be class 1 if struts are free floating. Tensegrity prisms are class 1 tensegrities,

while masts constructed of tensegrity prism units are class 2 tensegrities [32].

Tensegrity mast structures [26,32,61–64] are made up of multiple tensegrity units and, in

turn, can be made into large-scale systems [65]. They have been considered in various con-

texts, including optimization [14,37,66,67], applied loading [61], as well as actuation [68,69].

Tensegrity masts can be both class 1 and class 2 [70]. For example, saddle-vertical-diagonal

tensegrities [14, 27, 32, 71, 72] have one state of self-stress and one mechanism for any num-

ber of modules [14]. Planar tensegrities, such as the two-dimensional, three-module Snel-

son’s X [14, 37, 73, 74], are class 2 tensegrities. There is a host of work relating to pla-

nar tensegrity structures [75–83]. Many theoretical studies are also applied to tensegrity

beams [29,37,39–41,63,68,69,74,75,83–89]. A great deal of consideration is given to tenseg-

rity towers [66,72,90], which have been frequently studied as booms [14,32]. In other works,

tensegrity arches [16,90] are given some attention.

Modular structures [14, 32, 38, 50, 91], include a tensegrity grid structures [73, 91–97] or

double-layer tensegrity grids [98]. They are constructed with modules or “cells” such as the

octagonal cell and “four-strut” systems [87], also known four-plex module [74], quadruplex

module [37,50], and Micheletti and Marcus tensegrity modules, both of which form stuctures

with one state of self-stress [32]. Large scale tensegrity grids are advantageous because the

failure of one of its components might not lead to an overall collapse [75]. Modules can

also be connected together to obtain a larger tensegrity structure as in a beam [37, 86, 87],

tower [99], and ring [59, 99], and space tensegrity structure [76]. Interestingly, a tensegrity

tower, consisting of three struts per stage, sandwiched between rigid triangular plates and

held in place by saddle, vertical, and diagonal cables, has the same equilibrium configuration

but with a smaller number of unknown cable forces as the original structure, where the rigid

plates are replaced by sets of three cables [71]. Refs. [39, 91, 95] construct a quadruplex
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module to form a tensegrity beam, while Refs. [37, 73, 86] looks at a quadruplex module to

form a double-layer quadruplex tensegrity grid, and a five-quadruplex module. It is worth

noting that the behavior of modular tensegrity systems is known to be particularly similar

to that of single cells [20].

Other types include irregular tensegrity structures [85, 100], such as membranes [49],

fabric frameworks [101], or two-dimensional tensegrity airfoils [103]. The Geiger dome is a

small-scale tensegrity made up of 32 nodes and 73 members [102]. Many methods noted in

this work are also frequently applied to pin-jointed structures that are not necessarily pure

tensegrities, such as cable domes [28,104–106] or spoked-wheel roof structure [107].

Note that the definition of a tensegrity can become controversial when certain structures

are included in its definition [59]. Structures, such as the one in Fig. 1.1, which do not follow

the definition of a tensegrity, are referred to here as hybrid structures. Refs. [8,29,108] look

at plate based tensegrity structures, which are a hybrid tensegrity, while Ref. [109] look at

a plate constructed of prism units. Faulk and Tilbert [108] study plate tensegrity modules

that are linked together to form a long plane plate tensegrity systems. Hybrid structures

typically involve a more complicated process for modeling.

1.4 Current work

This work explores tensegrity systems as the framework for a tunable aircraft wing structure

and analyzes the structural properties of a tensegrity mast with a representative wing-like

geometry. This investigation is a first step towards addressing how choosing different cables

to actuate changes the properties of tensegrity structures to prevent unwanted vibrational

and aeroelastic behavior. This work demonstrates how control of the tension in the tensile

elements of a tensegrity structure can enable robust control of the natural frequencies and

modes. This work shows that the first two modes of a tensegrity structure can be separated

by changing the length of the cables.

Most available studies for aerospace applications are concentrated on tensegrities in
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space. Very few works explore tensegrity wing structures, with even fewer considering

tensegrities for aeronautic applications. Research for the application of a tensegrity-based

wing [41,64,68,69,110,111] so far is limited to shape-changing airfoils [103], tensegrity-based

fins [112,113], swimmers [114], and a tensegrity spar [64].

Refs. [13, 52] explicitly state they are primarily concerned with the form-finding and

analysis of class 1 tensegrity structures [49]. Previously, considerable research has been per-

formed on the control, statics, and dynamics of class 1 tensegrities, with few studying class

2 tensegrities [77]. Additionally, though there is a plentiful amount of literature regarding

tensegrity prisms, few build and experimentally test physical test articles. Refs. [14,50] also

consider a tensgrity prism mast; however, they are constructed of two and four modules

rather than three.

This work applies the algorithms of Refs. [42, 54] to find an initial configuration with

minimal inputs and then the algorithm discussed by Ref. [115] was used to model the new

equilibrium configuration given a change of the lengths of certain cables. A modal analy-

sis was conducted at each length-change increment. The process of determining the stable

configuration for a set of tensegrity element lengths is a relatively unexplored form-finding

problem. Several authors have developed various form-finding methods, but very few of them

allow the member lengths to be directly controlled; nor do they provide a clear understand

of how the lengths of the members affect the overall shape and dynamic properties of the

tensegrity system [25]. This work formulates a new method for converting length changes

into nodal coordinate changes. Tensegrity shape-change is successfully modeled with direct

control of member lengths.

Experimental results are used to validate the theoretical model. Experimentally modal

test a tensegrity mast for a range of cable lengths. Natural frequencies are identified for

the test articles for a range of cable lengths. Four different actuation strategies are explored

and their effects on the natural frequencies of the system are compared. In addition, this is

the first work to explore how different boundary conditions influence the natural frequency
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behavior of tensegrities and to compare the dynamic behavior of prisms with masts.

The thesis is organized as follows. First, linear algebra concepts are reviewed for bet-

ter clarification of the algorithmic procedures. Next, the mathematical model is presented,

where a form-finding and length-changing algorithm are explained. Then, the design and

construction of the test articles is explained and the experimental procedure is outlined.

Finally, the results are shown, analyzed, discussed, and compared with other similar works.

Contributions:

1. A large number of tensegrity types are presented by accumulating previous literature

2. A thorough literature review is performed and the pros and cons of previous form-

finding methods applied to tensegrity structures are presented

3. Form-finding algorithm for tensegrity structures is presented clearly and the results

from several numerical examples are shown

4. A method is shown for converting length changes into nodal position changes

5. First work to modal test tensegrity prisms and masts for various cable actuation strate-

gies

6. First work to consider how the natural frequencies of tensegrity prisms and masts are

impacted by length change

7. Results show the natural frequencies of tensegrity structures change the most for a

vertical actuation strategy

8. Results show length change has more of an effect on higher modes of tensegrities
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Chapter 2

Literature Review

The advantages of tensegrity systems come at the cost of design complexity [25]. Length

can be calculated as the vector magnitude of the nodal coordinates, which involves a square-

root term. Thus, the modeling of tensegrity structures can be cumbersome due to the

nonlinearities [8].

2.1 Theoretical work

Most literature regarding tensegrity structures is purely theoretical and has not been val-

idated experimentally. The majority of theoretical work completed on tensegrities so far

perform mathematical modeling and theoretical analysis for simple tensegrity geometries.

Regarding mathematics literature, Connelly and others have proved conditions for stability

and rigidity properties of tensegrities (referred to in mathematical formulations as tensegrity

frameworks) [10]. Tensegrities are commonly modeled with frictionless pin-joints, neglect-

ing the self-weight of the members [42]. In some cases, tensile members are modeled as

springs with a zero rest length [10, 15]. In general, tensegrity structures are primarily stati-

cally modeled, where form-finding is usually performed first to find their equilibrium shapes.

This initial shape can then be changed to form new configurations. Quasi-static behavior

is generally analyzed from here with the consideration of relatively low frequency dynamic

loads [33].

Form-finding is known as the solution process which simultaneously determines the self-

stressed equilibrium and corresponding geometry [74]. A form-finding problem has no closed-
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form solution, and is instead examined for sufficient conditions. While there exists a tremen-

dous amount of tensegrity form-finding literature, most of the proposed models can only be

applied to specific types of tensegrities, such as symmetrical, only prismatic [25], equivalent

tensile/compressive forces in all members, etc. Ali, et al. [39] present a modified dynamic

relaxation (mDR) algorithm, with their approach explicitly applicable to clustered tenseg-

rity structures, with continuous cables sliding over frictionless pulleys. Additionally, most

works formulate their solution methods for specific types of tensegrities or are very compu-

tationally expensive or mathematically complex algorithms. Despite much development in

form-finding analysis, most previous methods are efficient only for tensegrity structures of

relatively small scale [44]. Most of the available methods have dealt with the form-finding

of tensegrities for only the case of a single self-stress state [51,58]. As Xu, et al. [116] points

out, the MILP method (amongst many others) are formulated for and applied to Class 1

tensegrity structures only [29], in which one strut is connected to each node. There are little

to no studies applying such method(s) to general class k structures.

Assuming the connectivity is known, the analysis and design of a tensegrity structure

normally depends on two main variables: the position of the nodal coordinates and the pre-

stress level of its members [74]. It is possible for both of these quantities to be unknown, the

case which will be discussed later in this work. Ref. [117] takes a new approach where the

connectivity matrix is the unknown variable. Again, this approach is limited because it can

only be applied to two-dimensional tensegrities.

Form-finding methods

Form-finding methods for tensegrity systems can be classified into three categories: geomet-

ric, analytical, and numerical [59, 74]. Numerical methods are generally more practical for

large, asymmetrical tensegrities, while analytical methods are merely appropriate for tenseg-

rities with a high order of symmetry [19,74]. Deriving form-finding formulations for irregular

tensegrity structures analytically is a difficult task [19].

13



The following form-finding methods do not include analytical methods, which are config-

uration specific. Pietila and Cohen [8] point out that solving, even a single cell with multiple

DOFs, analytically can quickly become a difficult task. Thus, analytical methods are not

practical for an engineer who does not have extensive amount of experience with solving

the dynamics of complicated structures. These methods use specific equations to generate

certain types of tensegrities, which have characteristic equilibrium configurations such as

cylindrical [46] or prismatic tensegrities. Prismatic tensegrities can be calculated analyti-

cally by means of given criteria such as a special twist/rotation angle between the top and

bottom polygons, strut-to-cable length ratios, or tension coefficients [71, 118]. Specifically,

the geometry of prismatic tensegrities is given by the number of struts, lower and upper radii,

height, and rotation angle. Similarly, if each of the six struts of an expandable octahedron

tensegrity is divided into three pairs, the distance between each strut pair is equal to half

the length of the strut [71]. However, building a structure around such criteria is not ideal

in practice.

Traditional solvers, such as gradient-based solvers, are limited because the equilibrium

tensegrity space is non-smooth, with the exception being Micheletti and Cadoni [28] who

study tensegrity ballons due to the system’s smooth behavior. They further remark that for

more diverse situations, other form-finding and static analysis would be more effective.

The following presented methods can typically be used to solve a wide variety of prob-

lems; however, here they are compared as applied to tensegrity structures based on existing

literature.

An iterative method is a mathematical procedure that starts with an initial guess at

a solution and the ith approximation is derived from the previous ones. In this way, the

guess is continuously updated with approximate solutions that improve at each iteration

until converging at the actual solution. Most existing iterative techniques for solving large

linear systems of equations use a projection process in one way or another. Projection tech-

niques are a way to extract an approximation to the solution of a linear system from a
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subspace of Rn. A subspace is a set of vectors that is closed under addition and multiplica-

tion by a scalar. A linear system is a set of linear equations that are considered collectively

and solved simultaneously, rather than individually. The following presented methods are

iterative procedures that are specifically applied to tensegrity structures.

There are many ways to go about an iterative procedure. For problems that require find-

ing the root of an equation, one may use the Newton-Raphson Method (NRM). The NRM

is an iterative method which uses an initial guess to generate successive approximations to

a solution, where a correction term is introduced to the iterative equations [124].

Various considerations can be added onto any of these methods, including the consid-

eration of momentum [10, 125], joint friction, gravitational effects, nonlinear stiffness, non-

conservative forces, and path-planning [10, 78]. Additionally, procedures can be added to

add external loading [97], account for buckling [28, 33, 145] or to constrain anything from

nodes to geometrical constraints like shape [126], rotational symmetry [72], elevation [72],

or a maximum allowed volume or mass. Additional geometric constraints cause the lin-

earized problem to become nonlinear again, and are generally solved using gradient-based

methods [121]. Optimizers can also be put in place to find desired configurations such as

the topology that maximizes stiffness [96, 97], stiffness-to-mass ratio given loading, minimal

mass configurations, preserved total cable length, minimization of deviation of member forces

from target values [96, 97], or other desirable qualities. Optimization can be accomplished

by using programming methods such as MILP [88] or algorithms such as gradient-descent or

genetic/evolutionary.

Force density method

The Force Density Method (FDM) is one of the fundamental methods for finding new con-

figurations of a tensegrity structure [126]. Any state of equilibrium can be obtained by the

solution of one system of linear equations, constructed using member force-length ratios,

called force densities, as degrees-of-freedom (DOFs) [128]. The FDM is an advantageous
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Method Description Pros Cons Main EQs
Dynamic Relaxation
Method (DRM) [11,
24, 38, 71, 98, 119–122]
Modified Dynamic
Relaxation Method
(mDR) [39,40]

•simulates dynamic behavior
•node displacement traced
over time until sum of resid-
ual forces in nodes converges
to near “0” value
•residual forces converted to
velocities
•uses fictitious damping with
externally applied load
•tracks kinetic energy of sys-
tem over time

•lower computa-
tional cost
•does not require
stiffness matrix
•attractive for struc-
tures with nonlinear
geometric and mate-
rial behavior
•control over pre-
defined stresses

•not as effective with
many nodes
•convergence depen-
dent on choice of
damping
•“kinetic damping”(
K 6= f

dx

)
•no material specifi-
cation

fext(t) =
{
Mp̈ + Cṗ

}
+ fint(p)

ir = iMiv̇(t) + iCiv(t)
i+1u = iu + ∆tiv
KE(t) =

n∑
i=1

1
2mivi(t) · vi(t)

Minimal cycle basis [56] •combined form of equi-
librium and geometrical
compatability equations for
tensegrity structures
•considers connectivity as
directed graph
•generates compatability
equations via cycle basis

•can be solved
analytically or nu-
merically
•reduced computa-
tional effort

•found form requires
symmetry
•unfeasible solutions
may arise for small
lengths or force
densities

Aq = 0
HD = 0

Newton-Raphson
Method (NRM) [20, 28,
47,59,75]

•solves form-finding problem
for tensegrities with linear
elastic properties
• shortens cables for large-
displacement elastic analysis

•can find roots of
function
•potential for
quadratic con-
vergence

•fails at limit points
•must compute
derivative of func-
tion

ix = ix−
[
∂f
∂x
]
x=ix

(
if− f0

)

Stiffness Matrix Form-
Finding (SMFF) [44]
Stiffness Matrix Method
(SMM) [119,123]
Transient Stiffness
Method (TSM)

•considers relation between
total elastic strain energy and
structural stiffness matrix
•minimizes total potential en-
ergy
•changes K positive definite
after excluding rigid-body mo-
tions

•suitable for large-
scale irregular
tensegrities with
large number of
nodes
•can specify external
and internal loading

•starts from arbi-
trary position
•must input num-
ber of nodes and
members, structural
topology, natural
lengths, and ax-
ial stiffnesses of
members

U =

{
0 ` ≤ `0
1
2k(`− `0)

2 o/w

K = S+A ·diag
(
. . . , k `0` , . . .

)
·AT

Monte Carlo Form-
Finding (MCFF) [85]

•molecular simulations
•tensegrity modeled as
molecule
•nodes and members modeled
as atoms joined by atomic
bonds, respectively
•each step generates trial
configuration by random
sampling
•accept-or-reject scheme de-
pending on which has minimal
energy

•good for large-scale
tensegrities
•does not require
prior knowledge of
nodal coodinates

•cannot specify
nodal coordinates
•takes hours to
run on computer

E =

{
0 ` ≤ `0
1
2k(`− `0)

2 o/w

Table 2.1: Iterative/numerical form-finding methods for tensegrities
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Method Description Pros Cons Main EQs
Force Density Method
(FDM) [11,37,50,53,54,
71, 121, 126] Extended
Force Density Method
(EFDM) [127]. Non-
Linear Force Density
Method (NLFDM)

•based on a mathematical de-
scription of static equilibrium
•tool for finding initial base
geometry and initial pre-
stressing set
•mathematical transforma-
tion from nonlinear equilib-
rium equations into linear
equations at nodes
•each member has force
density

•explores new non-
degenerate and asym-
metric formations
•provides number of
states of self-stress and
internal mechanisms
•provides stability anal-
ysis
•results apply to any
kind of material
•finds super-stable
tensegrities

•no direct control over
member lengths or ten-
sion
•works better for struc-
tures with one state of
self-stress
•difficult to constrain
nodes
•cables assumed to be
massless
•no material specifica-
tion
•force density results
may differ (not unique)
•hard to converge with
negative eigenvalues

D
[
x y z

]
=
[
0 0 0

]
Aq = 0

Force-Displacement Re-
lationship [115]

•based on small displacement
theory, assuming linear de-
pendence of deflections upon
applied forces
•solves force-displacement
equation by using EVD to
convert between physical and
modal space
•uses NRM to iterate between
nodal coordinates in modal
space

•simple mathematical
formulations
•efficient computations
•control over material
properties
•can be applied to any
tensegrity class
•allows for nodal
(length) control

•not commonly used
(limited information
available)
•certain structural
changes may have con-
vergence issues

K∆p=∆f

Table 2.2: Iterative/numerical form-finding methods for tensegrities (used in this work)

form-finding method because it prescribes one single quantity, the force density, for each

member and obtains as a unique result the appropriate state of equilibrium [128]. The force

densities can be thought of as stresses [71]. It allows for many very different shapes to be

computed and displayed in a short time [128]. Another advantage to the FDM is that it

provides a linear solution to the shape-finding problem. In this way, the final shape obtained

by the FDM is independent of the initial coordinates of the structures, and the controlling

element variable is that of force density [129].

The analysis process of the FDM is relatively simple compared with other nonlinear meth-

ods such as the NRM or DRM [129]. However, this convenience has its drawbacks in that the

outcome of the final stress distribution is difficult to control [129]. Another disadvantage is

that once a form has been found, a new method must be put in place to analyze its response

under loading [129]. The main limitation to this method is the inability to constrain nodes

or to add external forcing. This is due to the nature of the form-finding problem, since the
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procedure depends on the null spaces of the matrices. When nodes are constrained, this is

essentially the same as adding external forcing. The known coordinates can be multiplied

and subtracted to the other side of the equations, resulting in an equilibrium problem which

is no longer formulated as a matrix times a vector equals zero. As will be seen in this work,

the limitations of the FDM required the use of a second algorithm.

The FDM was originally proposed to solve the equilibrium equations for any type of

cable net and has been extensively studied for tendon structures [49, 106, 129–132]. The set

of linear equilibrium equations solving a cable net becomes indefinite when a negative force

density is assign to compression members [131]. There are many ways to extend the cable

net formulation of the FDM to tensegrity structures. The variational principle has been used

to extend the FDM to structures with tension membranes and compression members [131].

Koohestani and Guest [56] formulate a form-finding for tensegiry structures based on the

force density formulation. The difference between their formulation and the force density

formulation is analogous to the difference between the force and displacement methods for

structural analysis. In the displacement method, the equilibrium equations are written based

on the stiffness matrix and the nodal displacements, which automatically satisfy compati-

bility conditions. In the standard force method, both the equilibrium and the compatibility

conditions are written individually, based on elements’ independent forces, and should be

satisfied simultaneously [56]. An optimization method can be used to find the global mini-

mum, leading to a set of force densities that guarantee the constrain conditions for the force

density matrix [76].

General form-finding methods

The following methods presented here are broader categories of the previously presented

form-finding methods. They are discussed specifically for tensegrity form-finding.

From a modeling perspective, symmetry is desired because it is useful for eliminating some

unknowns. Symmetry properties are very commonly used for tensgrity form-finding [43,133,
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Method Description Pros Cons Examples
Variational Principle (Virtual
Work) [49,131]

•performs form-finding analysis by solving
stationary problem of selected functionals
•assumes only change in cable length dur-
ing virtual displacement

•extends FDM •can’t specify lengths of cables, only struts
•structure must be symmetric

SMFF
TSM

Energy Minimization Methods [71,
96]

•based on Connelly’s Rigidity Theory
•when nodes are displaced, energy builds
up as a function of the square of the ex-
tension
•minimizes total potential strain energy

•finds irregular tensegrities
•found structures are stable

•struts can go through each other
•only considers symmetric configurations
•constraint may not be differentiable at
boundary of feasible region
•difficulties applying nonlinear program-
ming
•does not consider self-weight nor external
loading
•topology must be known prior

MCFF

Static [9, 59, 71] •searches geometric variations of a given
topology
•equilibrates imposed member forces

•knowledge of initial topology is not re-
quired

•not as effective with many nodes FDM

Kinematic [9, 59, 71] •lengths of cables/struts are kept
constant while strut/cable lengths
are increased/decreased until maxi-
mum/minimum is reached
•residual forces converted to velocities
•does not explicitly require cables be in
pre-tension

•best if configuration details of structure
are known
•predefine lengths of cables and iteratively
elongate struts until equilibrium is found
•finds cable-to-strut length ratio

•not as effective with many nodes L/QPM
DRM

Genetic/
Evolutionary Algorithms
(GA) [14,52,55,58,100,117,126,136]
Differential Evolution (DE)
modified Differential Evolution
(mDE) [74]

•global search technique based on survival
of the fittest
•finds global minimum
•based on mechanics of natural selection
and genetics
•set of fitness criteria or fitness func-
tion/penalty system
•connectivity matrix and force density
vector encoded into two different chromo-
somes

•generates (small) irregular tensegrities
without intuition or simple geometric
shapes

•best if configuration details of structure
are known
•has trouble finding appropriate solutions
and converging candidate solutions
•not viable for large irregular tensegrities

EFDM

Gradient-Descent Algorithms [55] •iterative optimization algorithm
•finds minimum of function by stepping
towards negative gradient

•simple
•suitable for large models

•often trapped at local optimal solutions
•stiffness matrix cannot be singular

NRM

Interactive methods [107,137] •allows users to interactively explore con-
tinuous space of valid structures

•more freedom selecting geometric con-
straints

•less control over model Rhinoceros

Table 2.3: General methods applied to tensegrity form-finding

134]. Self-stress can be calculated using a symmetry-based method [135]. The majority

of form-finding methods using the force density require symmetry properties so that the

number of variables and, in turn, equilibrium equations can be reduced [20,55].

Other form-finding methods include, geometric intersection method [25], where each set of

member lengths defines a geometric surface, and the Parametric Variational Principle (PVP)

method [89], developed for geometric nonlinear analysis of tensegrity structures based on the

co-rotational approach. Lee and Lee [58] remove cables until the minimum number of cables

are connected to give stability.

There are several ways the FDM has been combined with other analysis tools. Lee and

Lee [140] combined the FDM with a GA, where the discontinuity condition of struts was used

to select strut candidate groups from arbitrary members. Tran and Lee [86] considered the

geometric and material nonlinearities of tensegrity behavior solving with a modified NRM.
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Method Description Pros Cons
Mixed Integer Lin-
ear/Quadratic
Programming
(MIL/QP) or Lin-
ear/Quadratic Pro-
gramming Method
(L/QPM) (lin-
prog,quadprog) [78,
96,99,116,138]

•numerical algorithm
•used to solve structural optimiza-
tion problems
•extended to general class k tenseg-
rity structures
•maximizes number of struts over
self-equilibrium condition of axial
forces and discontinuity condition of
struts
•solves minimization problem of
number of cables to remove redun-
dant equilibriums

•always successfully
finds best new q
•used to solve structural
optimization problems
•does not require
symmetry

•cannot specify lengths
of cables, only struts
•equations have to be
manipulated to be in
certain format
•not guaranteed to pro-
duce stable tensegrity
structures

Finite Element
Method (FEM) [20,
33,59,75,139]

•modifies single cable lengths such
that total cable length is preserved
and potential energy is minimized
•computes equilibrium configura-
tions for given cable lengths by
computing gradient relating change
of cable lengths to change of bar
lengths
•uses nonlinear Euler-Bernoulli
beam element

•converges with very
few iterations
•successful for larger
structures

•requires inputs of
topology, undeformed
bar lengths, total cable
length, cable pre-stress,
and bar stiffness
•requires symmetry for
imposing constraints

Reduced Coordi-
nates [71]

•struts are constraints acting on ca-
ble structure
•set of independent, generalized co-
ordinates define position and orien-
tation of struts
•equilibrium equations are obtained
by relating forces in cables and bars
by virtual work

•useful for certain class
of tensegrity towers

•requires symbolic ma-
nipulation software
•not widely-used
method

The Nelder-
Mead simplex
method [46,124]

•solves global equilibrium problems
•unconstrained optimization
method for complex objective
functions
•solves nonlinear problem by
examining objective function

•gradient-free •based on grouping and
symmetry

Table 2.4: General methods applied to tensegrity form-finding (continued)
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Do, et al. [55] combine a new modified differential evolution (mDE) with the FDM, which is

proposed as an efficient numerical algorithm for form-finding tensegrity structures. Similar

to the FDM, the force densities of the tensegrity structures were determined by minimizing

the objective function related to the eigenvalues. Similarly, Koohestani [134] approaches

the form-finding problem of tensegrities as a minimization problem and formulates a special

objective function often used in GAs, known as a fitness function based on the smallest

eigenvalues of the force density matrix. Lu, et al. [57] use a coordinate-based FDM to form-

finding for irregular tensegrity structures via matrix iteration, where the given coordinates

are treated as a constraint condition. Ashwear and Eriksson [75] combined the FDM with

the NRM by changing the unstressed length, using the NRM to iteratively solve for the

new equilibrium, and then evaluating the natural frequencies. A very similar procedure is

performed in this work.

The results in Ref. [55] show agreement with others in literature, with significantly lower

computational time. Additionally, Ashwear and Eriksson [75] reduce the computational time

for the FEM by using several beam elements for each compression member and a single beam

for tensile members.

Shape/length-change

Tensegrities can function as shape-morphing structures [70,103]. Micheletti andWilliams [90]

use a method known as a Marching Procedure to transform a tensegrity tower into an arch.

They propose an algorithm to numerically solve a set of differential equations and use the

second-order stress test, a convenient condition that is stronger than the minimal-energy

condition. The main goal of the research presented in Ref. [78] is to obtain preliminary in-

sight into the possibilities of changing the shape of a tensegrity depending on the capability

of changing a member’s length. The work discusses several aspects of modeling tensegrity

systems, addressing structural limitations in shape control, how the shape change require-

ments are formulated for actuator selection and control design purposes, and computational
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Marching Proce-
dure [90]

•discovers range of feasible geome-
tries for topology of stable configu-
ration
•utilizes stability tests and rank de-
ficiency manifold
•lengths are control parameters
•moves lengths along continuous
path

•performs continuous length
changes
•can be implemented in Mat-
lab
•can reach configurations far
from initial one
•can be extended to large
structures with multiple states
of self-stress

•must start in stable position
•many steps
•cannot specify material prop-
erties
•buckling and other instabili-
ties must be considered sepa-
rately
•must avoid configurations
with a high compression to
tension ratio

Virtual Tensegrity
Method [125]

•energy/momentum method
•uses tensegrity models to synthe-
size and analyze the shape dynamics
of multi-agent systems
•each particle modeled as tensegrity
node, members are attractive or re-
pulsive forces for cables and struts,
respectively

•enables shape change •many steps/complex math
•cannot impose constraints on
length of members

Rank-Deficiency
Manifold [15]

•based on characterization of rank-
deficiency manifold
•subset of cable lengths form local
coordinate system on manifold
•compatibility equations and or-
thogonality conditions form sys-
tem of ordinary differential equa-
tions (ODEs) which give deforma-
tion rates of members as a function
of nodal velocities

•cable lengths are control pa-
rameters

•ODEs must be solved using
Runge-Kutta

Geometrical Varia-
tion Approach [15]

•iterative approach based on lin-
earized form of underdetermined
system of equilibrium equations
•finds close variation to initial
equilibrium geometry

•finds wide variety of irregular
tensegrities
•viable for design of tensegri-
ties with special geometries or
force distributions

•must start with structure al-
ready in equilibrium
•only takes into consideration
change in geometry
•does not check stability

Table 2.5: Shape/length changing methods for tensegrities

results.

Nabet and Leonard [10] present a methodology that provides distributed control laws

for tensegrity shape-change based on edge-length constraints; however, this is formulated

specifically for arbitrary planar shapes. Based on an active tensegrity concept, Pietila and

Cohen [8] develop a method for camber-morphing control of an airfoil, which enables maneu-

vering without conventional control surfaces [8]. Henrickson, et al. [103] look at morphing

a tensegrity-based airfoil. The scope of theoretical literature regarding tensegrity control is

especially dominated by Skelton’s work [109].

Dalilsafaei, et al. [14] study various active tensegrity booms to understand how the num-
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ber of actuators achieves bending stiffness enhancement, while Safaei, et al. [32] elaborate

on this work and extend the comparison to even more types of booms, including a prism

mast. In both of these works, the bending stiffness of various tensegrity booms are com-

pared with each other as well as against truss boom systems. The stiffness properties are

compared for different boom configurations for various geometry and loading cases [14]. It

is found that tensegrity booms are most flexible when subject to bending loads [14]. Safaei,

et al. [32] further expand Dalilsafaei, et al. [14] by quantifying how much more flexible a

slender tensegrity boom is compared to a state-of-the-art truss boom and explain why some

tensegrity topologies are more flexible than others.

Dalilsafaei, et al. [14] showed that, even when actuators are placed in different positions

for both structures, the Snelson mast was still easier to control than the prism mast, a dis-

covery which is attributed to the number of self-stress states. Additionally, the struts of the

prism mast face buckling, while those in the class 1 Snelson mast do not [14]. While control

difficulty is a disadvantage of tensegrity structures with more than one state of self-stress,

for the design of a 60 m tall tensegrity tower, a class 2 tensegrity topology was selected over

a class 1 as the latter would not provide sufficient stiffness [32]. Dalilsafaei, et al. [14] show

that without actuators the tensegrity prism mast is stiffer than the Snelson; however, after

actuation, the Snelson tensegrity mast shows higher stiffness.

Structural dynamics

Only a few studies are devoted to dynamic response and behavior of a tensegrity [75]. Lee

and Lee [37] investigate identification of pre-stress levels via a GA to maximize the natural

frequencies of tensegrity structures with an equilibrium constraint. The proposed method

does not take into account boundary conditions or external loading. Safaei, et al. [141]

present a method applicable for designing tensegrity structures when the natural frequencies

are a major criteria. Faroughi and Tur [142] present an algorithm that will obtain optimum

design parameter values of tensegrity structures which satisfy desired vibration properties.
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Pilade Foti, et al. [84] use a GA to identify the pre-sress levels by maximizing natural

frequency and imposing an equilibrium constraint. Caluwaerts and Carbajal [13] explore the

tuning of the natural frequencies of redundant tensegrity structures with zero net mechanical

work. Ashwear, et al. [50] aim to find the optimum internal force distribution, such that the

lowest sensitive natural frequency of the structure is as high as possible and well separated

from the next higher one [50].

A few vibrational analyses have been conducted on tensegrity systems [142, 143]. It is

clear from the literature that the natural frequencies of tensegrity structures are affected by

design parameters such as member cross-sectional area [75]. There is a host of theoretical

work related to the effect of tension on the natural frequencies of tensegrities. Lee and

Lee [37] show the relationship between the natural frequency and the level of pre-stress for a

two-module Snelson’s X. This plot shows that the natural frequency is constant with a slight

increase just before cable yield. Faroughi and Tur [142] show the first three mode shapes

of a three-module Snelson’s X tensegrity structure and show how the first three natural

frequencies vary with the level of pre-tension in the structure. Ashwear and Eriksson [75]

investigate the relationship between the lowest natural frequencies and the level of pre-stress

for the X-frame tensegrity and tensegrity beam and show coinciding frequencies. Safaei, et

al. [141] show how the first three natural frequencies increase with increasing pre-stress level

for symmetric patterns. Ashwear, et al. [50] investigate the sensitivity of the first natural

frequency to the level of pre-stress in tensegrity structures and find that they can be high or

low depending on the design. Thus, it is not always possible to use the first natural frequency

as an indicator of the pre-stress level [50]. Ashwear, et al. [50] also note that there are certain

frequencies which are particularly sensitive to pre-stress level. Ashwear, et al. [75] see the

natural frequencies as nonlinear functions of introduced pre-stress.

Attig, et al. [102] determine a damping ratio of 5% for tensegrity prisms and find that

the first mode is torsion and the second is bending. Contradictorily, Bossens, et al. [146]

display the mode shapes for the first four natural frequencies of their FEM, which show
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bending motion for the first family of modes and torsion for the next. Faroughi and Lee [73]

look at the natural frequencies and mode shapes of a double layer tensegrity grid under

external loading, with and without damping and slackening. Oppenheim and Williams [143]

investigate the nonlinear vibrations of a tensegrity structure that is excited particularly in

the direction of infinitesimal flex and the implications of the role of damping for the design

of tensegrity structures is discussed for space applications.

Safaei, et al. [32] find that the Snelson and prism masts have the higher first natural

frequencies, compared to the Marcus and Micheletti tensegrity masts. Considering only

linear dynamics around a given equilibrium state without no external loading, the natural

frequency results of Safaei, et al. [32] show that the tensegrity masts are at least one to

three orders of magnitude more flexible than a regular truss. The study in Ref. [32] aims to

provide a broader picture of the linear dynamic characteristics of tensegrity booms of different

topology complexity, number of states of self-stress, and number of infinitesimal mechanisms.

Safaei, et al. [32] use the fundamental natural frequency to compare performance of various

tensegrity boom structures; the boom with the highest first fundamental frequency has the

best deployed structural performance.

Ashwear, et al. [75] look at the first several natural frequencies of tensegrity systems with

struts near buckling, focusing particularly on structures where the compressive member

behavior dominates the response. Three specific planar tensegrities are studied, all of which

are two-dimensional structures. A frequency approaching zero most likely indicates that at

least one strut is approaching buckling. They improve current models for resonance frequency

simulation of tensegrities by introducing bending behavior and by one-way couping axial

force with stiffness, focusing on a tool for anticipating the collapse of tensegrity structures.

Ashwear, et al. show the first four mode shapes at buckling, as well as the evolution of

the six lowest natural frequencies with increasing cable pre-stress (from 0 kN to about 52

kN) as the struts approach buckling. These natural frequencies coalesce at around 45 kN,

which is attributed to symmetric behavior. If the lengths are further decreased, the six
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lowest natural frequencies no longer coincide, but approach zero. Additionally, many of the

natural frequencies in Ref. [75] are seen to be overlapping, referred to as modal “families”

in this work; particularly, modes one through four and modes five and six overlap. The

two-dimensional tensegrity “X” beam was tuned from 1× 2.8 m2 to 1× 3 m2 [75].

There has been a small amount of effort contributing to vibration control [109, 144].

Averseng, et al. [92] present a mixed dynamic control law for the displacements and vibrations

of a tensegrity plane grid.

2.2 Experimental work

Several static tensegrity test articles have been constructed; however, nearly all of them are

class 1 (easier joint construction), and the ones that are higher than class 1 are constructed

such that the member lengths cannot be easily adjusted. Michielsen, et al. [145] consider the

undamped modes of a base excited tensegrity prism test article under varying top masses.

They found that top mass plays a role in the tensegrity dynamics. Refs. [93, 94] model and

fabricate a tensegrity grid. There are various materials used for constructing tensegrities

such as carbon fiber struts and steel cables [38]. Lu, et al. [57] construct a tensegrity joint

and use a turnbuckle. However, this is used simply for prototype construction and not for

adjusting tension.

Few experimental studies for tensegrity structures have been observed to be of practical

significance and mainly small, simple and symmetrical tensegrity models are tested [122].

Ali and Smith [122] note that neither modal identification nor experimental testing under

dynamic loads for tensegrities of multiple self-stress levels could be found in literature.

Ali and Smith [122] investigate the vibration control of a full-scale, active, tensegrity grid

structure. Natural vibration modes of the tensegrity structure are identified experimentally

and compared with those determined through a finite element model. Dynamic behavior

is experimentally investigated through testing under dynamic excitation [122]. Laboratory

testing is carried out for multiple self-stress levels and for different excitation frequencies.
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The dynamic behavior of the structure is also numerically simulated. Vibration control is

then carried out by modifying the pre-stress level of the structure through contractions and

elongations of active struts in order to shift the natural frequencies away from excitation.

The tensegrity pre-stress level was controlled through one millimeter increments of elonga-

tions and contractions of active struts. Ref. [109] also conducts a similar experiment to study

the vibration control of tensegrities. Chang, et al. [109] present an experimental study of

strategies for damping control.

Ali and Smith [122] conduct a dynamic analysis of a five-module tensegrity structure

and shows that the linearized dynamic model offers a good approximation for its nonlinear

behavior. The testing involved exciting the tesegrity structure and measuring the vibra-

tion response. A single point dynamic loading was applied using an electro-mechanic shaker

and vertical displacement measurements were taken at the top surface nodes of the struc-

ture. Prakash uses accelerometers to collect time-domain analysis data; however, only the

theoretical analysis is found to be reliable [94]. Bossens, et al. [146] use accelerometers to

measure the response of a tensegrity structure excited by a mechanical shaker. Angellier, et

al. [93] use strain gages to experimentally check the validity of using indirect measurement

techniques to measure the loading in each member. They found that beam modeling poorly

represented the real tensegrity behavior, especially for weak loads [93].

There have been several experimental investigations looking at how the pre-stress level

of tensegrity masts affects the vibrational response. Rhode-Barbarigos [147] experimentally

tests an active deployable tensegrity “hollow-rope” foot bridge and concludes that the funda-

mental frequency is not directly influenced by the pre-stress level but rather by the absence

of infinitesimal mechanisms in the tensegrity system. Bossens, et al. [146] show how the first

four natural frequencies vary with the level of pre-tension in the structure and note that the

first natural frequency is a “soft” mode, meaning it starts at zero and increases. Ali and

Smith [148] look at the evolution of the first natural frequency with respect to pre-stress

level of a full scale active tensegrity structure and use vibration control to shift natural fre-
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quencies away from excitation. Vibration tests were performed by Ali and Smith [122] for

different pre-stress levels to identify the relationships between the tensegrity pre-stress level

and its dynamic behavior. They found that decreasing the active strut lengths has the effect

of reducing the natural frequency of the first resonance mode. Angellier, et al. [93] look

at the evolution of the natural frequency according to the pre-stress level for four different

boundary conditions and find that the first frequency mode is proportional to the square

root of the tension of the element linked to the pre-stress level and the remaining modes are

quasi linear and weak.

While these studies effectively establish a relationship, none of them explore how varying

the length of the cables of a tensegrity influences the natural frequencies of the structure.

None of these works look at length changes, only tension changes. Changing lengths means

that the static equilibrium shape changes.

Tensegrity structures contain more tensile members than compressive, and thus the struc-

ture predominantly experiences a tension force [9]. Likewise, the tensile members will pro-

duce a larger contribution to the overall structure’s bending stiffness [14]. This suggests

that the vibration response of a tensegrity structure is primarily dictated by the amount

of tension in the tensile members. Safaei, et al. [32] show that the first natural frequency

can be raised by increasing the cross-sectional areas of cable members. Similarly, this work

investigates how much the separation of the first two natural frequencies changes based on

changing cable tension.

The response of a tensegrity to loading and excitation is strongly dependent on pre-

stress. Most works state that the natural frequencies of a tensegrity structure increase with

increasing pre-stress; however, without quantifying to what extent this is true. Ashwear and

Eriksson [75] show that the lowest natural frequencies of a tensegrity system can not only

increase but decrease as well with increasing pre-stress. A tensegrity may, at first, have cable

dominated behavior in which pre-stressing will raise the lowest natural frequencies; however,

up to a limit, any further increase in pre-stress will lead to a strut dominated response, where
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the frequencies now decrease. Thus, it is worth investigating where this behavior changes

during the tensioning process. This decrease could also be caused by certain geometries and

materials in which pre-stressing may decrease the stiffness. Ref. [75] notes that, in addition

to the lowest resonance frequencies, higher frequencies should be considered as they provide

further information about the system. Thus, a spectrum of natural frequencies should be

used as indicators for tuning the tenesgrity structure towards a target design [75].
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Chapter 3

Linear Algebra Concepts

This chapter provides a brief overview of the mathematical concepts used for the linear

algebra of pin-jointed structures.

3.1 Null space and rank deficiency

The null space is useful for solving a system of homogeneous equations. The vectors within

the null space of a matrix, say example matrix E, are all of the vectors that, when multiplied

with E, yield 0. So, example vector h is in the null space of E if

Eh = 0 . (3.1)

When E is rank deficient, there is at least one free variable because at least one of the

rows is linearly dependent [149]. A null space is present for a matrix when the matrix is

rank deficient. The rank of example matrix E is the number of rows in E that are linearly

independent [149]. A distinction should be made here between the null space, the one or

more column vectors, and the dimension of the null space N , i.e., the number of column

vectors in the null space.

Rank deficiency indicates that there exists a zero eigen- or singular value. This means

that, for tensegrity structures, there is more than one equilibrium point, i.e., a line of equilib-

rium points pointing in the direction of the eigenvector associated with the zero eigenvalue.

Every homogeneous system has at least one solution. Notice that if we assume E in
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Eq. (3.1) is nonsingular (i.e., has an inverse, det (E) 6= 0) and multiply both sides by E−1,

then h = 0 is the unique solution. However, this solution does not provide any information

about the system and is referred to as the trivial solution. To achieve a non-trivial solution,

it should be enforced that h 6= 0. For this to be true mathematically, E must be singular,

i.e.,

det (E) = 0 . (3.2)

If E is singular, the linear system of equations has infinitely many solutions. This is

because inverting any matrix involves dividing by the matrix determinant; however, dividing

by zero is undefined.

3.2 Matrix decompositions

Matrix decomposition can solve a homogeneous system. It is a way to discover the vector

h (and perhaps other vectors) that are in the null space of E. Many problems present

themselves in terms of an eigenvalue problem:

Eh = λh , (3.3)

where λ is an eigenvalue of E, and h ∈ Rk is an eigenvector of E ∈ Rk×k. This equation

means that under the action of a linear operator E, the vector h is converted to a collinear

vector λh. In other words, the goal is to find h such that λh and Eh point in the same

direction. If λ = 0, then Eh = 0, meaning the eigenvector h corresponding to the eigenvalue

0 is a vector in the null space of E, and h is arbitrary. Note that when λ is zero, Eq. (3.3)

becomes Eq. (3.1). Hence, the solution vectors h to the homogeneous system correspond to

a zero eigenvalue.

If h is nonzero, this problem will only have a solution if
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det (E− λI) = 0 . (3.4)

In general, the eigenvectors are not unique, and any linear combination of the eigenvectors

will also satisfy the original matrix equation. They are not unique because the matrices

considered here are singular, i.e., there is a “free” variable. The number of equations must

be equal to the number of unknowns if the solution is to be unique [2]. Expanding Eq. (3.4)

gives the characteristic equation:

aλN + a1λ
N−1 + · · ·+ ajλ

N−j + · · ·+ aN−1λ+ aN = 0 , (3.5)

which can be used to solve for the eigenvalues λ. Once the eigenvalues have been found, the

eigenvectors h can be solved from

(E− λI)h = 0 . (3.6)

E can be decomposed using the EVD, such as

E = hTdiag(λ)h , (3.7)

Similarly, the Singular Value Decomposition (SVD) of E is

E = UTdiag(µ)W , (3.8)

Numerical solutions to a homogeneous system can be found with the SVD. Koohestani and

Guest [56] use the SVD to determine the solution to minimizing the 2-norm of the residual

forces. Based on this decomposition, the best approximation is found using the column

vectors w of W associated with the smallest singular values µ [56]. Generally, the EVD

is preferred because the matrices it produces indicate a lot of properties about the system.

However, it cannot be applied to rectangular matrices. Instead, the SVD is used in a similar
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manner, to obtain an orthonormal basis [56].

The SVD is connected to the EVD in that each column vector in U is also an eigenvector

of EET and each column vector of V is an eigenvector of ETE (essentially two versions of

A2). It can be shown with increasing power of E that the eigenvalues raise to the same

powers. For further reading on the details and derivations of these decompositions, the

reader is referred to Ref. [149]. More information regarding matrix decomposition theory

and the applications of linear algebra for tensegrities can be found in Refs. [62,148].

3.3 Linear dependence and degeneracy

The dimension of the null space can also be seen as the number of linearly dependent rows

in a matrix. Thus, matrices are made up of two kinds of row/column vectors: linearly

dependent and linearly independent. If two vectors are dependent, then one is a scalar

multiple of the other. This means only one vector could be used to represent both vectors,

therefore, one may be omitted. Alternatively, principal components may be used to replace

a set of collinear variables with one or more orthogonal components.

Mathematically, degeneracy can be best illustrated by inspecting Eq. (3.1). If E is a

system such that all the entries in each row sum to zero, h = 1 (or any vector with the same

value for every entry) will solve Eq. (3.1). To achieve a valid form-found structure, it must

be non-degenerate. Geometrically, this means the structure is truly three-dimensional and

will not collapse into a lower dimension. For this to be true, there are certain necessary rank

deficiency conditions that must be satisfied [54].

3.4 Change of a matrix basis

A basis is the fewest number of vectors that can be multiplied by a coefficient to reproduce

another vector. The standard basis for a vector v, say
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v =


3

3

1

 ,

would be 
1

0

0

 ,


0

1

0

 ,


0

0

1

 ,

because 
3

3

1

 = c1


1

0

0

+ c2


0

1

0

+ c3


0

0

1

 ,

where c1 = 3, c2 = 3, and c3 = 1. In matrix notation:

v︷ ︸︸ ︷
v1

v2

v3

 =

B1︷ ︸︸ ︷
1 0 0

0 1 0

0 0 1



c︷ ︸︸ ︷
c1

c2

c3

 .

Similarly, v can also be written in a new basis
1

1

0

 ,


0

0

1

 ,

as

3


1

1

0

+


0

0

1

 .

So, in vector notation:
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
3

3

1

 = c1


1

1

0

+ c2


0

0

1

 ,

where c1 = 3 and c2 = 1. In matrix notation:

v︷ ︸︸ ︷
v1

v2

v3

 =

B2︷ ︸︸ ︷
1 0

1 0

0 1



c︷ ︸︸ ︷c1c2
 .

So, we want to find c that will satisfy v = Bc, i.e., c = B−1v. If B1 is the standard basis,

then changing from B1 to B2 is geometrically equivalent to starting with a definition of the

x, y, and z axis, and then defining a new set of axes. For example, a “fast” basis change for

a Fourier transform is an FFT. The EVD and SVD are essentially ways to write a system in

a new basis.

It is possible to choose any basis, but a basis cannot contain the 0 vector. For B to be a

good basis, it must be easily invertible. It is known that a matrix is easily invertible if the

basis vectors are orthogonal. Furthermore, a matrix with orthonormal columns is attractive

because its inverse is the same as the transpose, an operation which is advantageous for

computing speed. If v1, v2, and v3 are orthogonal vectors this means they are mutually

perpendicular, i.e. v1 · v2 = 0, v2 · v3 = 0, and v1 · v3 = 0. In other words, these vectors

form an orthogonal basis with respect to the standard dot product on R3. The eigenvectors

from the EVD form an orthogonal basis of R3 and the singular vectors from the SVD form

an orthogonal basis of R3, as well.
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Chapter 4

Form-Finding Algorithm

The choice of form-finding method depends on the availability of initial information and the

complexity of the structure [126]. Techniques with minimum parameters are highly sought

after [126].

An objective function can be minimized directly by obtaining an optimal null space vec-

tor or the nearest valid solution via projection [13]. Therefore, a gradient descent algorithm

is not required here because the null space vectors are made available for use.

The presented form-finding algorithm is based on the Force Density Method (FDM) [71].

However, for the case of tensegrities, compressive members are added. In general, the equilib-

rium equations of cable-strut structures are highly coupled nonlinear equations. For example,

displacing one node will change the tension in each cable which causes all the other nodes

to displace. Thus, the force density (also known as the tension coefficient) is a quantity that

is commonly used to linearize the equilibrium equations [53, 54]. It represents a member’s

internal axial force per unit length. For tensegrities, the FDM assumes the struts are rigid

bodies and the cables are massless.

According to Harichandran and Sreevalli [126], the FDM is the most appropriate method

out of all form-finding methods to discover new formations of tensegrity structures with the

fewest input parameters. This method is found to be suitable for regular tensegrity struc-

tures and is generally applied to cable domes [126]. However, the possibility of this method

for structures involving a large number of members and/or complex constraints needs further

investigation [126].
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4.1 Equilibrium equations

To differentiate between nodes and members in text, an ‘N’ will precede nodal numbers and

an ‘B’ will precede member numbers. Fig. 4.1 shows node N1 connected by member B1

to node N2 and to N3 by member B2. This illustration is used to derive the equilibrium

equations which relate the internal force of each element to the balance of the forces at the

nodes.

Derivation

1

2
3

(x1,y1,z1)

(x2,y2,z2)
(x3,y3,z3)

f1,z f1,y

f1,x

-t1,3t1,2

l1,2 l1,3 x

y

z

Figure 4.1: FBD of nodes 1, 2, and 3

The Free Body Diagram (FBD) in Fig. 4.1, indicating the direction of the internal force

vectors in three-dimensional space, is used for the following derivation. It shows the x, y,

and z coordinates for three nodes, internal force t, and length ` for two members, with

external forces f. The coordinate system is shown to indicate the sign convention of the

external forcing. Assuming no nodes are constrained, the corresponding set of equations of

static equilibrium is given by summing the forces contributed by the members at each node.

The equations for N1 are, for example
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(x1 - x2)
t1,2
l1,2

+ (x1 - x3)
t1,3
l1,3

+ · · ·+ (x1 - xp)
t1,p
l1,p

= f1,x ,

(y1 - y2)
t1,2
l1,2

+ (y1 - y3)
t1,3
l1,3

+ · · ·+ (y1 - yp)
t1,p
l1,p

= f1,y ,

(z1 - z2)
t1,2
l1,2

+ (z1 - z3)
t1,3
l1,3

+ · · ·+ (z1 - zp)
t1,p
l1,p

= f1,z ,

(4.1)

where f is an external force vector with components fx, fy, and fz. The subscript p is the

number of members connected to node N1. Any b member, defined by the connection of

two nodes, has an internal force tb and a length lb. In the FDM, Eq. (4.1) is linearized

by defining a new variable q for the force density, which is a ratio of the member’s tension

to its length, i.e., qb = tb
lb
. Hence, now length is only dependent on the nodal coordinates,

and q correspondingly scales according to this length. In other words, each member of the

structure carries a force that is measured by its magnitude q. Substituting and distributing

q through the systems in Eq. (4.1), they can be rearranged as

(
q1,2 + · · ·+ q1,(p - 1) + q1,p

)
x1 - q1,2 x2 - . . . - q1,(p - 1) x(p - 1) - q1,p xp = f1,x ,(

q1,2 + · · ·+ q1,(p - 1) + q1,p
)
y1 - q1,2 y2 - . . . - q1,(p - 1) y(p - 1) - q1,p yp = f1,y ,(

q1,2 + · · ·+ q1,(p - 1) + q1,p
)
z1 - q1,2 z2 - . . . - q1,(p - 1) z(p - 1) - q1,p zp = f1,z .

(4.2)

Converting to vector/matrix form

The member force density coefficients vector q ∈ Rb is defined as

q =
t
`
, (4.3)

where t ∈ Rb is the member internal force vector, whose entries are +t for tensile members

and -t for compression members, and ` ∈ Rb is the member length vector.

A node is defined at each pin-joint of the tensegrity structure, i.e., the points at the ends

of the struts. The nodal coordinate vectors x ∈ Rn, y ∈ Rn, and z ∈ Rn are defined as
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x =

{
x1 . . . xn

}T

, (4.4a)

y =

{
y1 . . . yn

}T

, (4.4b)

z =

{
z1 . . . zn

}T

, (4.4c)

where (xn, yn, zn) are the nodal coordinates of the nth node. These are used to form the nodal

coordinate matrix [x y z] ∈ Rn×3. Note here that all of the following formulations will be in

terms of three-dimensional space but the same process can be applied to two dimensions, in

which case, d = 2, where d is the number of dimensions, and z = 0.

Notice in Fig. 6.2 that each node is assigned a number 1 through 6 and each member is

assigned a number 1 through 12. This numbering scheme is convenient because many of the

following presented vectors and matrices have b and/or n entries for each member and/or

node, respectively corresponding to the labels in Fig. 6.2. For instance, the connectivity

matrix C ∈ Rb×n has a column for each of the n nodes and a row for each of the b

members, where b is the number of cable members plus the number of strut members. A

given row vector of C will contain entries which dictate which nodes the member is connected

to. Suppose member b connects nodes j and k (j < k), then the jth and kth elements of the

bth row of C are set to 1 and -1, respectively, as follows [55,150]:

Cb,γ =


1 for γ = j ,

-1 for γ = k ,

0 otherwise ,

(4.5)

where b is the index for every row in C according to the member. Similarly, γ is the index

for each column in C. Note here that C is unitless. For examples of other ways to assemble
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C, refer to [62,92]. Refer to Appendix A for the connectivity matrix used for the tensegrity

prism presented in Fig. 6.2.

In the force density method, C has a special importance. Notice from the definition of

C in Eq. (4.5), and x in Eq. (4.4a), that

Cx =


x2 - x1

...

xn - x1

 , (4.6)

where B1 is connected to N1 and N2, and Bb is connected to Nn and N1. Eq. (4.6) is

used to compact all of the coordinate differences from Eq. (4.1) into one vector. This is a

system of coordinate differences referred to as the “projected lengths” of each member in

the x-direction. Each member has three projected lengths, one in each of the x, y, and z

directions. This is analogous to the î, ĵ, and k̂ components of a given member’s length

vector.

Thus, the system of equations is converted to matrix form by compacting the “equations”

part of the system into a matrix times the unknown variables listed in a vector. The system

of equilibrium equations can be expressed in two forms: Eq. (4.1) where q is factored out

as the unknown, or Eq. (4.2) where the unknown variables are x, y, and z [119]. First, we

examine the former, in which case Eq. (4.1) is equivalent to
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A︷ ︸︸ ︷

−1 . . . 0 . . . −1 . . . 0

... . . . ...
...

...

1 . . . −1 . . . 1 . . . 0

...
... . . . ...

...

0 . . . 0 . . . 0 . . . −1

...
...

... . . . ...

0 . . . 1 . . . 0 . . . 1




x2 - x1 . . . 0

... . . . ...

0 . . . xn - x1



q︷ ︸︸ ︷

q1,2

q1,3
...

q1,n


=

f︷ ︸︸ ︷
f1,x

f1,y

f1,z

 , (4.7)

also written as

CTdiag (Cx)q = 0 ,

CTdiag (Cy)q = 0 ,

CTdiag (Cz)q = 0 .

(4.8)

This includes the x, y, and z directions and sets f = 0, as tensegrity structures are self-

equilibrated [74]. For this set of equations, the dependent variable is q. The other form from

Eq. (4.2) can be written as

D︷ ︸︸ ︷

p∑
γ

qγ,γ+1 -q1,2 . . . -q1,n

-q1,2
p∑
γ

qγ,γ+1
... 0

... . . .
. . . ...

-q1,n 0 . . .
p∑
γ

qγ,γ+1



[
x y z

]
︷ ︸︸ ︷

x1 y1 z1

x2 y2 z2
...

...
...

xn yn zn


=

[
fx fy fz

]
︷ ︸︸ ︷

f1,x f1,y f1,z

f2,x f2,y f2,z
...

...
...

fp,x fp,y fp,z


, (4.9)

or equivalently
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CTdiag (q)Cx = 0 ,

CTdiag (q)Cy = 0 ,

CTdiag (q)Cz = 0 ,

(4.10)

in the x, y, and z directions and where f = 0. Now the dependent variables are the nodal

coordinates. The matrixCTdiag (q)C is known as a Gaussian transformation [128]. Eq. (4.9)

relates back to Eq. (4.2) in that D has the form:

D(j,k) =



−qγ if nodes j and k are connected ,
p∑
γ

qγ for j = k ,

0 otherwise .

(4.11)

4.2 Iterative equations

The two sets of equilibria equations for a general class k tensegrity structure are as fol-

lows [54]:

D[x y z] = [0 0 0] , (4.12a)

Aq = 0 , (4.12b)

where the force density matrix D, also referred to as the stress matrix [74], is a function of

the member force density coefficient vector q while the equilibrium matrix A is a function of

the nodal coordinate matrix [x y z] and 0 is the zero vector. No external forcing is assumed

here. Note that Eqs. (4.12a) and (4.12b) have infinitely many solutions, implying that the

system has an infinite number of equilibrium positions.

There are several strategies for solving Eqs. (4.12a) and (4.12b). For an overview of

these, the reader is referred to Refs. [11, 71, 151]. Comparing Eq. (3.1) with Eqs. (4.12a)

and (4.12b), it can be seen that [x y z] is in the null space of D and q is in the null space
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of A. Note that because there are three vectors in [x y z], we must find three vectors that

are in the null space of D. During the iterative process the algorithm changes the nodal

coordinates and the force densities and passes them back and forth between Eqs. (4.12a)

and (4.12b) until x, y, and z are in the nullspace of D and q is in the nullspace of A, i.e., a

set of nodal coordinates and force densities that satisfy the equilibrium equations.

At each iteration, the best approximation for [x y z] in Eq. (4.12a) is selected from the

decomposition of D and the best approximation for q in Eq. (4.12b) is selected from the

decomposition of A. Beginning with either a guess for q or known coordinates [x y z] (see

Fig. 4.2 for illustration), the form-finding procedure works by iterating between Eqs. (4.12a)

and (4.12b) until D [x y z] and Aq are zero within a given tolerance tol, which in this case

is 10−8. For engineering purposes, the exact solution is not needed, but rather a solution

with enough precision for practical implementation. Thus, zero is relaxed to tol and t is the

total number of iterations completed at convergence.

Form-finding procedure

A left superscript of i is given to variables that change during the algorithm, denoting the

variable’s value at the ith iteration. The following procedure was implemented in MATLAB

version 2016a. Example form-found results can be found in Appendix A. The following

form-finding algorithm uses a numerical iterative approach, where the only necessary input

values are the structure’s connectivity (stored in matrix C), b, n, d, and sgn (t), i.e., the

direction of the internal axial force of each member (tension or compression). For the first

iteration (i = 0), there are two possible choices as an input to the algorithm, depending on

what is initially known about the structure. If an initial set of nodal coordinates that are

close to a postulated equilibrium position, but not necessarily in equilibrium, are known,

then the procedure begins with 0[x y z] (see Fig. 4.2). Otherwise, the procedure starts with

an initial guess for the force density, denoted 0q, formed via Eq. (4.13).

The first iteration of q is
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START

0[x y z]0q

calc iD

decompose iD

calc iA

decompose iA

check iND check iNA

approx [x y z]
iµb ≤ tol

and iND ≥ tND ?

approx iq

END

Eq. (4.13) Eq. (4.4)

Eq. (4.11)
or (4.14) Eq. (4.15)

Eq. (4.16) Eq. (4.17)

Eq. (4.19a) Eq. (4.19b)

no (i = i+ 1)

Eq. (4.21b)

Eq. (4.23)

yes

Figure 4.2: Form-finding algorithm flow diagram
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0q =


1 for tension members ,

-1 for compression members ,
(4.13)

where 0q is an entry in the vector 0q. The sign convention here is important and the sign

of each entry in iq will stay the same, i.e., throughout the algorithm q does not change

direction, only magnitude. This is due to the fact that cables are assumed not to support

compression. This is not the only way to generate 0q, as Koohestani and Guest [56] generates

this vector randomly. Refer to Refs. [56,152] for other variations of 0q.

As long as the initial coordinates are unknown, the calculation of D will be the first step

at the beginning of each iteration. The ith iteration of D ∈ Rb×b is

iD = CT diag(iq) C . (4.14)

Note that D can also be calculated via Eq. (4.11).

If an initial set of nodal coordinates are known, the first operation performed in the

algorithm will compute A using 0[x y z]. The ith iteration of A ∈ R3n×b is built by

stacking three n× b matrices on top of each other, as in

iA =


CT diag(C ix)

CT diag(C iy)

CT diag(C iz)

 . (4.15)

The equilibrium matrix of a structure contains a wealth of the static/kinematic prop-

erties [2, 11, 153]. The set of states of self-stress is contained within the null space of the

equilibrium matrix, which is needed in the design of optimal states of pre-stress to tension all

cables in a tensegrity [153]. The bases of vector spaces of force densities and internal mech-

anisms can be calculated from the null space of the equilibrium matrix A [51, 91]. Because

D is always square, symmetric, and singular, [x y z] in Eq. (4.12a) can be found through
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the EVD [42]. However, q in Eq. (4.12b) must be found through the SVD [42].

The EVD of iD is

iD = iΦT diag(iλ) iΦ , (4.16)

where iλ ∈ Rb is a vector of the eigenvalues sorted in ascending order and iΦ ∈ Rb×b is

the eigenvector matrix which has an eigenvector iφ ∈ Rb as each column.

The SVD of iA is [154]

iA = iUT diag(iµ) iW , (4.17)

where iµ ∈ Rb is a vector of the singular values sorted in descending order, iU ∈ Rn×n

is a matrix with each left singular vector iu ∈ Rn as the columns, and iW ∈ Rb×b is

a matrix with each right singular vector iw ∈ Rb as the columns. It is well-known that

the column vectors u contain the inextensional mechanisms, which are either infinitesimal

mechanisms or rigid body motions [51]. Note that the matrix diag(iµ) that comes out of the

SVD will have b - n extra zero rows due to the fact that this matrix is rectangular. Although

it is generally desired that the sign of q be the same in all iterations, the overall sign is not

important at this stage, and is arbitrary in the SVD [56]. Also note, in the following sections,

it is assumed that the eigenvalue-vector and singular value-vector pairs have already been

rearranged such that the eigenvalues are sorted in ascending order and singular values sorted

in descending order, respectively.

From here, to find the best approximated solution to Eq. (4.12a), iD can be decomposed

via Eq. (4.16). Three of the eigenvectors are selected as the nodal coordinates [x y z] used

to calculate iA. Similarly, iA is decomposed according to Eq. (4.17) and the best singular

vector that approximates Eq. (4.12b) is selected as q. From here, if the last singular value iµb

(Eq. (4.17)) is greater than tol, then i = i+ 1, and D is recalculated with i+1q via Eq. (4.11)
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or (4.14), and the process described above is repeated for i iterations. Fig. 4.2 shows an

illustrative flow chart of the full iterative process [13,42,51,54].

Condition(s) for convergence

The algorithmic iterations are concerned with the zero eigenvalues ofD and the zero singular

values of A, for achieving convergence. Throughout the iteration process, there are tactics

to “force” a matrix to become rank deficient to create a null space. To find a q which satisfies

Eq. (4.12b), the dimension of the null space of A must be at least one. Similarly, to find

nodal coordinates [x y z] which solve Eq. (4.12a), the null space of D must be at least three

for three vectors (one for x, one for y, and one for z) to be the solution.

There are two rank deficiencies (or null spaces) of importance for this algorithm: the

current iteration dimension of the null space iN and the target dimension of the null space

tN . After every iteration, the algorithm checks the current null spaces of iD and iA. If at

the end of an iteration either iND 6= tND or iNA 6= tNA, the algorithm continues to the next

iteration (i = i+ 1). The algorithm strategically chooses i [x y z] from the eigenvectors and

iq from the right singular vectors so that iN approaches tN .

The dimensions of the null spaces of D and A for the ith iteration are computed as

follows:

iND = b - rank (iD) , (4.18a)

iNA = 3n - rank (iA) , (4.18b)

where rank (iD) is the number rows in iD that are linearly independent [149] and rank (iA)

is the number of linearly independent rows in iA. Eq. (4.18a) and Eq. (4.18b) come from

the fact that, by definition, the rank of a matrix plus the dimension of the null space of the

same matrix is equal to the number of rows in that matrix.

Notice 1 is in the null space of D, i.e., iND must be at least one. Note that this is where
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the ‘+1’ came from in Eq. (4.19a). The 1 vector is an eigenvector of D. However, x, y, nor

z can be the 1 vector. Imagine z = 1, so every node has the same z-coordinate. In this

case, all nodes will lie along the x-y plane, which means the structure has collapsed down to

two-dimensions. It will be seen that this 1 vector is intentionally discarded so that it is not

a candidate for x, y, or z.

The target null spaces of D and A are

tND = d+ 1 (4.19a)

and

tNA ≥ 1 , (4.19b)

respectively. In other words, when iND from Eq. (4.18a) is equal to d + 1 and iNA from

Eq. (4.18b) is at least equal to one, this means Eqs. (4.12a) and (4.12b) are satisfied, so the

algorithm has converged. Another way of looking at the same set of criteria would be to

iterate until D has d + 1 zero eigenvalues and A has at least one zero singular value. Note

here that when µb ≤ tol, Eq. (4.19b) is automatically satisfied. Also, note that regardless

of the iNA value calculated in Eq. (4.18b), D’s null space ND must be large enough to

terminate the algorithm.

Approximating i [x y z]

There are many methods for choosing i [x y z] [42,54,152]. The method used by Estrada, et

al. [42] is the one that is used in this work.

In Eq. (4.16), the eigenvector corresponding to the zero eigenvalue is a null space vector

and in Eq. (4.17), the right singular vector corresponding to the zero singular value is also a

null space vector. This shows that the three φ that correspond to the three zero λ are the

nodal coordinates i [x y z] that solve Eq. (4.12a) and the w that corresponds to the zero µ

is the q that solves Eq. (4.12b). For this reason, the algorithm strategically chooses i [x y
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z] and iq at each iteration so that the corresponding eigen- and singular values iteratively

approach tol. When it is necessary to approximate the solution for the next iteration, certain

eigenvectors from iΦ (Eq. (4.16)) and certain singular vectors from iW from Eq. (4.17) are

used for finding the next i [x y z] and iq, respectively. The selection of φ and w depends on

the dimension of iN .

iND < tND
iND ≥ tND

Φ =

[
iφ1 . . . iφd+1

]

check

C iφj = 0

for all iφj

check

det
([
C iΦcombo

]T [
C iΦcombo

])
= 0

for all combinations of d vectors

throw out one

vector iφj

i [x y z] =
[
iφ1 . . . iφd

]

yes

yes

no

Figure 4.3: Approximating i [x y z]

Ultimately, we want ix, iy, and iz to be linearly independent without any equaling 1 (or

having entries all with the same value). So, define Φ as

iΦ =

[
iφ1 . . . iφd+1

]
. (4.20)

When iND (Eq. (4.18a)) ≥ tND (Eq. (4.19a)), the iφ (Eq. (4.16)) corresponding to the
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smallest d λ are in the null space of iD and these d columns
[
iφ1 . . . iφd

]
are i [x y z]

because they satisfy Eq. (4.12a). Note that this means, even when the null space is larger

than required, only d vectors are pulled from Φ.

When iND < tND, d + 1 columns of iΦ (Eq. (4.20)) are used to approximate i [x y z].

This is accomplished by forming iΦcombo, a matrix of any set of d vectors from iΦ. The

process assesses the column vectors of iΦ and throws out one of them for either being the 1

vector or for linear dependency:

C iφj


= 0 if iφj = 1 ,

6= 0 if iφj 6= 1 ,
(4.21a)

and

det
([
C iΦcombo

]T [
C iΦcombo

])
= 0 if iΦcombo are linearly dependent ,

6= 0 if iΦcombo are linearly independent .
(4.21b)

Eq. (4.21a) is always checked first, where C is multiplied by each eigenvector 1 through

d+ 1 to check if any result in 0. If an eigenvector is not first eliminated by Eq. (4.21a), then

the linear dependency of each set of d eigenvectors can be checked by Eq. (4.21b). In this

way, every combination of d vectors from iΦ is checked until a linearly independent set is

found. Then, the set of d eigenvectors which results in a nonzero determinant, computed by

Eq. (4.21b), will be i [x y z].

Approximating iq

There are several methods for approximating iq [54, 74].
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iNA < tNA
iNA = tNA

iq = iwb−j
iW =

[
iwb−j . . . iwb

]

iq = iW
([

W
T
W
]−1

W
T 0q

)

sgn (iq) = sgn (0q)?

END

no (j = j + 1) no (j = j + 1)

yes

Figure 4.4: Approximating iq for iNA = tNA and iNA < tNA

Ultimately it is desired that the entries of iq be negative for struts and positive for cables,

i.e., when

sgn(iq) = sgn
(
0q
)
, (4.22)

iq has been found. When iNA = tNA = 1, the iw corresponding to the zero µ is in the null

space of iA. Note here that this column may have inverted signs and this should be checked.

This column definitely satisfies Eq. (4.12b); however, it must also satisfy Eq. (4.22) to be

iq. If Eq. (4.22) is not satisfied, the second to last column of iW is checked and so on, until

each sign matches its member type.

When iNA <
tNA, one or more iw vectors are used for approximating iq. The procedure

employs the columns ofW to find a least squares approximation to minimize the 2-norm [42]:
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∣∣∣∣iW iq - 0q
∣∣∣∣2 . (4.23)

The procedure starts by first defining W, a modified version of W from Eq. (4.17):

iW =

[
iwb−j . . . iwb

]
, (4.24)

where the dimensions of W change depending on the value of j. Note when j = 0, W is a

vector. The procedure starts with iW and it is used to compute iq. If this q does not satisfy

Eq. (4.22), then the next iw is added to the beginning of W. The process is repeated, by

adding singular vectors to W until iq is found.

To find iq, W is used as a basis for the solution space and this process searches for the

coefficients c that give the linear combination of iq, i.e.,

iq︷︸︸︷
iWc = 0q. (4.25)

Multiplying Eq. (4.25) by the transpose of W because
[
W

T
W
]
is invertible and inverting

this matrix to the right-hand side gives

c =
[
W

T
W
]−1

W
T 0q . (4.26)

This will give the coefficients c that are the least squared approximation of iq:

iq = Wc . (4.27)

When iNA > tNA, there is more than one zero singular value. This means that there

is more than one iw in the null space of iA that solves Eq. (4.12b), and so a combination

of them will give the approximated iq. The calculation of q is relatively straightforward

when s = 1; however, this is not the case for tensegrities with multiple self-stress states [74].

There is a special case, such as with tensegrity masts or cable domes [105], of the form-finding
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algorithm in which iNA is larger than 1. In this case, the system is said to have multiple

states of self-stress and requires extra steps when approximating iq in Eq. (4.23) [2,51,155].

The situation is important to explore because tensegrity prism masts have more than one

state of self-stress. Previously, the form-finding algorithm could begin with either a guess

at 0q or with an initial set of nodal coordinates 0[x y z]. However, tensegrity masts require

the specification of an initial set of nodal coordinates to form-find successfully.

Multiple self-stress states has been addressed in other ways. For example, Yuan, et

al. [106] use the Double Singular Value Decomposition (DSVD) Method to determine the

integral pre-stress distribution of a cable dome. During the procedure, the SVD is applied

twice, once on the equilibrium matrix to obtain the independent self-stress modes and a

second time on a matrix of independent self-stress modes to obtain the integral pre-stress

modes. A similar process is performed here, where the members are grouped based on

symmetry to find what is known as the single integral self-stress state [37, 51].

START
iW =

[
iwb—NA . . . iwb

]

form iI

assemble iG

iNG = tNG?

iNG > tNG

iNG < tNG

END

assign h

Eq. (4.30)

Eq. (4.32)

yes

no

decrease h

increase h

Figure 4.5: Approximating iq for iNA > tNA
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When iNA = tNA, q was the last column of W because there was only one vector in the

null space of A. Now the null space is larger than one and hence multiple null space vectors

are used for determining q.

When iNA > 1, iW is

iW =

[
iwb−NA . . . iwb

]
, (4.28)

where iW is a matrix of NA singular vectors that are the last NA columns of iW from

Eq. (4.17). Note that W will always be a matrix. The feasible self-stress mode iq can be

calculated as a linear combination of NA independent self-stress modes [19], where NA is

the number of vectors in the null space of A.

I(b×b) iq =
i
W

c︷ ︸︸ ︷
c1
...

cNA

 (4.29)

is solved for iq, where iW is used as the basis vectors for the self-stress modes [91]. This

process is performed because the w vectors in the null space of the equilibrium matrix A

cannot be employed directly because they do not satisfy Eq. (4.22). The unknown iq in

Eq. (4.27) can be reduced to iq if the system is symmetric, which leads to a reduction in

unknowns. When there exists members that have the same q value, this will form a group.

Then, the grouped iq is iq ∈ Rh, where h is the number of groups. Then, I ∈ Rb×b is

reduced from its definition in Eq. (4.29) to I ∈ Rh×h, a shortened identity matrix, which

distributes the correct q value to each member in its group:

iI =


1 member b belongs to group h ,

0 otherwise ,
(4.30)

such that Eq. (4.29) becomes
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iWc - iI

q︷ ︸︸ ︷
q1
...

qh

 = 0 . (4.31)

Now adding iq to the end of c creates a new vector s and similarly, adding i
I to the right

end of iW, Eq. (4.31) then becomes [150]

iG︷ ︸︸ ︷[
iW - iI

]
is︷ ︸︸ ︷ c

iq

 = 0 . (4.32)

Recall that the vector s which satisfies Eq. (4.32) is in the null space of matrix G. So, the

null space of G should be exactly one by the end of this sub-iterative process [51]:

tNG = 1. (4.33a)

From Eq. (4.32), it can be seen that G ∈ Rb×(NA+h), so the null space of iG is calculated

by

iNG = (tNA + h) - rank
(
iG
)
, (4.33b)

where NG is the dimension of the null space of G, and rank (G) is the rank of G [95]. From

here, if iNG = tNG, then the vector s satisfying Eq. (4.32) can be found. Thus, SVD is

employed again here:

iG = iΥTdiag
(
iν
)
iΠ. (4.34)

However, if iNG < tNG, the number of groups (h) are increased because there are not

enough equations for the amount of unknowns. Finally, if iNG > tNG, there are multiple
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pre-stressed modes satisfying the symmetry condition and h is decreased. From here, the

process is repeated and at each iteration the number of groups is either increased or decreased

depending on the value of iNG (Eq. (4.33b)). The new vector for q is established, G is

reassembled with the new I, and then Eqs. (4.33a) and (4.33b) are used again to determine

if/how h needs to be changed [105]. When iNG = tNG, the last column of Π, π(NA+h), is

taken to be the s vector that satisfies Eq. (4.32).

4.3 Static analysis

Stiffness matrix derivation

A vector of member stiffnesses κ ∈ Rb can be calculated by

κ =
ea
`0

, (4.35)

where e ∈ Rb, a ∈ Rb, and `0 ∈ Rb are the Young’s modulus, cross-sectional area, and

unstressed length vectors, respectively.

The tangent stiffness matrix can be described as a collection of the first-order partial

derivatives of a function with respect to each component of the function, linearized around

some point x0:

K =
∂f
∂x

∣∣∣∣∣
x0

. (4.36)

For each configuration, the nodal coordinates of a tensegrity structure are correlated with

the external forces through the equilibrium condition(s). One can then consider the external

force vector as a function of the nodal coordinate vector, that is f = f (p). In differential

form [156]:

K︷︸︸︷
df
dp
· dp = df. (4.37)
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It is also known that f = f
(
p, t (p) , `−1 (p)

)
. Therefore, K can be expanded by chain

rule as [156]

K =
∂f
∂p

+
∂f
∂t
· ∂t
∂`
· ∂`
∂p

+
∂f
∂`−1 ·

∂`−1

∂`
· ∂`
∂p

, (4.38)

where

∂f
∂p

= S , (4.39)

∂f
∂t

= A , (4.40)

∂t
∂`
· ∂`
∂p

= diag (κ) ·AT , (4.41)

∂f
∂`-1

= A · diag (t) , (4.42)

and

∂`-1

∂`
· ∂`
∂p

= -diag
(
`-1
)
·AT . (4.43)

Using Eqs. (4.39)–(4.43), Eq. (4.38) becomes

K =

KG︷ ︸︸ ︷
I(d×d) ⊗D+

KE︷ ︸︸ ︷
A · diag (κ) ·AT - A · diag (q) ·AT . (4.44)

Here all structural elements have been considered to be nonlinear because everything is

dependent on `. Generally, existing methods assemble the structural stiffness from element

stiffnesses and assume all members to be linear elastic, in which case the structural stiffness

matrix reduces to Eq. (4.47) [156]. This means, if a structure is kinematically indeterminate,

its stiffness matrix has only positive or zero eigenvalues. Furthermore, if the structure
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is kinematically indeterminate, then there exists a displacement vector ρ (6= 0) satisfying

DTp = 0. Therefore, pTKEp vanishes [157] and Eq. (4.44) can be reduced.

The linearized tangent stiffness matrix [13] KT ∈ R3n×3n is calculated with D and A

from Eqs. (4.14) and (4.15):

KE = Adiag(κ)AT , (4.45)

KG = I(d×d) ⊗D , (4.46)

where KE ∈ R3n×3n is the elastic stiffness matrix, KG ∈ R3n×3n is the geometric stiffness

matrix, I(d×d) ∈ Rd×d is the d × d identity matrix, and ⊗ is the Kronecker delta product.

Finally,

KT = KE + KG . (4.47)

In the linearized theory of elastic frameworks, the tangent stiffness operator,KT, provides

the linear relation between displacement increments and load increments [158]

KT∆p = ∆f . (4.48)

Stability

The stability analysis is performed when the tensegrity structure is in an equilibrium position.

If D has all positive eigenvalues, then the structure is stable when no term higher than

second-order terms of the potential energy are considered [96]. A non-trivial displacement

is called mechanism if it does not change the member lengths.

A tensegrity structure can be in equilibrium but still be unstable. Super-stability is a

special type of a stable self-equilibrated structure [159]. At the same time, a tensegrity

without super stability may still be stable [74]. Because classification of equilibrium points

is determined by the eigenvalues, this can be determined by investigating the eigenvalues of
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the stiffness matrix.

The matrix U, found from the SVD of A in Eq. (4.17), contains the internal mechanisms.

Tensegrity structures are classified as statically and kinematically indeterminate pin-jointed

systems [59, 104], i.e., s > 0,m > 0, where s is the number of self-stress states and the

number of internal mechanisms is m. Therefore, their design requires consideration of the

infinitesimal mechanisms associated to the system, and the corresponding states of self-stress

capable to stabilize them [59].

There are two kinds of modes, characterized as either rigid or flexible body modes. All

structures can have up to six rigid body modes, per DOF, three translational modes and three

rotational modes. In traditional analysis of free-standing structures, rigid body motions are

not considered in the stability analysis. The number of independent rigid body motions r is

given by

r =
d(d+ 1)

2
. (4.49)

The stability of tensegrities is generally studied using the spectral characteristics of the

force density matrix. Any rigid-body motion of a structure will result in a structural stiffness

matrix with zero eigenvalues [44]. Constraint conditions must be applied properly to exclude

all possible rigid body motions [44]. This is because a negative eigenvalue of the stiffness

matrix indicates that the structure is unstable, whereas a zero eigenvalue causes divergence

of the numerical procedure [44]. Here the rigid body modes are properly constrained by

excluding the r zero eigenvalues in the structural stiffness matrix [160].

The found equilibrium state is stable if the necessary condition for the stability of inde-

terminate pin-jointed structures with symmetry is satisfied [74]. This is established based

on the eigenvalues of the quadratic form of the tangent stiffness matrix [65,96]:

pT KTp > 0 . (4.50)
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Consider the differential equation ẋ(t) = Ax(t), with initial condition x(0) = v0, then

x(t) = v0e
λt is the solution. Thus, the eigenvalues, λ, are the key indicator of the stability of

the differential equation ẋ(t) = Ax(t). The stability of tensegrity structures can be defined by

the smallest eigenvalue ofK. Assuming all members have infinite stiffness, the stability of the

structure can be verified by the sign of the eigenvalue. When positive, the structure is stable;

when it is negative, the structure is unstable. The minimum eigenvalue of K corresponds to

the eigenvector which is the weakest direction for the structure to deform [96].

The minimum eigenvalue λmin of a real symmetric matrix (such as KT) implies the

positive definiteness of the matrix, and so the stability condition of the structure, independent

of the selection of materials [120] is [160]

λmin (KT)


> 0 stable ,

= 0 critical ,

< 0 unstable .

(4.51)

The criteria shown in Eqs. (4.50) and (4.51) are the necessary and sufficient stability condi-

tions in structural engineering [160].

A tensegrity structure is said to be super-stable if it is stable for any level of the self-

equilibrium force densities without causing material failure. The conditions for a super-stable

tensegrity are [161]:

1. Eq. (4.22) is satisfied,

2. Eq. (4.19a) is satisfied,

3. D has only positive or zero λs (Eq. (4.16)), and

4. rank (KT) = r (from Eq. (4.49)), or equivalently, there are no affine (infinitesimal) flexes

of the structure.
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Chapter 5

Length-Changing Algorithm

The form-finding algorithm has a tendency to produce widely varying results and should be

used only as an initial tool. The length-changing algorithm starts with a tensegrity structure

that is close to an equilibrium position. The procedure perturbs a node slightly to a new

position, i.e., changes the length of a member, and then finds the new corresponding closest

equilibrium of the system. The following algorithm steps through length changes and then

iteratively solves for the new equilibrium position.

5.1 Key equations

Variable definitions

A left superscript of i denotes a variable’s value at the ith iteration. The following procedure

was also implemented in MATLAB version 2016a. The length-changing algorithm uses a

numerical iterative approach based on the Force-Displacement Relationship combined with

the NRM. The input variables needed for the length-changing algorithm are: 0x, 0y, and 0z

(Eq. (4.4)), q (Eq. (4.3)), and κ (Eq. (4.35)).

The following variables can be calculated using the input variables. The matrix of pro-

jected length vectors Σ ∈ Rb×3 is

iΣ = C


ix

iy

iz

 . (5.1)
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The modified matrix σ is formed by stacking the column vectors of Σ:

iσ =

[
σ1 σ2 σ3

]T
, (5.2)

and so the length can be computed by

i` =
√
σTσ , (5.3)

which is equivalent to using vector magnitude:

`b =
√

(xbk - xbj)2 + (ybk - ybj)2 + (zbk - zbj)2 , (5.4)

where member b is connected to nodes j (xbj, ybj, zbj) and k (xbk, ybk, zbk). The bth component

of `, `b, depends on the member.

The Jacobian matrix J ∈ R3n×3n is computed by

iJ =


CT diag

(
C ixT

)
diag

(
1
i`

)
CT diag

(
C iyT

)
diag

(
1
i`

)
CT diag

(
C izT

)
diag

(
1
i`

)
 . (5.5)

Notice J has a very similar definition to A, except its components are divided by `. The

Jacobian can be computed in other ways; see e.g., Refs. [47, 123].

The member internal force vector t ∈ R can be computed using Hooke’s Law:

it = diag
(
iκ
) (

i` - `0
)
. (5.6)

Eq. (5.6) can be used for struts as well, where t is now a compressive force (a negative value)

because struts have a negative (i` - `0).

Assuming `, q and κ are known, it can be computed by rearranging Eq. (4.3) as

it = iqi` . (5.7)
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Then substituting Eq. (4.35) into Eq. (5.6) and solving for `0 yields [59, 75,162]

`0 =
ea i`
it + ea

. (5.8)

Once `0 has been found, this vector is unchanging until a cable is actuated.

The secant stiffness matrix, an approximation for the tangent stiffness matrix, at the ith

iteration iKn ∈ R3n×3n is calculated using iJ (Eq. (5.5)):

iKn = I(3×3) ⊗ (D) + iJ diag (κ) iJT - iJ diag (q) iJT . (5.9)

iKn will be singular because one of its eigenvalues will be zero due to the presence of at least

one rigid body mode. Notice that Eq. (5.9) is nearly identical to Eq. (4.47). A distinction

should be made between K, the modal stiffness matrix, which looks at the system dynamics

and KT, the tangent stiffness matrix, and Kn, the secant stiffness matrix, which provide the

statics.

Computing the error

The matrix of member force vectors iFm ∈ R3×b

iFm = iΣTdiag
(
iq
)
, (5.10)

is a projection of the force densities along the member projected lengths and it is used to

compute the matrix of resultant nodal force vectors iFn ∈ R3×b:

iFn = -iFmC + iFe , (5.11)

where Fe ∈ R3×n is the matrix of node external force vectors. This is a matrix of zeros for

a structure with no externally applied loads. Then, the column vectors of Fn are stacked

vertically and used to calculate Fv, where the error is the 2-norm of ifv ∈ R3n:

63



ifv
2

=

[
if1 . . . ifn

]T 2

. (5.12)

5.2 Iterative procedure

i [x y z]

calc i` calc iJ

calc it

calc `0

calc iD 0q START

calc iκ

calc iκ`0START

calc it

calc iq

calc iD

calc iKn

∆ifv
2 ≤ tol

form ∆inv

convert to ∆inm

calc iΩ and iΩ

calc ∆ifm

calc ∆i+1nm

Eq. (5.3)

Eq. (5.7)

Eq. (4.11)Eq. (5.7)

Eq. (5.8)

Eq. (4.35)

Eq. (5.9)

Eq. (4.35)

Eq. (5.6)

Eq. (4.3)

Eq. (4.11)

Eq. (5.5)

Eq. (5.9)Eq. (5.9)

Eq. (5.12)

Eq. (5.15)

Eq. (5.18)

Eq. (5.14)

Eq. (5.20)

Figure 5.1: Length-changing algorithm flow diagram

In physical space:

∆ifv = iKn∆inv , (5.13)
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where nv =[x y z]T. Here a displacement vector nv is mapped to a force vector fv by Kn.

If nv and fv point in the same direction, they are called eigenvectors. Thus, the ratio of the

length of vector fv to the length of vector nv is ω, an eigenvalue of K. If a structure is stable,

then its stiffness matrix is invertible, i.e., cannot have an eigenvalue of zero. Otherwise, the

structure is free to move or deflect without deforming. In other words, for a given force

vector and a singular K, there is more than one displacement vector, i.e., there is not a

unique displacement for a given force.

In structural mechanics, the system is linearized about a particular configuration by KT,

a linearization operator that describes the change in the stiffness of a system in response to

small displacements imposed by the current configuration.

In modal space:

∆ifm = iΩ∆inm , (5.14)

where ∆ifm ∈ R3n is the nodal DOF force vector, iΩ ∈ R3n×3n is the diagonal matrix of

iKn‘s eigenvalues, and ∆inm ∈ R3n is the displacement vector in modal space.

Transform to modal space

The linear transformation to modal space is analogous to changing the coordinate basis Ψ

of the matrix, i.e.,

∆inm = iΨ - 1∆inv , (5.15)

where iΨ ∈ R3n×3n is a matrix with columns that are eigenvectors, commonly referred to as

the modal matrix, because

iKn = iΨiΩ iΨ - 1 . (5.16)

Assuming harmonic motion, iΩ contains all of the eigenvalues of iKn. This mapping of
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Kn → Ω is called a similarity transformation, where Ω essentially representsKn in a different

basis. Reduction means a transformation that preserves the eigenvalues of a matrix. Since

Ω will have at least one zero eigenvalue due to rigid body motion, it will always be less than

full rank, and therefore, not invertible. The modal matrix makes it possible to include all

the orthogonality relations in one equation. The product performed in Eq. (5.16) results in

a diagonal matrix since the off-diagonal terms express the orthogonality relations which are

zero.

When all ω are non-zero, the inverse of a diagonal matrix exists by Ω - 1 = diag (ω - 1).

Taking the inverse of both sides of Eq. (5.16) yields

iK - 1
n =

(
iΨiΩ iΨ - 1) - 1

= iΨiΩ - 1 iΨ - 1 . (5.17)

Similar matrices have the same eigenvalues. Thus, define diagonal “inverse” matrix Ω ∈ R3n×3n

as

iΩ = diag
([

1
iω1

. . . 1
iω3n - 6

])
. (5.18)

The other six diagonal entires of iΩ will be zero because rigid body motion is excluded. This

inverse removes the six rigid body modes which have ω = 0, i.e., modes in which all nodes

translate or rotate together without altering their relative position. These modes are not

relevant for changing the internal forces on the nodes. A rigid-body motion will preserve the

length of all members, where the number of independent rigid body motions is given by r.

The solution can be approximated using the NRM. If the Jacobian matrix evaluated at

the vector ip is known, then the next trial value of the unknown vector should be

i+1p = ip -
[
∂f
∂p

] ∣∣∣∣∣
p=ip

(
if - 0f

)
. (5.19)

The NRM is used to iteratively solve Eq. (5.14):
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i+1nm = inm + iΩ∆ifm , (5.20)

where 0nm is an initial guess for nm. Eq. (5.20) is used to change the nodal coordinates until

the 2-norm of fv (Eq. (5.12)) is within tol. If fv is greater than tol, then i = i+1, i [x y z] are

extracted from nv, and K is recalculated. The process is repeated for t iterations. Fig. 5.1

shows an illustrative flow chart of the full iterative process.

Modal analysis

After the length-changing algorithm converges, i.e., ||ifv||
2 (Eq. (5.12)), a dynamic calculation

is performed to track the theoretical natural frequencies over the range of length changes.

The total mass at each node is computed by summing half of the mass of each member that

connects to the node, as in

mN1,N2,...,Nn =

p∑
γ=1

mγ

2
, (5.21)

where m1–p are the masses of each of the p members that are concentrated at one node. In

other words, equation (5.21) says that mN1 = m1+m2+···+mp

2
is the total mass at N1. Then,

the mass matrix M ∈ R3n×3n can be assembled by:

M = I(3n×3n) ·
{
mN1 mN1 mN1 mN2 mN2 mN2 . . . mNn mNn mNn

}T

. (5.22)

Although M is not a traditional mass matrix as in Refs. [163] or [148], it is comparable to

scaling the identity matrix [13]. Similarly, DRM uses lumped nodal masses [123].

The general undamped equations of motion (EOMs) for a tensegrity structure are:

Mü + KTu = f , (5.23)
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where KT is from Eq. (4.47), u is the nodal displacement vector, and f is the nodal external

force vector. Alternatively, the EOMs of a tensegrity structure can be formulated via Euler-

Lagrangian [164].

The modal analysis is conducted via eigenvalue analysis, where the natural frequencies

of the system are given by the roots of the characteristic equation [33, 37]. The eigenvalue

problem,

KTu = ω2Mu , (5.24)

where ω is the natural frequency in rad
s , can be easily solved for the undamped natural

frequencies. This can be rearranged as

[
K - ω2M

]
u = 0 , (5.25)

where the EVD gives the natural frequencies ω and the related mode shapes u [75]. Again,

at least one of the eigenvalues of K will be zero due to rigid body modes, and it is also

square and symmetric, i.e., [K] = [K]T. Recall this was also the case with D, which allowed

us to perform the EVD. To solve Eq. (5.25), the EVD of K and M is employed to solve

for ω2, the eigenvalues of the mass-normalized stiffness matrix. The spectral decomposition

of matrix M-1K then yields the natural frequencies and corresponding mode shapes of the

finite element model (FEM) of the structure. From here, using Eq. (5.27), the length of a

member can be directly changed and carried through the procedure to find the new tangent

stiffness matrix.

Converting length change into nodal change

Once an equilibrium position is found and a modal analysis has been performed on the

system, the algorithm proceeds to adjust the length of certain members, depending on which

actuation strategy is being modeled.
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Figure 5.2: Length change coordinate system

In Fig. 5.2, the angles α, β, and γ are shown for a member of length `. The angles are

computed by

γ = cos - 1

 z3 - z1√
(x3 - x1)

2 + (y3 - y1)
2 + (z3 - z1)

2

 , (5.26a)

β = cos - 1

 y3 - y1√
(x3 - x1)

2 + (y3 - y1)
2 + (z3 - z1)

2

 , (5.26b)

and

α = cos - 1

 x3 - x1√
(x3 - x1)

2 + (y3 - y1)
2 + (z3 - z1))

2

 . (5.26c)

The new nodal coordinate, (x3, y3, z3), is found via

x = ` cos(α) + x1 , (5.27a)

y = ` cos(β) + y1 , (5.27b)

and

z = ` cos(γ) + z1 . (5.27c)

The choice for the construction of the connectivity (see Eq. (4.5), and Fig. 4.1) was made
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due to the fact that the nodal constraints occur at the base nodes. Thus, as shown in Fig. 5.2,

the length changing formulas (Eqs. (5.26) and (5.27)) only alters the “higher number” nodes,

i.e., the unconstrained nodes.
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Chapter 6

Experiment

6.1 Investigated tensegrity structures

Schematics of the experimentally tested tensegrities are shown in Figs. 6.1– 6.3. The studied

structures are a free-free one-stage prism (FFP) shown in Fig. 6.1, a clamped-free one-stage

prism (CFP) shown in Fig. 6.2, and a clamped-free three-stage tensegrity mast (CFM) shown

in Fig. 6.3. The corresponding tables are shown in Figs. 6.1 (b), 6.2 (b), and 6.3 (b), where

the mass of the bth member is indicated by mb, the diameter of the bth member is db, and

the lengths ` are applicable to the starting configuration. Each member and node is labeled

according to the diagrams in Figs. 6.1 (a), 6.2 (a), and 6.3 (a) to distinguish between cables

during testing.
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(a) Labeled diagram

Variable Value Variable Value

m1−9 0.0103 kg
m `1,3,4,6 16.5 cm

m10−12 0.1392 kg
m `2,5 25.5 cm

mstructure 0.3813 kg `7−9 41.5 cm

d1−9 1.6 mm `10−12 46.0 cm

d10−12 15.88 mm e1−12 11× 109 N
m2

(b) Mass, length, Young’s modulus, and diameter

Figure 6.1: Free-Free Prism (FFP)
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(a) Labeled diagram

Variable Value Variable Value

m1−9 0.0103 kg
m `1,3,4,6 16.5 cm

m10−12 0.2889 kg
m `2,5 25.5 cm

mstructure 0.8887 kg `7−9 39.8 cm

d1−9 1.6 mm `10−12 45.0 cm

d10−12 7.9 mm e1−12 200× 109 N
m2

(b) Mass, length, Young’s modulus, and diameter

Figure 6.2: Clamped-Free Prism (CFP)
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(a) Labeled diagram

Variable Value Variable Value

m1−21 0.0103 kg
m `1,3,4,6,10,12,16,18 15 cm

m22−30 0.2889 kg
m `2,5 25 cm

mstructure 2.7178 kg `7−9,13−15,19−21 39.5 cm

d1−21 1.6 mm `22−30 45.0 cm

d22−30 7.9 mm e1−30 200× 109 N
m2

(b) Mass, length, Young’s modulus, and diameter

Figure 6.3: Clamped-Free Mast (CFM)
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Test articles

(a) Free-free prism (FFP) (b) Clamped-free prism (CFP)

(c) Clamped-free mast (CFM)

Figure 6.4: Photographs of test articles

Photographs of the FFP, CFP, and CFM test articles are shown in Fig. 6.4. The CFP and

CFM test articles have struts made of threaded steel rods. The FFP is constructed with oak

wooden dowels. All test articles have steel cables.

Structures can be tested under various boundary conditions. In the free-free boundary

condition, the test structure is freely supported in space and is not attached at any of its

nodes. It is not possible to provide a truly free-free support in practice but it is feasible

to approximate this condition by supporting the test structure on very soft springs, such as

light elastic cords. In this case, the FFP was placed on a soft foam, as shown in Fig. 6.4a,

while three base nodes are fixed for the CFP, shown in Fig. 6.4b, and CFM, in Fig. 6.4c.

The method of supporting a structure during vibration testing has a direct impact on the

modal characteristics of the structure.
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Design and construction

All tensegrities used here are non-redundant. This means that the members are held to-

gether in a self-stressed state. The construction process is therefore challenging because the

structure does not take shape until the last member is attached. For this reason, initial

forethought and design planning is required to build one of these structures. The tensegrity

prism was chosen because it is one of the simplest three-dimensional tensegrity structures.

The demo units shown in Fig. 6.5 were constructed first and used to inform the dimensions

of the test articles. The geometry was defined to prevent any members from coming into

contact with each other during actuation. Because this work focuses on the use of tensegrity

systems for aeronautical applications, it was desirable for the system to have a wing-like

shape. The CFM, shown in Fig. 6.3, was constructed with a span of about 127 cm and

a cord of about 30 cm, giving an aspect ratio of 4.2, which is comparable to an aircraft

wing [165].

(a) Prism (b) Mast

Figure 6.5: Demo units

Each prism demo unit was constructed out of string attached by eye-hooks to the end

of three 300 mm oakwood dowels. This structure was not tested during the experiment. It

was used to learn how the tensegrity prism geometry changes with changing string lengths.

The string was initially left untied and secured by clips (see Fig. 6.5a), allowing the lengths

to be adjusted.
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Cable Lengths (cm)

H-short 2.8

H-long 7.3

V-cable 15.2

Table 6.1: Unstretched half-cable lengths for all test articles

Fig. 6.4 shows that the FFP and CFP test articles each have two parallel triangular bases,

while the CFM has three. The FFP, CFP, and CFM have three types of cables: horizontal

short (or H-short) referring to each set of two edges in each triangular base that have the

smallest length, horizontal long (or H-long) representing the longer edge of a triangular

base, and vertical cables (or V-cables) denoting the rest of the cables that run vertically

(see Fig. 6.5a). For the test articles, each cable was cut into “half-cables” (lengths shown in

Table 6.1) to insert an actuator. The half-lengths can be used to approximate the unstretched

cable length Once the tensegrity is fully assembled, each cable is pre-stressed to length `.

buckle/opening length
screw

diameter

eye-hookhook

Figure 6.6: Turnbuckle

The 4 mm × 32 mm turnbuckle displayed in Fig. 6.6 is a manual actuator, which shortens

the cable length. The standard measuring convention for turnbuckles is screw diameter ×

buckle or opening length. The opening length is essentially a distance measurement of the

change in length from a fully-closed to a fully-open position. Each turnbuckle can turn

up to 20 times, where a full turn is counted when the buckle is rotated by 360 degrees or

equivalently, when the buckle travels a distance of one screw threading. When the buckle

turns, it travels an equal distance symmetrically along both screws, each having 18 turns

per 25.4 mm. It is confirmed by measurement, that for every turnbuckle turn, the length of

a cable will change by 1.5 mm per turn.
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Figure 6.7: H-short cable

Each cable consists of two half-cables and a turnbuckle and the cable length is measured

as the distance from one nodal connection point to the other.

The theoretical model assumes all nodes to be pin-joints, only restricting translations.

Note this is different from a hinge joint which only permits one-dimensional rotation. It

is difficult, in practice, to construct a class 2 (two struts attached at one node) tensegrity

joint which achieves true pin-jointed motion. Instead, a universal joint (u-joint) is used for

the CFM. A u-joint consists of a pair of hinges. A u-joint allows motion in two axes. For

the CFM, two struts at one joint meet at an obtuse angle for every configuration change

performed in this study. In turn, the pin-joint requirement can be relaxed, allowing the

joints to be somewhat more restrictive on the members.
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(a) T Nut

(b) U-joint
(c) Mast/mounting joint

Figure 6.8: CFP and CFM joint components

The CFP and CFM joints have been constructed according to Fig. 6.8 by connecting a

u-joint (displayed in Fig. 6.8b) to a T nut (shown in Fig. 6.8a). The u-joint used here is

a 6.4 mm socket adapter with female and male ends that have been tapped and threaded,

respectively, to a 7.9 mm diameter. The tapped female end can connect to a strut, or to the

mounting section. The threaded male end connects to a 7.9 mm × 16 mm brad hole T nut.

(a) Magnet

(b) Socket screw (c) Mounting section

Figure 6.9: CFP and CFM mounting components
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The mounting section consists of three magnets as shown in Fig. 6.9a. Each have a

maximum pull of 423 N for the CFM and 111 N for the CFP, and are used to fix one end of

each test article at nodes 1, 2, and 3. Each magnet is connected to the u-joint via a 7.94 mm

diameter screw shown in Fig. 6.9b. The screw‘s length cut to fit the span of the threading

on the u-joint.

Part Mass (g) FFP CFP CFM

Turnbuckle 18.4 X X X

U-joint 23.9 X X

T-nut 7.08 X X

Nylon washer 0.544 X

Ferrule 3.18 X X X

Table 6.2: Masses for components of FFP, CFP, and/or CFM

Table 6.2 shows the masses of all of the components used to construct the test articles.

(a) FFP (b) CFP

Figure 6.10: Free nodes

As shown in Fig. 6.10b, the free end of the CFP is a T nut, while, in Fig. 6.10a, the

free end of the FFP are nylon washers. Switching to nylon washers greatly simplifies the

construction process and eliminates extra weight. Plus, it makes it possible to construct a

class 2 tensegrity in which the two struts have more freedom compared to the u-joint. This is
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because the struts do not actually connect. Rather, they are held together by compression.

The improved joint design also allows all members to connect around the same point, which

should help reduce unwanted strut behavior, such as buckling. The trade off to this kind of

joint is that the lack of connection between strut and joint complicates the assembly process.

(a) CFF cables assembly

(b) CFF struts (c) Top view of horizontally mounted CFM

Figure 6.11: Prototype assembly photos

Fig. 6.11c shows the CFM mounted on a magnetic surface during the assembly process.

The CFM was assembled one prism at a time, and the new struts are linked by alternating

their rotation to the opposite direction. In other words, the direction of the three-strut

rotation alternates between prism units to keep the mast straight. Without this alternating

pattern, the mast would curl as in Refs. [12, 14,32].
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6.2 Modal testing

Modal testing is a form of vibration testing where the natural frequencies, modal masses,

modal damping ratios, and mode shapes of a test article are determined from experimental

data. A modal test consists of an acquisition phase and an analysis phase. The complete

process is referred to as Experimental Modal Analysis (EMA). Impact hammer testing and

shaker testing are common ways to accomplish a EMA. Impact hammer testing is ideal for

small lightweight structures. Here, the three tensegrity test articles undergo impact hammer

testing.

A wide variety of structures can be impact tested. A roving hammer test is the most

common type of impact test. In this test, the response is collected at a node and the structure

is roved at as many nodes as desired. Using a 2-channel FFT analyzer, FRFs are computed

one at a time, between each impact DOF and the fixed response DOF. A drawback to

impact hammer testing is that most structures cannot be impacted in all three directions,

so three-dimensional motion cannot be measured at all points.

Equipment

The following equipment is needed to perform an impact test: an impact hammer (PCB

086B01) to excite the structure, an accelerometer or vibrometer to measure the response ac-

celeration or velocity, respectively at a fixed point and direction, a two or four channel FFT

analyzer to compute FRFs, and post-processing modal software for identifying modal param-

eters. A data acquisition analyzer (DAQ) from National Instruments is used for collecting

the experimental data.
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Figure 6.12: OMS LaserPoint LP01

In Fig. 6.12, a single point laser Dopper vibrometer (LDV) is a precision instrument

widely used in experimental modal analysis that can measure vibrations of almost any object.

LDVs are attractive because they are non-contact and generally do not require the measured

surface to be treated. The OMS LaserPoint LP01 is used to measure the response of each

test article to an input stimulation.

Actuation strategies

The goal of this study is to determine which combination of cables play a dominant role

in the vibration response of tensegrity structures with various units of prisms. When only

one cable is adjusted, this is referred to as the “ones” strategy. When horizontal, vertical,

or alternating sets of cables are changed, these are referred to as “horizontal”, “vertical”, and

“alternating” actuation strategies, respectively. The ones, horizontal, and vertical actuation

strategies are performed for all three test articles, and the CFM has an additional alternating

strategy. The targeted cables for each strategy are highlighted green in Figs. 6.14 and 6.15.

(a) Ones (b) Horizontal (c) Vertical

Figure 6.13: FFP actuation strategies
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(a) Ones (b) Horizontal (c) Vertical

Figure 6.14: CFP actuation strategies

(a) Ones (b) Horizontal (c) Vertical (d) Alternating

Figure 6.15: CFM actuation strategies

Experimental procedure

Cable FFP (cm) CFP (cm) CFM (cm)

H-short 16.5 16.5 17.0

H-long 25.5 25.5 26.0

V-cable 41.5 39.8 42.0

Table 6.3: Initial stretched cable lengths

The following step by step procedure was used:

1. The test articles started from an initial configuration, with initial lengths according to

82



Table 6.3. The cable length was measured and turnbuckles adjusted to achieve the proper

initial condition.

Figure 6.16: NI LabView front panel view

2. The laser and hammer signals were collected for 5000 samples at a rate of 1000 Hz. There

are several important considerations that were taken into account to obtain accurate results.

On the front panel, the user can select the numbers of the cables that are being changed for a

given actuation strategy. The turn number was indicated to keep track of the length change

increments. Additionally, the LabView script was programmed such that when a certain

threshold voltage is met from impact force on the hammer, the program starts collecting

data.

3. A universal joint or nylon washer was tapped with the hammer and the results were

processed. Data collected from the LDV and hammer using the DAQ, from Fig. ??, was

stored using National Instruments (NI) Labview. A sample time history and impulse signal

are displayed in Fig. 6.16.

4. An accept/reject capability also saves a lot of time during impact testing since the

measurement process will not need to be restarted after every bad hit. When the program

displayed the FRF after each hammer strike, the user was prompted to accept or reject the
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data. Steps 2–4 were repeated for the desired strike points and the LDV was moved for

the desired response nodes. The hammer was roved and laser was directed approximately

perpendicular to a T nut or washer. The hammer and laser response are recorded for five

averages to reduce the effects of noise.

5. The cable lengths were incrementally adjusted by turning the turnbuckle a half-turn,

according to each actuation strategy, for up to five turns. The turn number was updated

every time the turnbuckles were turned. The turnbuckles were turned uniformly, as in all of

the cables were adjusted equal amounts.

6. Steps 2–5 were repeated for four different configurations (i.e., the ones, alternating,

horizontal, and vertical strategies).

7. The results were analyzed for frequency content, and checked to ensure that the data

sufficiently covered the desired frequency spectrum. The sets of data were exported from

Labview and imported into Matlab for signal analysis.

6.3 Signal Analysis

The Frequency Response Function (FRF) is a fundamental measurement that isolates the

inherent dynamic properties of a structure. Experimental modal parameters (frequency,

damping, and mode shape) are also obtained from a set of FRFs. The FRF describes the

input-output relationship between two points on a structure as a function of frequency. In

reality, structures are continuous, having an infinite number of DOFs and an infinite number

of modes. From a testing point of view, a real structure can be sampled spatially at as

many DOFs as desired. There is no limit to the number of unique DOFs between which FRF

measurements can be made. Only a small subset of the FRFs are necessary for accurately

defining the modes. At the same time, more measurements give more definition to the modes.

A FRF is a complex valued function of frequency that is defined between a single input

DOF, and a single output DOF. It is a measure of how much displacement, velocity, or

acceleration response a structure has at an output DOF, per unit of excitation force at an
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input DOF [166]. A FRF, H(ω), describes the input-output relationship of the system. It

is defined as the ratio of the FFT of the output response (X(ω)) divided by the FFT of the

input force (F(ω)), in the frequency domain:

F(ω)H(ω) = X(ω) , (6.1)

where each input and output corresponds to a DOF of the test structure.

Here the FFT is performed using the five averages of the laser response experimental

data, and the FRF is obtained, as in Fig. 6.17. By dividing the FFT of the laser signal by

the FFT of the hammer signal, Eq. (6.2), computed using [146]:

H(ω) = X(ω)F(ω)−1 (6.2)

The CFM was tapped at nodes 7 and 9, while the FFP and CFP were tapped at 4, 5,

and 6. All responses are taken at node 6. The FRF for each tapped node is overlayed, as in

Fig. 6.17. The first five changing modes were tracked manually and recorded at each length

change. The modes were tracked according to the highest FRF amplitude of the spectogram.
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Figure 6.17: Example FRF for CFP

Responses from five hammer taps were averaged as well as the responses. Fig. 6.17 shows a

sample of the FRF magnitude for striking nodes 4–6, where the overall structural response at

any frequency is a summation of responses due to each mode. Close to the frequency of one
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of the resonance peaks, the response of one mode will dominate the frequency response. At

certain natural frequencies of the structure, a small amount of input force can cause a very

large response. This is clearly evident from the narrow peaks in the FRF [166]. On the other

hand, if the structure is excited at or near or near a frequency of one of the anti-resonances,

the structural response will be very small per unit of input force.

Windowing and zero padding

Zero padding is simply adding zeros to the end of the time history to improve the frequency

resolution. The Hann function is a discrete window function that is linear combination of

modulated rectangular windows. The Hanning window is typically used in digital signal

processing to select a subset of a series of samples in order to perform a FFT. The advantage

of the Hanning window is low signal distortion, with the tradeoff being slightly decreased

resolution. It is an offset cosine wave so it is always positive:

w(n) =
1

2

(
1− cos

(
2πn

N

))
, 0 ≤ n ≤ N , (6.3)

where N is the NFFT value, the next power of two from the length of the signal. After zero

padding, in this case, NFFT was 131,072. This function returns a Hanning window with

L entries in a column vector w, where L is the window length according to L=N+1. The

sampled signal values are multiplied by the Hanning function, which forces the ends of the

time record to zero regardless of the input signal.
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Chapter 7

Results

7.1 Theoretical

The inputs for the length-changing algorithm are consistent with the FFP test article. This

includes the connectivity, stiffnesses and masses of members, initial coordinates, and force

density, with no external forcing. The mass at each node was computed by dividing the mass

of the entire structure by the total number of nodes. The `0 value for each cable is changed

ten times until an overall length change of 15 mm is reached.

The tensegrity prism has the following connectivity matrix C:

C =



−1 0 1 0 0 0

0 −1 1 0 0 0

−1 1 0 0 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

0 0 0 −1 0 1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1

−1 0 0 0 0 1

0 −1 0 1 0 0

0 0 −1 0 1 0



. (7.1)
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The Young’s modulus of the members is e = 11 · 109
( N
m2

)
and the diameters of the cables

and struts are

d =


1.6 (mm) for all cables ,

7.9 (mm) for all struts .
(7.2)

The first iteration of q is

0q =


0.2041 for cables 1–6 ,

0.3536 for cables 7–9 ,

−0.3536 for all struts .

(7.3)

The initial nodal coordinates,

0x =

[
0.125 0.000 0.251 0.198 0.036 0.250

]T
, (7.4)

0y =

[
0.116 0.000 0.000 0.104 0.052 −0.065

]T
, (7.5)

and

0z =

[
0.040 0.040 0.040 0.435 0.435 0.435

]T
, (7.6)

are the measured nodal coordinates of the physical test article.

In the following figures, the total length change, ∆L, is divided by the total number of

actuated cables, N, to distribute the length change across all of the changed cables, and f is

the natural frequency. If N is calculated by 1.5 mm per turn times the number of turnbuckle

turns times N, then N can be canceled out. The x-axis can therefore be thought of as the

length change increment. The first six rigid body modes are excluded here.
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Figure 7.1: Natural frequency vs. length change for FFP

Fig. 7.1 shows the ones, horizontal, and vertical theoretical results for the FFP. These show

the evolution of the natural frequencies with length change next to the corresponding shape

change. The plots in Figs. 7.1 (a), 7.1 (b), and 7.1 (c) show natural frequency veering. These

results also show that the natural frequencies will generally increase with length change. Note

this algorithm was only capable of being applied to a tensegrity with all free nodes. It will

successfully find equilibrium positions for the FFP based on length changes.
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The following figures show the mode shapes for the first two non-zero modes (excluding

the six rigid body modes). The mode shapes are displayed for the initial, half-way point, and

final equilibrium positions. These are displayed for the three different actuation strategies.
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Figure 7.2: Mode shapes for FFP: Ones
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Figure 7.3: Mode shapes for FFP: Horizontal
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Figure 7.4: Mode shapes for FFP: Vertical

7.2 Experimental

The natural frequencies of the system can then be used to indicate how the structure will

respond to aerodynamic loading. Thus, it is important to know the natural frequencies

at which aeroelastic instabilities might occur to avoid dangerous regions. Flutter analysis

indicates that the point where the bending and torsion modes coalesce is where the structure

will go unstable. For this reason, the present work is concerned with the separation of the

these modes of tensegrity structures.

A spectogram is a plot that shows the evolution of the natural frequencies with increasing

length change. The FFP has wooden struts, while the CFP has metal.
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(a) Ones (b) Horizontal (c) Vertical

Figure 7.5: Spectograms for FFP

(a) Ones (b) Horizontal (c) Vertical

Figure 7.6: Spectograms for CFP

(a) Ones (b) Horizontal (c) Vertical (d) Alternating

Figure 7.7: Spectograms for CFM

In all spectograms, between about 2.5 mm and 5 mm, the natural frequencies change
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more dramatically with length change, and then steadily increase. Fig. 7.5 shows that

the first two modes for the FFP, in general, do not change with changing length. It is

interesting that these two modes do not show up for the CFP and CFM test articles. It

can be seen that tensegrities have several modal “families”, which can be seen clearly in

Fig. 7.7c. All spectograms show two families of modes. For all test articles, the vertical

strategy particularly showed the largest separation overall, with the second family of modes

showing the most exaggerated changes.

The second modal family for the CFP vertical case is not very well defined. This is

probably due to testing inconsistencies. The natural frequencies for the CFM were much

lower compared to the CFP and FFP.

For each length change increment, the peaks of the FRF were tracked and recorded

manually. The missing data points indicate a resonance peak of the FRF that could not be

detected. This mainly affected the fourth and fifth natural frequencies and occurred during

the first few length change sets.

The following plots show the first five natural frequency peaks and their corresponding

tensegrity system. The strike point is indicated on the diagram by a star symbol and the

response point is indicated by the triangle symbol. Figs. 7.14, 7.15, 7.16, and 7.17 show the

natural frequency maps.
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Figure 7.8: Natural frequency map for FFP: Ones
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Figure 7.9: Natural frequency map for FFP: Horizontal
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Figure 7.10: Natural frequency map for FFP: Vertical
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Figure 7.11: Natural frequency map for CFP: Ones
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Figure 7.12: Natural frequency map for CFP: Horizontal
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Figure 7.13: Natural frequency map for CFP: Vertical
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Figure 7.14: Natural frequency map for CFM: Ones
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Figure 7.15: Natural frequency map for CFM: Horizontal
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Figure 7.16: Natural frequency map for CFM: Vertical
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Figure 7.17: Natural frequency map for CFM: Alternating

For the CFM, the ones and alternating strategies have similar patterns, where modes 1 and

2 are one family and modes 3–5 are another. The natural frequencies for the horizontal and

vertical cases are not as tightly grouped, where modes 1–3 are one family and 4 and 5 are the

second. The reason for this is probably due to symmetrical versus asymmetrical actuation

patterns. The natural frequencies for the ones and vertical cases for the FFP and CFP show

similar trends, while the natural frequencies for the horizontal and vertical strategies of the

CFM were the most comparable.

In some cases, the initial natural frequencies do not agree. This is due to the inconsisten-

cies of cable length measurements for the initial configuration. Additionally, the structure

slightly changed form between tests due to permanent cable stretching and strut bending.

The sudden jump of the fourth natural frequency in Fig. 7.13 is probably due to resonance

peaks in the FRF appearing and disappearing depending on strike and response directions.

7.3 Discussion

The natural frequencies for the ones and alternating cases of the CFM do not change much

with increasing length change. This could be due to their asymmetries or could be because
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a fewer number of cables are changed. The second and third natural frequencies changed

the most for the CFM. The first three natural frequencies of the FFP changed the least

compared to the CFP and CFM. This could due to the different boundary conditions.

For the FFP, modes three and four were the most sensitive to length change, while modes

two and three were the most sensitive for the CFP and CFM. The separation between each

pair of sensitive modes was computed for 0 mm and 16 mm. The percent change of separation

between the two modes for each actuation strategy is shown in Table 7.1.

Ones (%) Horizontal (%) Vertical (%) Alternating (%)

FFP 62.8 66.6 66.1

CFP 101.3 227.5 333.5

CFM 3.72 37.7 167.5 65.5

Table 7.1: Maximum natural frequency separation

The CFP showed the highest maximum natural frequency separation. Furthermore, the

CFP and FFP both showed higher separations than the CFM. For the FFP, the maximum

separation is similar for every actuation strategy, with the horizontal and vertical strategies

both at 66%. The CFP and CFM show a significant difference between actuation strategies,

with the vertical strategy out performing the horizontal, and the horizontal case exceeding

the ones case.

In general, the results show that actuating more cables produces a more dramatic increase

in natural frequency. Overall, at each configuration, the first and second natural frequencies

remained nearly constant, showing that a given length change will have more of an effect

on the higher modes of a tensegrity. In the ones strategy, overall, the natural frequencies

changed the least compared to the other strategies. The third and fourth modes of the FFP

changed the most. The fourth and fifth natural frequencies for the CFP were much higher

compared to the other test articles.

In all cases, the separation between the natural frequencies increased with length change.
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Of all the actuation strategies performed on the CFM, the vertical configuration showed

the largest maximum percentage increase in natural frequency separation. This means that

changing vertical cables in the structure has more of an effect on the natural frequencies of

the CFM than changing the alternating cables. The results of this experiment suggest that

when designing an actuation system for a tensegrity mast, it would be best to distribute the

controls on the vertical cables.

Dalilsafaei, et al. [14] found that placing actuators in all saddle cables of a saddle, vertical,

diagonal tensegrity has a high influence on stiffness, while vertical cables were found to have

limited effect on bending stiffness. The opposite effect was discovered in this work. For

tensegrity prisms and masts, the vertical cables, as opposed to any other type of cable, have

the largest affect on the natural frequency behavior.

f (Hz) Ref. [102] CFF (exp.)

Mode 1 1.07 1.709

Mode 2 9.103 6.592

Mode 3 9.103 13.18

Mode 4 20.884 36.87

Mode 5 20.884 50.29

Table 7.2: Natural frequency comparison of free-free tensegrity prisms

The first natural frequency of a two-stage tensegrity prism mast found by Safaei, et

al. [32], at various slenderness ratios and pre-stress levels, ranges from 1.3 Hz to 23.8 Hz.

The pre-stress levels ranged from 0.1 kN to 10 kN.
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Figure 7.18: Sample time history

It is also interesting to note that the time history response, shown in Fig. 7.18, displays a

beating pattern, indicative of the superposition of two slightly different natural frequencies,

in this case, 16 and 17 Hz. The modulated frequency is about 1 Hz and the carrier frequency

is about 16 Hz. Ali and Smith [148] also obtain a response experimentally with a beating

pattern similar to this one.

Bossens, et al. [146] looks at the first four modes of a three-stage saddle-vertical-diagonal

tensegrity mast and show the natural frequencies versus pre-tension level. They show the

presence of a “soft” mode, which is also found in this study. Soft modes occur when the

first natural frequency approaches zero as pre-tension approaches zero. The presence of

a soft mode indicates an infinitesimal mechanism such that members of the structure can

move without deforming. When soft modes exist, the stiffness of the structure can only be

increased via pre-tension. Soft modes can be avoided by adding redundant cables.

Challenges

Some of the discrepancies in the experimental results could due to hitting the modal ham-

mer on a curved surface. Discrepancies could also be due to the increased tension in the

cables attached to the fixed magnets. Striking the test articles in their initial configurations

resulted in larger amplitude oscillations, which weakened the signal strength of the laser.

The curved surface for response resulted in poor laser signal. Also, changing direction of
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impact strike could have influenced results. Repeatability could also be influenced by joint

friction and cable relaxation [167]. If cable slackening had been taken into account in the

study of Ref. [32], the difference in natural frequencies would have been larger as cables in

the lowest stage become slack at very low tension.

The two most common tensegrity failures are strut buckling and loss of pre-tensioning

level or cable yield [75]. Other limitations include turnbuckle range. Stretching and elon-

gation come from two sources: constructional and elastic. Constructional elongation is

a permanent stretching that results from the construction process, or plastic deformation,

where the individual wires adjust under the load. Elastic deformation is a recoverable stretch

that approximates Hooke’s Law. It is believed that this permanent stretch is the reason for

cable slackening. Note that the structures were left in a tensioned state overnight. The CFM

showed the most cable stretch/slackening over time.

Because each member must articulate independently from the other at a node, the me-

chanical design of tensegrity joints can become complex [9]. The joint was the most chal-

lenging part of the design process because it has to have special requirements. The most

restricting being that each joint of the CFM must be capable of maintaining a connection

with both multiple cables and multiple struts. Refs. [164,168,169] look at the joint construc-

tion of tenesgrity prototypes, while Ref. [108] offers solutions for joint zones and connection

points.
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(a) (b)

Figure 7.19: (a) Bending of strut member of CFM, (b) Potential joint improvement

The joint design, shown in Fig. 6.8c, was used as an improvement of the CFM joint.

Tensioning the cables resulted in strut bending, as shown in Fig. 7.19a, the most noticeable

deformation occurring from the adjustment of the vertical cables (the longest cables). It is

likely that this design is more prone to bending as a result of the attached cable members

creating a resultant moment at each of the joints. It can be seen in Fig. 6.8c that for the

CFM, the nodes would not be balanced because of the fact that the connection point of the

cables is offset from that of the struts. The net cable force would then be acting on the struts

and could have contributed to the bending behavior. When a force is not applied directly

through the center of mass, it will create a torque. Thicker struts help prevent bending.
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Chapter 8

Conclusion

The ability to shift the natural frequencies of a tensegrity-based wing offers a potential

application towards flutter suppression. A tensegrity mast can be used for the architecture

of an aircraft wing [68,69].

Tensegrity structures offer the possibility of a revolution in aircraft wing design. Not

only will tensegrity-based wings be lightweight, affordable, and strong, but they could also

increase the efficiency and fuel economy of future aircraft by greatly reducing wing mass.

8.1 Future outlook

Prototypes need a better actuation design and a more precise way to change cables lengths.

It would be useful to find an accurate way to directly measure current cable tension for

different equilibrium positions. In addition, in the future, more attention will be given to

asymmetric configurations via an optimizer. Ref. [170] also noticed significant deformation

in their test article. Therefore, this problem needs to be addressed; it may be crucial to

model buckling for tensegrity structures. Additionally, a more efficient testing method is

needed, as the experimental process took about three hours per actuation pattern.

The practicality of a tensgrity wing in terms of the minimum stiffness required is dis-

cussed. In Ref. [26], the 87-stage tensegrity mast has a calculated bending stiffness of 0.11

MN·m2. Ref. [171] indicates that a full-size vehicle wing would have a flat bending stiffness of

about 0.6 MN ·m2. A traditional wing would be roughly 5.5 times stiffer than the tensegrity

mast. Though this is not favorable, the tensegrity beam could potentially be constructed
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and tensioned to be stiff enough for replacing the traditional wing spar. For instance, the

beam could be made stiffer by changing the configuration, such as, incorporating more units

for the same length. Or, perhaps by changing the material to one with a higher stiffness.
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Appendix A

Form-Finding Algorithm Inputs/Results

These results are identical to the values obtained by Ref. [71]. For more numerical form-

finding examples, refer to Ref. [54].

A.1 Hexagon tensegrity

Inputs

d = 2; b = 9

C =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

−1 0 0 0 0 1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1



(A.1)

0q =

[
1 1 1 1 1 1 −1 −1 −1

]T
(A.2)

107



Outputs

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y

(a)

Node x y

1 0.5197 0.2514

2 0.4776 -0.3244

3 -0.0422 -0.5758

4 -0.5197 -0.2514

5 -0.4776 0.3244

6 -0.0422 0.5758

(b)

Figure A.1: (a) Equilibrium position, (b) Nodal Coordinates

tq =

[
2 2 2 2 2 2 −1 −1 −1

]T
(A.3)

t: 1

µb: 4.3467e-16

s = 1

A.2 Four-strut tensegrity

Inputs

d = 2; b = 8
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Figure A.2: Four-strut tensegrity connectivity

C =



−1 0 0 1 0

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

−1 0 0 0 1

0 −1 0 0 1

0 0 −1 0 1

0 0 0 −1 1



(A.4)

0q =

[
1 1 1 1 −1 −1 −1 −1

]T
(A.5)
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Outputs

-1 -0.5 0 0.5 1

x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

(a)

Node x y

1 0.3603 -0.6084

2 -0.6084 -0.3603

3 -0.3603 0.6084

4 0.6084 0.3603

5 -0.0000 -0.0000

(b)

Figure A.3: (a) Equilibrium position, (b) Nodal Coordinates

tq =

[
1 1 1 1 −2 −2 −2 −2

]T
(A.6)

t: 1

µb: 3.5761e-16

s = 1

A.3 Two-module Snelson’s X

Inputs

d = 2; b = 11

0x =

[
0 2 4 0 2 4

]T
(A.7)

0y =

[
0 0 0 1 1 1

]T
(A.8)
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Outputs

(a)

Node x y

1 0 0

2 2 0

3 4 0

4 0 1

5 2 1

6 4 1

(b)

Figure A.4: (a) Equilibrium position, (b) Nodal Coordinates

t: 1

µb: 3.1032e-16

s = 2

A.4 Tensegrty prism

Inputs

d = 3; b = 12
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C =



−1 0 1 0 0 0

0 −1 1 0 0 0

−1 1 0 0 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

0 0 0 −1 0 1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1

−1 0 0 0 0 1

0 −1 0 1 0 0

0 0 −1 0 1 0



(A.9)

0q =


1 for all cables

−1 for all struts
(A.10)
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Outputs

y

z

x

0
1

0.2

10.5

0.4

0.5

0.6

0 0
-0.5 -0.5

(a)

Node x y z

1 0.5202 0.2504 0.5656

2 -0.4769 0.3254 0.5656

3 -0.0433 -0.5757 0.5656

4 -0.2504 0.5202 -0.1157

5 -0.3254 -0.4769 -0.1157

6 0.5757 -0.0433 -0.1157

(b)

Figure A.5: (a) Equilibrium position, (b) Nodal Coordinates

tq =


1 for cables 1—6
√

3 for cables 7—9

−
√

3 for struts

(A.11)

t: 1

µb: 9.4502e-16

s = 1

A.5 Expandable octahedron

Inputs

d = 3, b = 30
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Outputs

-0.5

1

0.5

0z

0.5

y x

0.5

00

-0.5 -0.5

(a)

Node x y z

1 0.2673 0.2359 0.3526

2 -0.4248 0.2105 -0.2124

3 0.3755 -0.1807 0.2367

4 -0.3166 -0.2061 -0.3283

5 -0.1107 -0.1392 0.4796

6 0.4074 0.1817 -0.1728

7 -0.4567 -0.1519 0.1971

8 0.0614 0.1690 -0.4553

9 -0.2624 0.3513 0.2912

10 -0.0460 -0.4819 0.0593

11 -0.0033 0.5117 -0.0350

12 0.2131 -0.3215 -0.2669

(b)

Figure A.6: (a) Equilibrium position, (b) Nodal Coordinates

tq =


1 for cables

−1.5 for struts
(A.12)

t: 21

µb: 1.3021e-15

s = 1

A.6 Three-module prism mast

Inputs

d = 3; b = 30
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0x =

[
0.125 0.000 0.251 0.198 0.036 0.250

]T
(A.13)

0y =

[
0.116 0.000 0.000 0.104 0.052 −0.065

]T
(A.14)

0z =

[
0.040 0.040 0.040 0.435 0.435 0.435

]T
(A.15)

These values were chosen because they are the roughly measured nodal coordinates of the

physical test article.

Figure A.7: Three-unit prism mast numbering scheme

Also found in Ref. [53], a typical one module tensegrity prism as in Fig. (6.2) has force

density coefficients according to Eq. (A.12). Using the symmetry of Fig. (A.7), the following

six groups (h = 6) are chosen:
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h b

h1 1, 2, 3, 16, 17, 18

h2 4, 5, 6, 10, 11, 12

h3 13, 14, 15

h4 7, 8, 9, 19, 20, 21

h5 22, 23, 24, 28, 29, 30

h6 25, 26, 27

Table A.1: Groups for three-unit prism mast
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