ADAPTIVE CENTRAL PATTERN GENERATORS FOR

CONTROL OF TENSEGRITY SPINES WITH MANY

DEGREES OF FREEDOM

by

BRIAN TIETZ MIRLETZ

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Department of Mechanical and Aerospace Engineering

CASE WESTERN RESERVE UNIVERSITY

January, 2016

CASE WESTERN RESERVE UNIVERSITY
SCHOOL OF GRADUATE STUDIES

We hereby approve the dissertation of
Brian Tietz Mirletz

candidate for the degree of Doctor of Philosophy*.

Committee Chair

Dr. Roger D. Quinn

Committee Member

Dr. Kiju Lee

Committee Member

Dr. Joseph M. Prahl

Committee Member

Dr. M. Cenk Cavusoglu

Date of Defense

July 13, 2015

*We also certify that written approval has been obtained

for any proprietary material contained therein.

Contents

List of Tables

List of Figures

Acknowledgments

Abstract

1 Introduction

1.1
1.2

1.3

Motivation
Scope of this dissertationo

My Involvement and Contributions

2 Background and Related Work

2.1

2.2

2.3

24
2.5

Structures
2.1.1 Robotic Spines Lo
Tensegrity Structures
2.2.1 Tensegrity in Biology
Controllers
Tensegrity Simulation and Analysis
Prior Work: Tensegrity Robots

2.5.1 Tensegrity Robot Designs

vi

xXiv

xXvi

CONTENTS

2.5.2 Actuation Methods L. 21
2.5.3 Machine Learned Controllers 21
2.5.4 Morphological Communication and Distributed Control 22
2.6 Central Pattern Generators 24
The NASA Tensegrity Robotics Toolkit 27
3.1 The Bullet Physics Engine 28
3.2 NTRT’s Cable Models 29
3.2.1 Internal Dynamics 29
3.2.2 Collision Handling 31
3.3 Additional Featureso oL 32
Machine Learning and Metrics 34
4.1 Learning Algorithms L. 34
4.1.1 Monte Carloo 35
4.1.2 Gaussian Samplingo 36
4.1.3 Evolution 37
4.1.4 Implementation within NTRT 39
4.2 Metrics and Objective Functions 39
4.2.1 Objective Functions 39
4.2.2 Cost of Transport L. 41
Tensegrity Spine Structures 44
5.1 Tetraspine 44
5.2 Tom Flemons’ Designs 46
5.3 Novel Designs 48
Control Methods and Simulation Results 49
6.1 Impedance Control, 50

i

CONTENTS

6.2 Central Pattern Generators
6.2.1 Hand Tuned Results
6.3 Automated CPG Morphologies
6.3.1 Results on Various Morphologies
6.4 Feedback for CPGs
6.4.1 Improvements on Rough Terrain

6.5 Goal Directed Controllers

Robot Hardware and Simulator Verification
7.1 Carbon Fiber Spine
7.1.1 Stretch Sensors
7.1.2 Carbon Fiber Spine’s Performance
7.2 'Tetraspine 3
7.3 Simulator Validation
7.3.1 Quasi-static
7.3.2 Hand Tuned Trajectory

7.3.3 Simulator Generated Trajectory

Conclusions

8.1 Contributions
8.2 Future Work: Methods and Details
8.2.1 Machine Learning
8.2.2 Cable Models
8.2.3 Sensors
8.3 Future Work: High Level Research Directions
8.3.1 Tensegrity Quadruped
8.3.2 Tensegrity Biomechanics

8.4 Conclusions

CONTENTS

A Parameters Used In Simulation 96
A.1 Learning Parameters, 96
A.2 Structure and actuator parameters 97

B NTRT Implementation Details 99
B.1 Reference dates 100
B.2 Chapter 3: NTRT Core and Cable Models 100

B.2.1 Bullet Simulation Core 101
B.2.2 Cable Internal Dynamics 101
B.2.3 Cable Contact Dynamics 102
B.24 Motormodels L oo 102

B.3 Chapter 4: Machine Learning 103
B.4 Chapter 5: Structures 103
B.5 Chapter 6: Control 105
B.5.1 Impedance Control 105
B.5.2 CPG Implementation 105
B.5.3 CPG Morphology Determination 106
B.5.4 Feedback Code 106
B.5.5 Goal Direction 107

B.6 Chapter 7: Hardware 107
B.6.1 Arduino Code for Carbon Fiber Spine 108
Bibliography 115

v

List of Tables

6.1 Distance traveled in 60 seconds with deterministic terrain types

7.1 Mass comparison between the three prototypes.

7.2 Control parameters used in Fig. 7.8

List of Figures

1.1

1.2

1.3

2.1

A tensegrity spine model using a tetrahedral complex as vertebrae.
Eight strings connect each segment, four of which form a tenseg-
rity saddle joint. Image courtesy of Tom Flemons, originally from
[Flemons, 2007].
Tetraspine moving across: Top: 4 cm hills, Middle: A 7.5 degree ramp,
Bottom 1 cm blocks. This simulation of Tetraspine used 10 cm rods in
the tetrahedrons. oL o
Four different tensegrity spines simulated in the NASA Tensegrity
Robotics Toolkit. Locomotor gaits were tuned by machine learning
for all structures, and all demonstrated multiple gaits. A: Tetraspine,
with tetrahedral segments and six cables between each segment. B:
Tetrahedal complexes for segments, with eight cables connecting each
segment. C: Octahedral complexes for segments, with four passive and
four active cables between segments. D: A spine with rigidly connected

ribs connected by seven active cables and four passive cables.

The simplest three dimensional tensegrity structure, a three bar prism,
simulated in NTRT. The purple and yellow cylinders represent bars and

red lines represent the cables.

vi

LIST OF FIGURES

2.2

2.3

3.1

3.2

3.3

4.1

4.2

4.3

A tensegrity model of a human leg, which is able to support its own
weight and transmit forces through the knee into the foot. Image
courtesy of Tom Flemons, originally from [Flemons, 2012].
The tensegrity icosahedron with six bars and twenty four strings sim-

ulated in NTRT. The structure touches the ground at three points.

A graphical representation of equations 3.1 and 3.2. The top picture

represents a slack cable. In the bottom the motor has spun clockwise,

tightening the cable and applying equal and opposite forces to the rods. 30

Left: Two rods and a cable encounter a square block, creating a single
point of contact. The cable in this case would be modeled with two
cylinders for collision detection. Right: A graphical representation of
equation 3.5 for this situation. The contact force f. is applied to the
block, while cable forces —f, and —f;, are applied to the rods.

An analogous situation to Figure 3.2 simulated in NTRT, except the
cable contacts the rod in two places due to its orientation. The axes

indicate the geometric center of each collision object.

The results of a typical Monte Carlo learning run. As expected, there is
no correlation between trial number and score. Scores above a certain
threshold become the seed of the subsequent learning run.
Sampling around the best controllers from Figure 4.1. The vertical
jumps indicate a new best controller.
The two primary rough terrain types used throughout this work. Left,

sinusoidal hills. Right, randomly placed blocks.

vii

32

33

36

37

LIST OF FIGURES

5.1

5.2

5.3

5.4

6.1

6.2

Tetraspine, a tensegrity spine robot with tetrahedrons as segments,
and six cables connecting each segment. From [Tietz et al., 2013,
Mirletz et al., 2014] 45
The tetrahedral complex spine, with eight cables between segments,
simulated in NTRT performing a sidewinding motion. 46
Octahedral complexes form the vertebrae, with four passive (white)
and four active (blue) connections between segments. The simulated
spine has twice as many actuated cables. Every saddle joint has a pair
of actuators on either side. Image courtesy of Tom Flemons, originally
from [Mirletz et al., 2014]o 47
Ribs are rigidly attached to three rods in a configuration that mimics
three rods of the tetrahedral complex. cables that only touch ribs are

passive, the other seven are active. Originally from [Mirletz et al., 2014] 48

The control system for a single cable. A block diagram for impedance
control is shown in the upper right hand corner, graphically represent-
ing Equation 6.1. CPG connectivity is shown in Figure 6.6. 50
A twelve segment Tetraspine (38 cm to a rod) crawling over flat ground.
The top cable is shown responding to an impedance controller where
To =35 N, K =300 N/m, and B =50 N/m — s. The CPG’s output
specifies the impedance controller’s trajectory (V5). The difference be-
tween actual length (L) and rest length (Lg) is the stretch in the cable,
which correlates with the tension. The cables take about four seconds
to reach the desired length as specified by the impedance controller’s
parameters. The tension offset is high enough to prevent the cable
from going slack, and the high amplitude of the velocity causes a 6.5

cm oscillation in the length of the cable. 52

viil

LIST OF FIGURES

6.3

6.4

6.5

6.6

6.7

Tetraspine (38 cm to a rod) crawling over 5 cm bumps. The impedance
controller adapts the length of the cable (top) to the terrain (visible
in the height of the segment, bottom), while still tracking the signal
provided by the CPG and producing locomotion. On the hills, this
robot travels at 0.79 cm/s or 0.2 body lengths per minute.
Overall body shape is controlled controlled by adjusting cable tensions.
Top: Tetraspine executing a left turn. Bottom: The simulated robot
rearing before climbing a wall. From [Tietz et al., 2013].
A sine wave controller for Tetraspine making slow progress over hills
(0.2 body lengths per minute). This is the same controller as Figures
6.2and 6.3.
The coupling rules used on the CPGs, as applied to a hypothetical
two dimensional tensegrity spine with four rigid bars, and six cables
connecting them (two per segment). This gives the CPG two nodes
per segment, with three segments. When scaled up, this system leads
to m(3m + 1)/2 possible couplings, where m is the number of nodes.
In this case, there are a total of ten edges per node, but the edges are
sorted by geometry into seven possible edges. These rules reduce the
rate of scaling to half of that for specifying each coupling separately.
[Mirletz et al., 2014]).
Tetraspine executing a form of sidewinding, determined by machine
learning. The vertex of the rear segment functions as a tail pushing
the robot to the right, unlike my hand tuned initial work where we
treated it as the head [Tietz et al., 2013]. Only the outside cables were
included in the CPG, the velocity setpoint for the inside cables was
zero. The time in seconds at each step is shown in the upper left

corner. From [Mirletz et al., 2014].

X

53

54

26

o8

LIST OF FIGURES

6.8 The tetrahedral complex based spine also learned a gait similar to

sidewinding. Large twists of the body are possible since all eight cables

are actuated, moving the robot to the right and down. Other gaits (not

shown) included rolling. From [Mirletz et al., 2014]. 60
6.9 When on a flat surface, the octahedral complexes have one contact

per vertebrae. The learned gait uses these contacting rods as legs and

alternates sides in a walking pattern. While the robot mostly moves

to the left, the motion is not purely two dimensional, the segments

alternate slightly away from the central axis. In this plot phase of

the CPG can be seen in the color of the cables, red indicates high

tension cables, blue indicates low tension. This is also true in the

previous plots, but the cables were typically too small to see. The

time in seconds at each step is shown in the lower right corner From

[Mirletz et al., 2014]. Lo 61
6.10 The second fastest gait of the ribbed tensegrity is shown. This gait

exploits turning the body left and right to move forward (down on the

page), similar to lateral undulation. 62
6.11 Feedback to the CPG is provided through an artificial neural network

(center). The same network is re-used at each cable. 64
6.12 The feedback functions are activated at 10 s while a six segment tetra-

hedral complex spine craws across flat ground. The CPG equations

are able to smoothly integrate this new information. The result is a

lowered frequency but increased amplitude. 66
6.13 A motion sequence of the tetrahedral complex crawling over blocks

with the feedback control system. This spine is 77.5 cm long. 67

LIST OF FIGURES

6.14 Tests of locomotion on a random block field with and without
feedback at the CPG level, using the same random seed. From
[Mirletz et al., 2015b].o 68

6.15 The final controller on three terrain types without goal direction input.

The three square blocks indicate the possible goal positions during
training (the CPG, feedback function, and impedance controller were
all optimized for this task during learning). The small lines indicate
the positions of the center of mass of each segment of the robot. Color
indicates the timestep, with blue at 0 s, fading to red by the end of
the trial at 120 s. With no goal direction, the robot finishes in three
different positions after 120s. 69

6.16 The final control system for a single cable. The new component is
an artificial neural network on the left side of the figure which maps
the goal location and the robot’s orientation to the tension input of
the impedance controller. The network has four inputs, eight hid-
den nodes, and eight outputs: the tension setpoint of each cable’s
impedance controller. Connections between nodes are weighted linear
functions, which sum into a sigmoid function. Each final output node
is another sigmoid, which combines the outputs of the hidden nodes.

The same network is used for each segment, resulting in the goal di-

rected feedback providing commands like ‘tense all of the top cables.’

....................................... 71
6.17 Goal directed motion on hilly terrain. The goal position is indicated
with the large blue box, and the center of mass of each of the robot’s
segments is indicated with the colored lines. The color fade again
occurs from 0 to 120 seconds. 72

x1

LIST OF FIGURES

6.18 Goal directed motion on flat ground. I tested on three additional un-

trained locations (D, E, and F) for flat ground and the blocks. For the

first five plots (A through E), blue is 0 s, and red is 82 s. For location

F (lower right, red is 267 seconds. The robot contacts the goal block

in four out of six locations, two of which were untrained. 73
6.19 Goal directed motion on a block field. All six trials used a block field

with the same random seed. The robot contacts the goal in three out

of six trials. The trial length was 100 seconds in all cases. 74
6.20 Images from 25 s to 30 s of the trial with location A on the blocks

(top left of 6.19). The robot successfully departs the blocks, and then

crawls on flat ground to the goal (the large block in the upper right

corner of each image). 75
6.21 Goal directed motion on a second block field. All six trials use the

same random seed, which was different from Figure 6.19. The robot

reaches the location A again, as well as locations B and C (left side). 76

7.1 The three segment carbon fiber Tetraspine robot, circa April 2013.

One Arduino Mega microcontroller controls each segment. Four out of

the twelve strings are visible; the units on the ruler are inches. 78
7.2 A knit stretch sensor at slack length. The conductive yarn is silver,

the actuator yarn is black. Units on the ruler are centimeters. From

[Tietz et al., 2013]. 80
7.3 A diagram of the sensor and current limiting resistor. 80
7.4 Motion of the Carbon Fiber spine on lab carpet. These images repre-

sent approximately one minute of motion. 81
7.5 The five segment version of the Carbon Fiber spine. Ultimately the

forces required for movement of this spine were beyond the strength of

the knit stretch sensors. 81

xii

LIST OF FIGURES

7.6 Snapshot of TetraSpine3 hardware (the first segment is the farthest
right). From [Mirletz et al., 2015a]. 82
7.7 The load cell calibration. From [Mirletz et al., 2015a]. 83
7.8 We tested the steady state responses of the control by applying a steady
load of approximately 20 N (measured using a hand-held scale) to the
front segment of the robot while holding the other two in place. The
resulting displacement and added tension causes the impedance con-
troller to increase the tension setpoint, mostly in the outside cables.
The forces experienced in each cable are plotted, with the hardware’s
setpoint in blue, its actual tension in red, and the simulator’s predic-
tions in black. The simulator’s error on the system’s maximum tension
is within 6.1% (top plot). (from [Mirletz et al., 2015a]) 86
7.9 A comparison of the tensions experienced by the hardware and simu-
lation under a hand tuned, sine wave input on the velocity term of the
impedance controller. This figure shows the full trial, with the trajec-
tory applied to the simulation the entire time, but on the hardware it is
only active between timesteps 70 and 170 (14 and 34 s). The simulated
maximum system tension in this case is within 7.9% of the hardware.
(from [Mirletz et al., 2015a]) 88
7.10 A comparison of forces experienced under a simulator-tuned CPG
based gait. Like the sine wave, this shows the full trial, with the hard-
ware’s trajectory activated later than the simulator’s. The maximum
tension experienced by the robot is within 1.6% of what was predicted

by the simulator. (from [Mirletz et al., 2015a]) 89

8.1 A prototype tensegrity quadruped ‘big puppy’ implemented in NTRT,
inspired by a passive design by Tom Flemons. Printed with permission

of Dawn Hustig-Schultz. 94

Acknowledgments

This work has been inspired, encouraged, and supported by countless friends, col-
leagues and family members over the years. 1 would like to start by recognizing
Vytas SunSpiral, without whom I may not even know the word tensegrity. Vytas’
vision and energy have been driving forces behind this project. As my advisor, Prof.
Roger Quinn has done an excellent job helping me navigate through changes in project
scope, coursework, fellowship applications, and the publication process. My commit-
tee members, Profs. Kiju Lee, Joseph M. Mansour, Joseph M. Prahl and M. Cenk
(avugoglu have all provided excellent advice. Prof. Roy Ritzmann made valuable
suggestions on early iterations of this work, including the dissertation proposal.

Dr. In-Won Park constructed the final version the robot hardware and gathered
the hardware data for the validation tests. Ross Carnahan made significant contri-
butions to the carbon fiber Tetraspine, including the mold. Dr. Rich Bachmann and
Mark Nandor also deserve thanks for coaching us through the carbon fiber process.
Penny Lemire and Heather Mirletz both taught me the fundamentals required for
Tetraspine’s the knit stretch sensors. Dr. Adrian Agogino made countless helpful
suggestions on machine learning techniques and ways to pitch the research. I greatly
appreciate Tom Flemons’ willingness to share his cutting edge models, and many
fruitful conversations on tensegrity modeling.

Ryan Adams and Perry Bhandal both made numerous contributions to NTRT,

Ryan developed the simulation architecture and the low level software that translates

Xiv

ACKNOWLEDGMENTS

the models into objects within Bullet, and Perry integrated critical libraries, and
drove development of the multi-process learning scripts. I would like to thank Dr.
Lee Brownston for teaching me most, if not all, of my good habits in C++ software
development. Dr. Atil Iscen’s machine learning code was an excellent starting point
for my own learning routines. Dr. Dorothea Blostein, Jonathan Bruce, Dr. Ken
Caluwaerts, Jérémie Despraz, Jeffrey Friesen, Dawn Hustig-Schultz, Andrew Sabel-
haus, Steven Lessard, Alexander Xydes have all been valuable collaborators on NTRT
and within the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center.
The Intelligent Robotics Group and Office of the Chief Technologist at NASA Ames
helped make all of my trips there very productive and enjoyable, special thanks go to
Dr. Terry Fong and Ingrid Desilvestre.

Back in Cleveland, thanks go to Dr. Kathryn Daltorio, Andrew Horchler, Alex
Hunt, Matt Klein, Ron Leibach, Alex Lonsberry, Nick Szczecinski, Vickie Webster,
and the rest of the Biologically Inspired Robotics lab for assistance with everything
from discussing research, to printing posters, to computer maintenance, to stress
relief.

Additional thanks to Dr. Roger Quinn, Dr. Kathryn Daltorio, Vytas SunSpiral,
Dawn Hustig-Schultz, and Heather Mirletz for their comments on early drafts.

This work was directly supported by a NASA Space Technology Research Fellow-
ship, #NNX11AN15H, and indirectly supported via the NASA Innovative Advanced
Concepts Program.

Finally this would not have been possible without my parents, Doug and Pat
Tietz encouraging me to study robotics, and all of their support throughout all three
degrees at Case. Love goes to Heather Mirletz for her optimism, encouragement, and

splendid diction.

XV

Adaptive Central Pattern Generators for Control of Tensegrity Spines
with Many Degrees of Freedom
Abstract

by
BRIAN TIETZ MIRLETZ

This work seeks to advance understanding of how to construct and control tensegrity
spines: highly compliant robots with many degrees of freedom inspired by biological
spines. Tensegrity describes systems of rigid bodies stabilized by cables, where on a
simulated twelve segment robot up to 72 degrees of freedom require constraints or
control. To coordinate the high number of actuators, central pattern generator (CPG)
based controllers provide goal directed, adaptive trajectories for movement on rough
terrain. As a result, this work details, to the author’s knowledge, the first CPG based
robotic control capable of goal directed locomotion on rough terrain. This control
scheme is implemented on four different tensegrity spine designs.

Prior to this work, tensegrity spines were passive, hand constructed models; the
open source NASA Tensegrity Robotics Toolkit (NTRT) was created to develop robots
inspired by these and other tensegrity models using physics based simulation. This
work also discusses the development and implementation within NTRT of a cable
model with contact dynamics and realistic forces. Finally, the simulations are vali-
dated against the forces measured in the hardware implementation of a three segment

tensegrity spine robot.

Xvi

Chapter 1

Introduction

Many desirable applications of robotics, such as search and rescue, planetary ex-
ploration, and environments dangerous to humans are still largely inaccessible to
current robots. Even though robots operate quite effectively in structured, largely
predictable environments such as factories, single floor residences, and missions with
detailed guidance from a human operator, robots have difficulty locomoting through
unstructured terrain or with low bandwidth commands. In order to complete these
more difficult missions, robots need to actively adapt to their surroundings, utilizing

compliant yet rugged bodies to execute those adaptations.

1.1 Motivation

Anyone with sufficient experience in or exposure to dance, sports, or martial arts has
likely encountered the phrase “use your core” or “move from your center.” This is
always a great mystery to beginners, who are still very focused on where to put their
hands and feet. The answer was finally revealed to me about eight years into learning
the swing dance Lindy Hop, when an instructor pointed at the bottom of his rib cage
and said “your legs start here.” Similarly, later in the lesson, the other instructor

pointed at her sternum and said “your arms start here.” In more biomechanical terms,

CHAPTER 1. INTRODUCTION

using flexibility of the torso is necessary for efficient, powerful, agile, and aesthetically
pleasing movement.

This is an important anecdote to remember as we develop mobile robots for
increasingly complex and dynamic tasks. The recent DARPA Robotics Chal-
lenge finals highlighted the difficulty of movement with a large, rigid torso
[Guizzo and Ackerman, 2015]. Out of twenty three teams attempting to complete
eight tasks in a simulated disaster scenario, most robots either fell or required human
assistance at some point, and only one of the robots was able to recover from a fall
without human assistance. Among quadruped robots, even the impressive cheetah
inspired robot from MIT reaches some concerning pitch angles as it jumps hurdles
[Park et al., 2015]. Additionally, while some robots can approach the efficiency of
their biological counterparts on laboratory floors and treadmills, the most capable
robots are orders of magnitude less efficient [Ruina, 2011].

Biological observations highlight how a flexible, actuated spine could improve
a robot’s performance in multiple ways. In evolutionarily ‘lower’ tetrapods such
as lizards and crocodiles, the lateral bending (in the coronal plane) of the skeleton
produces the advancement of the limbs for locomotion [Gracovetsky, 1985]. Mammals
also have the ability to bend vertically (in the sagittal plane), which enables higher
speed gaits such as galloping [Schilling and Hackert, 2006]. Galloping in particular
utilizes the elasticity of the spine to transfer energy between legs [Alexander, 1988]. In
addition to motion and efficiency, dorsal muscles of a dog’s spine appear to contribute
to stabilization in all three planes of the body, with roles (mobility and stability)
changing somewhat between gaits [Schilling and Carrier, 2010].

Such improvements in agility and efficiency could enable robots to be more suc-
cessful in applications where it is dangerous, difficult, or undesirable for humans to
venture, such as search and rescue and planetary exploration. Constructing a robotic

spine with a series of rigid bodies connected by rotary motors may not capture the

CHAPTER 1. INTRODUCTION

© 2006 Tom Flemons

Figure 1.1: A tensegrity spine model using a tetrahedral complex as vertebrae. Eight
strings connect each segment, four of which form a tensegrity saddle joint. Image
courtesy of Tom Flemons, originally from [Flemons, 2007].

desired features of energy storage, be too heavy, or too difficult to control. The energy
storage and control problems may be solved by increasing compliance in the entire
system, allowing for the robot’s body to accommodate low level details of movement
[Paul, 2006], but a fully soft system may not have the strength to transmit the de-
sired forces. Tensegrity structures appear to have the appropriate strength to weight
ratio and force transmission capabilities [Skelton et al., 2001]. Tensegrity is a concept
from art and architecture referring to systems stabilized with continuous tension net-
works [Snelson, 1965], where all of the rigid elements are in compression and forces
are transmitted through elements in tension, such as cables. This can be used to
model biomechanical systems on multiple scales [Ingber et al., 2014, Scarr, 2014]. A
properly designed and controlled tensegrity spine may provide robots with many of

the desired properties and behaviors of biological spines.

1.2 Scope of this dissertation

For the purposes of this dissertation, a tensegrity spine is defined as a tensegrity
structure, built primarily along a single axis, which is capable of a stable, compliant
response to forces in any direction. Prior to this work, tensegrity spines were passive
models constructed from wood and elastic strings [Flemons, 2007]. An example is

shown in Figure 1.1, with twelve segments composed of tetrahedral complexes, and

CHAPTER 1. INTRODUCTION

eight strings between segments.

There are three main possibilities for a tensegrity spine in robotics:
1. A ‘spinal engine’, aiding in the dynamic locomotion of a legged robot

2. A passive ‘force integrator’, replacing the rigid torso of a quadrupedal or bipedal

robot
3. A stand-alone snake or legless lizard like robot

Each of the above shares common issues in mechanism design and control, but
the stand alone robot is the most tractable given the state of prior art. The process
of developing a stand alone spine will create the tools required to evaluate dynamic
tensegrity spine designs and their controllers for the eventual application to legged
robots. Therefore this dissertation will focus on the stand alone robot.

The next question is: what sort of controller should be used with a tensegrity
spine? To enable command of a robot with appropriately high level tasks, it is logical
to incorporate reflexes and online adaptations into the locomotor control. Traditional
modeling control leaves too many possibilities for the number of degrees of freedom
in a tensegrity spine for task level control [Rovira and Mirats Tur, 2009]. Central
pattern generators (CPGs) are a biologically inspired, distributed control system
that can accommodate low bandwidth commands from high level controllers, and
reflexively adapt to feedback [Ijspeert, 2008]. This dissertation will explore using
CPGs for adaptive control of tensegrity spines.

The purpose of this work is to develop adaptive controllers and simulation tools for
tensegrity spines with many degrees of freedom. The controllers need to be capable
of goal directed locomotion over rough terrain, with minimal descending commands.
The simulation tools need to represent the real world sufficiently accurately to inform

the design of future robots and controllers.

CHAPTER 1. INTRODUCTION

1.3 My Involvement and Contributions

I first encountered the concept of tensegrity in 2011 when I was introduced to Vytas
SunSpiral through my NASA Space Technology Research Fellowship. Our initial goal
was to control a spine or snake-like tensegrity robot with central pattern generators
(CPGs), based on the intuition that these two oscillatory systems would synchronize.
The compliance of its tensegrity structure should give the robot a high degree of loco-
motion competence at the structural level, which would complement the adaptability

of the central pattern generator based controller.

Figure 1.2: Tetraspine moving across: Top: 4 cm hills, Middle: A 7.5 degree ramp,
Bottom 1 e¢m blocks. This simulation of Tetraspine used 10 cm rods in the tetrahe-
drons.

Since analytical design methods for tensegrity robots were not (and still are not)
well defined, we decided to test the idea in a preliminary version of the NASA Tenseg-

rity Robotics Toolkit (NTRT, Chapter 3). I started with simple sine waves providing

5

CHAPTER 1. INTRODUCTION

|

..

— ey Pe e

(g Py >
Figure 1.3: Four different tensegrity spines simulated in the NASA Tensegrity
Robotics Toolkit. Locomotor gaits were tuned by machine learning for all structures,
and all demonstrated multiple gaits. A: Tetraspine, with tetrahedral segments and
six cables between each segment. B: Tetrahedal complexes for segments, with eight
cables connecting each segment. C: Octahedral complexes for segments, with four

passive and four active cables between segments. D: A spine with rigidly connected
ribs connected by seven active cables and four passive cables.

a trajectory to distributed impedance controllers for the morphology that became
Tetraspine, and eventually moved to an open loop CPG (Chapter 6). In simulation,
movement was achieved with suspicious alacrity on rough terrain, including hills,
blocks, a ramp, and a wall as shown in Figure 1.2. Due to the success in simulation
we decided to pursue hardware in parallel, with one version of Tetraspine at CWRU
and another version at NASA Ames. Ultimately the hardware was capable of loco-
motion, but not of the terrain handling we observed in simulation due to the spine’s
shorter length.

With results from our first hardware attempt, we were able to make improvements
to NTRT including replacing the default position-based cables from the Bullet physics
engine with a custom Hooke’s law based spring model, resulting in more realistic

though less impressive simulations. Based on Tetraspine’s performance under these

CHAPTER 1. INTRODUCTION

new conditions, we concluded it would be worth investigating additional morpholo-
gies. Tom Flemons, a tensegrity researcher from British Columbia, has developed
a series of passive tensegrity models inspired by vertebrate anatomy [Flemons, 2007,
Flemons, 2012]. Chapter 5 shows the NTRT implementation of these spines, with the
addition of a novel tensegrity spine I created. With four different morphologies, it
would have been too time consuming to hand tune controllers for each experimental
morphology. Thus, I developed an algorithm for automatically determining a CPG
controller based on the morphology of a tensegrity structure, assuming reasonable
symmetries between the actuators (Section 6.3). We then adapted machine learn-
ing techniques to parameterize these controllers, detailed in Chapter 4.1. I applied
this technique to four morphologies controlling between forty four and eighty eight
actuators with up to seventy two degrees of freedom, a record high for a tensegrity
robot.

In addition to contributing to NTRT’s open source release, I then added contact
dynamics to our custom cable models. To my knowledge, this is currently the only
open source cable model with both realistic forces and contact dynamics. This enabled
reinvestigation of rough terrain locomotion with improved realism. As expected, the
success of the tensegrity spines depended on the ratio between the size of the obstacle
and the size of the spine. In order to enable spines to handle larger obstacles, I
adapted feedback equations for a central pattern generator based controller in a novel
way. | added descending inputs via an artificial neural network for goal direction, a
step towards allowing for simple ‘go that way’ commands from an operator. The full
control scheme is discussed in Chapter 6.

In order to verify the realism of these results, Dr. In-Won Park and I used the
NASA Ames Tetraspine hardware to verify the forces predicted by NTRT. We showed
that NTRT is capable of predicting the maximum tension in the hardware within

7.9%, giving us confidence in our ability to use NTRT to design future robots. Both

CHAPTER 1. INTRODUCTION

the NASA Ames and CWRU hardware, and the validation work are presented in
Chapter 7. Finally, Chapter 8 includes my ideas for future directions for tensegrity
spines, and other applications of tensegrity research that could utilize this work’s

contributions to control algorithms and simulation software for tensegrity robots.

Chapter 2

Background and Related Work

2.1 Structures

Having had the pleasure of working with a team that includes mechanical engineers,
computer scientists, and tensegrity designers, I have learned the value of common
technical vocabulary, thus a brief robotics background is included here.

The ‘structure’ is the robot’s body, and how it interacts with the world. Robots
have a wide range of structures, from a ‘shoebox on wheels’, to an arm, to a humanoid,
to a variety of soft structures. Structures are typically simplified as rigid elements
(sometimes referred to as links), and actuators (motors and similar).

Degrees of freedom (DOF) is an important concept to help describe dynamic
structures such as robots. DOF refers to the number of variables required to describe
the robot’s current configuration, such as its position in space or the orientation of its
links. The number of degrees of freedom is closely related to the number of actuators
and constraints needed to control the robot. Position in three dimensions can be
described in three variables (x, y, z). If the object has any shape (it is not a point),
an additional three variables are required to describe its orientation (yaw, pitch,

roll). Thus, an unconstrained rigid body has six degrees of freedom. Constraints can

CHAPTER 2. BACKGROUND AND RELATED WORK

reduce the DOF, for example a wheeled vehicle on flat ground is often described in
two dimensions, with three degrees of freedom (x, y, and yaw). A structure fixed
(with bolts or welds, etc.) to a base has zero degrees of freedom. A hinge joint
provides a single rotational degree of freedom, a prismatic joint one linear degree,
and a ball joint three rotational. A robotic arm with a chain of rigid bodies, fixed at
the base, would have degrees of freedom exactly equal to its number of actuators. The
tensegrity systems considered here have up to seventy two degrees of freedom, with
between forty four and eighty eight actuators. Depending on the morphology, the

motion of these degrees of freedom can be actively actuated or passively constrained.

2.1.1 Robotic Spines

While many existing robots are capable of versatile motion on rough terrain with
a rigid torso [Raibert et al., 2008], other robots have gained mobility advantages by
including a few degrees of freedom in the torso. Applications of body joints tend
to fall into two broad categories. First, body joints can be actuated as needed to
enhance behaviors like climbing [Allen et al., 2003, Daltorio et al., 2008]. Passive de-
grees of freedom can also provide additional adaptations. By tuning the stiffness of
their robot’s cable driven spine, Takuma et al. were able to optimize the speed of
their quadruped robot [Takuma et al., 2010]. The caterpillar whegs robot had a spine
composed of rubber spacers which increased passive compliance [Kern, 2012]. Servo
driven cables provided turning and rearing. The next iteration of the design utilized
a tensegrity joint design between segments (a compression spring between rigid el-
ements, with the actuated cables as tensile members), and actuated each segment
individually [Webster et al., 2013]. These designs demonstrate the ability of robots
with body joints to adapt to their environment with minimal computation, but these
types of joints play a limited role.

Alternatively, body joints can drive locomotion. Snake robots use a serial

10

CHAPTER 2. BACKGROUND AND RELATED WORK

chain of motors to generate whole body locomotion directly [Wright et al., 2007,
Wright et al., 2012], or with passive wheels [Mori and Hirose, 2002]. Controllers for
these robots mimic the gaits seen in biological snakes [Transeth et al., 2009]. Ijspeert
et al.’s salamander robot uses a chain of motors in swimming and walking with bio-
logically inspired central pattern generator based control [Ijspeert et al., 2007].

Quadruped robots have also been driven by a spine, increasing the range of motion
of legs for increased speed and agility [Leeser, 1996]. Zhao et al. examined a planar
quadruped performing a bounding gait on flat ground with a rigid, passive, and
actuated spine, and found that the actuated spine increased speed over the other
two spines [Zhao et al., 2013]. Eckert et al. experimented with actuated spines with
multiple segments that move in the sagittal plane with at most one actuator, and
found that a compliant spine can produce stable gaits up to 0.75 m/s on a 0.224
meter long robot [Eckert et al., 2015]. Duperret et al. showed a parallel elastic spine
improves the agility of leaping in the quadruped Canid, when compared to the similar
XRL robot with a rigid body [Duperret et al., 2014]. Spines developed for humanoid
robots have so far focused on motion and stabilization of the trunk using cable driven
[Mizuuchi et al., 2005, Liu et al., 2009, Pfeifer et al., 2013] or hydraulic mechanisms
[Roos et al., 2006], but have not been used while walking.

This work seeks to combine compliant adaptability with active spine motion by

using fully actuated, spine-like tensegrity structures.

2.2 Tensegrity Structures

A tensegrity structure is most generally defined as a set of rigid bodies (compression
elements), stabilized by tension elements (typically cables or strings), in the absence
of external forces [Skelton and De Oliveira, 2009]. A simple simulated tensegrity with

three bars and nine cables in a prism configuration is shown in Figure 2.1. Initial work

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: The simplest three dimensional tensegrity structure, a three bar prism,
simulated in NTRT. The purple and yellow cylinders represent bars and red lines
represent the cables.

12

CHAPTER 2. BACKGROUND AND RELATED WORK

on tensegrity structures was performed by Kenneth Snelson and Buckminster Fuller in
the late 1940’s, with patents filed in 1959 and 1960 [Fuller, 1962, Snelson, 1965]. Fuller
went on to apply the work to large structures such as geodesic domes [Fuller, 1965],
while Snelson created artistic sculptures [Heartney, 2009]. Contemporary architects
have used tensegrity structures in their designs for applications ranging from bridges
[Franklin et al., 2010] to football stadiums [Levy, 1991]. Current research in adaptive
civil structures is examining tensegrity structures for improved building functionality
or damage control [Sterk, 2006, Korkmaz et al., 2011].

With three rigid bodies, the tensegrity prism in Figure 2.1 has 18 degrees of
freedom. While the cables do constrain the motion, the constraints are not rigid in
the same way as a hinge or prismatic joint. In order to balance the forces and keep the
structure’s shape, the cables are elastic, meaning they will change their length when
a force is applied. While in an absolute sense the rods also have some elasticity, they
are orders of magnitude stiffer than the cables, so rigidity is usually a safe assumption.
The cables’ elasticity is assumed to be similar to that of a linear spring, where the
force is linearly proportional to the distance away from its ‘rest length.” A cable’s
elasticity is usually represented as F' = kAx, where F' is the force, k is the spring’s
stiffness, and Az is the distance from the rest length. However, unlike a spring, cables
cannot be pushed (compressed). A slack cable applies no force (beyond its usually
negligible weight), so if Az < 0, F' = 0. A more rigorous set of equations for computer
simulation of tensegrity structures is discussed in Section 3.2. With their composition
of rigid elements and cables, tensegrity robots are often considered a hybrid of soft
and rigid robots [Lipson, 2014]. Constraining the rigid bodies with cables instead of

rigid links provides desirable properties including;:

e Most of a tensegrity structure is empty space, so tensegrity can provide minimal
mass for a structure of a given strength, also known as a high strength to weight

ratio [Skelton et al., 2001]

13

CHAPTER 2. BACKGROUND AND RELATED WORK

e Forces applied to the structure will be passively distributed through-
out all of the tension elements, minimizing points of local weakness

[Skelton and De Oliveira, 2009, SunSpiral et al., 2013]

e If one or more actuators fails, others can still move the structure in useful ways

[Iscen et al., 2014, Paul et al., 2006]

e The tension elements store elastic energy within the structure

[Juan and Tur, 2008]

2.2.1 Tensegrity in Biology

© 2006 Tom Flemons

Figure 2.2: A tensegrity model of a human leg, which is able to support its own
weight and transmit forces through the knee into the foot. Image courtesy of Tom
Flemons, originally from [Flemons, 2012].

14

CHAPTER 2. BACKGROUND AND RELATED WORK

Many of the desirable properties of tensegrity structures are already present in
biological systems. For exampe, the non-linear mechanical properties of the cell’s
cytoskeleton such as strain hardening (strengthening under sufficient stretch) can be
modeled with tensegrity [Ingber et al., 2014]. These insights have implications for
practical applications in tissue engineering, such as determining how cells will at-
tach to substrates [Wang et al., 2002], and even changing the genetic expression of
the cell (known as cell fate) [Ingber, 2003]. Tensegrity properties can also be ob-
served in macroscopic biological structures, particularly through the connective tis-
sue such as fascia [Myers et al., 2001]. Turvey and Fonseca have hypothesized that
tensegrity based biomechanics would explain phenomena in haptic perception (forces
experienced from touch) such as loss of limb awareness in microgravity and percep-
tion of phantom body parts [Turvey and Fonseca, 2014]. Passive tensegrity models
of the spine [Levin, 2002, Flemons, 2007], knee [Flemons, 2012], and shoulder gir-
dle [Levin, 1997], can capture geometric features of anatomy without the simplifying
assumption of a stable platform within the body or a large reduction in the degrees of
freedom (compared to more traditional models such as [Cholewicki and McGill, 1996]).
A tensegrity model of the human leg is shown in Figure 2.2, for review of biotensegrity
models see [Scarr, 2014]. Stability in this leg model is a result of the intuition that
the tension network should hold the bones apart. The knee is capable of transmit-
ting compressive forces and bending in the normal range of motion while constrained
in others. However, these models are still in need of quantitative validation, par-
ticularly of their dynamic properties. These biologically inspired designs motivated
robotic tensegrity models of the caterpillar [Orki et al., 2012], and manta-ray’s wings
[Moored et al., 2011] or tail [Bliss et al., 2008, Bliss et al., 2013], which are discussed

further in section 2.5.1 and may assist with quantitative validation.

15

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Controllers

A controller’s role is to solve the problem: ‘How do I get my robot to do what I want it
to do?” For a robot, this means rotating or translating some parts of the robot relative
to other parts via actuators, ideally coordinating the actuators in a desired pattern
with higher level algorithms. If the motor commands are pre-specified and never
change this is known as open-loop control. One level above pre-specified commands
considers a desired position, force, or torque for the motor or some point on the robot
(often referred to as an end-effector, such as a hand or foot), and uses feedback on
that variable to determine motor commands. If only the variable is considered (say,
position), then this is known as proportional control. If derivatives and/or integrals
are considered the controller is referred to as proportional-integral-difference or PID
control. Cruise control in a car is a PID controller, where the driver chooses the
speed. The field of control theory deals with methods such as PID control to ensure
a system’s output matches the desired input for a variety of increasingly complex
systems, including methods for optimization like minimizing energy consumption.

Then there is the question of how to determine the desired position, or setpoint, for
proportional control. In some situations this is well known, but in others, additional
variables need to be considered before choosing the setpoint. For example, in traffic,
distance from the other cars becomes important to choosing a speed. If the setpoint
needs to change over time, it is typically referred to as a trajectory. For a tensegrity
structure, trajectories typically coordinate length changes between the cables for the
desired movement of some point on the robot (center of mass or end effector).

This is where things get interesting (to me, at least). First, determining a tra-
jectory for locomotion of tensegrity structure is complex due to the elasticity of the
structure and the coupling between the actuators. Thus, machine learning algorithms
are frequently used for determining a trajectory. The algorithms used in this disserta-

tion are described in Chapter 4.1. Second, repeatedly using the same trajectory can

16

CHAPTER 2. BACKGROUND AND RELATED WORK

be effective in well known situations, such as walking on flat ground. These situations
are often referred to as ‘steady state’. However, in non-steady state conditions, such
as rough terrain, the trajectory may need to be modified to get around obstacles or
change the direction of locomotion to reach a new location. The bulk of Chapter
6 focuses on how to generate and adapt these trajectories, using inspiration from

biological systems.

2.4 Tensegrity Simulation and Analysis

Much of the work on controllable tensegrity structures has focused on form finding:
determine the equilibrium points of a structure given a set of compression and ten-
sile members, their lengths and connectivity [Masic et al., 2005]. The lengths and
connectivity can be represented as vectors of nodes (the points where the members
connect) and their relationships can be specified by a connectivity matrix. Form
finding led to applications in deployable structures - since the volume of tensegrity
structures is mostly empty space, they can be packed and transported more densely
than a traditional compression based structure [Skelton et al., 2001]. This is a par-
ticularly attractive property for planetary missions, since packing can minimize the
launch weight and volume of the structure [SunSpiral et al., 2013]. The form finding
algorithm addresses quasi-static movements between equilibrium points, but does not
account for dynamic motions of the structure.

Some of the earliest theoretical work on dynamic tensegrity control looks to sta-
bilize the vibration of the structure, such as as Djouadi et al.’s optimal control based
algorithm for a tensegrity antenna-beam [Djouadi et al., 1998]. More recent work by
Skelton and Friesen develops means to determine required length changes in actuators
(inverse kinematics) to move tensegrity structures along known, desired trajectories

[Skelton and De Oliveira, 2009, Friesen et al., 2014].

17

CHAPTER 2. BACKGROUND AND RELATED WORK

However, these algorithms depend upon well defined trajectories for the robot,
and environmental contact points. These assumptions, especially about con-
tact, are rarely valid for robots moving through natural unstructured environ-
ments. Physics-based simulation, which can provide more sophisticated envi-
ronmental information, can help quantify the robots’ potential performance in
more complex environments. Many of the prior tensegrity simulations were ded-
icated to modeling only the equations of structures with axial bars only con-
nected to cables [Rovira and Mirats Tur, 2009, Hirai and Imuta, 2012]. Finite el-
ement methods such as those used in [McGarry and Prendergast, 2004], also as-
sume pre-defined contacts. Modern physics engines provide advantages such as
the fast computation of contact dynamics [Boeing and Braunl, 2007], and new
robot morphologies can be easily implemented and tested in complex environ-
ments [Rieffel et al., 2010, Tietz et al., 2013, Mirletz et al., 2014]. Engines includ-
ing ODE [Paul et al., 2005b, Rieffel et al., 2008, Rieffel et al., 2010], Simmechanics
[Orki et al., 2012], and Bullet via the NASA Tensegrity Robotics Toolkit (NTRT)
[Tietz et al., 2013, Caluwaerts et al., 2014, Friesen et al., 2014] have been used by
tensegrity researchers for simulation. Additionally, the faster run time of these en-
gines means that machine learning algorithms can be used to determine control strate-
gies for structures [Paul et al., 2005b, Iscen et al., 2013b]. For more information on

NTRT, see Chapter 3.

2.5 Prior Work: Tensegrity Robots

Tensegrity robots originated when form finding methods motivated exploring actu-
ated tensegrity structures for cantilever like manipulators [Aldrich et al., 2003], since
the trajectory of a chosen point on the stucture (end effector) could be represented

by a series of equilibrium points. For locomotion, Masic and Skelton developed a

18

CHAPTER 2. BACKGROUND AND RELATED WORK

theoretical controller for a tensegrity tower that mimics the peristaltic motion of a
worm [Masic and Skelton, 2004]. Paul et al. developed the first mobile tensegrity

robot in hardware, a three strut prism capable of crawling [Paul et al., 2005b].

2.5.1 Tensegrity Robot Designs

Designs for tensegrity robots have fallen into two broad categories: those determined
by geometry, and those determined by machine learning. The simplest tensegrity
structure in three dimensions is a three strut prism, which has been investigated
by [Paul et al., 2005b] for basic locomotion and trajectory following in simulation in
[Rovira and Mirats Tur, 2009] (with hardware capable of shape changes discussed in
[Mirats-Tur and Camps, 2011]). Additional struts can be added to the prism, as is
typical for a tensegrity version of a Stuart platform parallel manipulator [Burt, 2013].
These prisms can also be chained together into the helical tensegrity spires, similar
to a number of Snelson scupltures [Scarr, 2014], or connected at the rods to make
a tower for peristaltic motion [Masic and Skelton, 2004]. Ball joints can be used
between compressive nodes to further extend these structures into cylinders, toruses,
or spheres [Nagase and Skelton, 2015].

More recent efforts towards the locomotion of tensegrity robots focus on the icosa-
hedron configuration as a crawling or rolling tensegrity robot, as shown in Figure
2.3. Efforts by Koizumi et al. have produced slow ‘flops’, which deform the struc-
ture to change the face in contact with the ground, in a pneumatic tensegrity robot
[Koizumi et al., 2012]. This configuration has also been used extensively by the NASA
Ames Super Ball Bot project [Agogino et al., 2013|, and has subjected the configura-
tion to numerous drop tests [SunSpiral et al., 2013]. Controllers for this morphology
are discussed in both sections 2.5.3 and 2.6.

Other tensegrity robots attempt to mimic the geometry and mechanics of a liv-

ing organism. Orki et al. used an Assur truss to model caterpillar crawling in 2D,

19

CHAPTER 2. BACKGROUND AND RELATED WORK

==

f

==
=3
-
-
. 8
¥

Figure 2.3: The tensegrity icosahedron with six bars and twenty four strings simulated
in NTRT. The structure touches the ground at three points.

with struts representing legs and the internal compression, and cables representing
muscles [Orki, 2012]. This model was capable of representing the internal pressure
characteristics of a crawling caterpillar. Bliss applied a tensegrity truss to a swimming
application similar to the tail of a manta ray [Bliss, 2011]. His hardware implemen-
tation used two actuated cables, which allowed for a pair of antagonistic actuators,
a requirement of the oscillators he used for control [Bliss et al., 2013]. The robotic
application of the passive, biologically inspired designs discussed in section 2.2.1 is
the subject of Chapter 5.

A tensegrity structure’s morphology can also be determined by evolution-
ary algorithms, which can explore a wider range of possible shapes than intu-
ition alone. The resulting morphologies can either use a high degree of symme-
try, as in Connelly and Black’s catalog that was generated using group theory
[Connelly and Back, 1998], or produce irregular structures by learning the connectiv-

ity matrix directly [Paul et al., 2005a]. Rieffel et al., extended this work by encoding

20

CHAPTER 2. BACKGROUND AND RELATED WORK

the connectivity into a graph [Rieffel et al., 2009].

2.5.2 Actuation Methods

Prior to discussing control algorithms in more detail, it is important to clarify assump-
tions about actuation. There are three possible options for actuating a tensegrity
structure: actuate the tension elements, the compression elements, or a combination
of both. Most researchers avoid actuating both, due to the control complication of
full system actuation. While the struts are sometimes actuated in civil engineering
applications, such as Fest et al.’s active structure [Fest et al., 2004], robotic applica-
tions typically opt for the increased speed available to actuators that change the rest
length of tension elements.

A common method (used by [Paul et al., 2005b, Tietz et al., 2013,
Bliss et al., 2013, Caluwaerts et al., 2014, Bruce et al., 2014], among others) is
to place a motor at one end of the cable, and a tension element (spring) on the
other. The tension element can either be a tensile spring, as in the ReCTeR robot
from [Caluwaerts et al., 2014], or a compression spring as in [Bruce et al., 2014].
Other techniques for robots include placing linear actuators in line with the tension
elements [Kim et al., 2014] or exploiting the oscillations of the structure using

vibrational motors [Khazanov et al., 2013].

2.5.3 Machine Learned Controllers

The simplest possible controller for a tensegrity robot is open loop position control via
a direct encoding of length changes for the actuated cables. This approach was used
by [Paul et al., 2005b, Rovira and Mirats Tur, 2009] and [Iscen et al., 2013a]. The
algorithms by Paul et al. and Iscen et al. both explicitly sought periodic actuation
patterns, while Rovira and Mirats Tur revised the actuation pattern every 50 ms using

a model based controller. As a result Rovira and Mirats Tur demonstrated trajectory

21

CHAPTER 2. BACKGROUND AND RELATED WORK

following control for a line, square, circle; a first for a tensegrity robot. However, for
any other morphology their search algorithm would result in a state space explosion
that could not be solved in real time, so most subsequent research has performed
learning offline.

Offline methods to determine a trajectory for the cables include genetic algo-
rithms [Paul et al., 2005b], where control parameters are iteratively modified either
with small mutations of existing parameters, or crossover with existing parameter
sets to produce (hopefully improved) new controllers. These algorithms can work
effectively when only a subset of cables is actuated [Paul, 2006]. More details on
genetic algorithms can be found in section 4.1.3. Iscen et al. determined controls for
the icosahedron configuration by using a co-learning algorithm [Iscen et al., 2013a].
In this application, co-learning assigns each of the 24 strings (or sometimes a group of
strings) a controller and creates ‘teams’ of controllers to coordinate the entire robot.
Controllers are then evaluated by their average score after participating in multiple
‘teams’ and controller parameters are modified by mutation. When provided with
state information such as contact and goal direction, the teams can be trained to
move the robot towards a goal location by continuously tipping the center of mass of
the robot onto a new face of the icosahedron [Iscen et al., 2014]. While Iscen et al.’s
controller was robust to perturbations of short duration during locomotion (such as a
large impulse throwing it off the shortest path), the controller needed to be retrained
for new terrains. Thus, other researchers have developed closed loop strategies for

tensegrity control.

2.5.4 Morphological Communication and Distributed Con-

trol

An effective way to close the loop in a tensegrity robot is to distribute controllers

and take advantage of the structure’s passive dynamics, minimizing communication

22

CHAPTER 2. BACKGROUND AND RELATED WORK

between disparate elements. For example, Khaznov et al. were able to make an
icosahedron tensegrity robot travel across the floor without rolling by vibrating at
different frequencies through online learning using an off-board motion tracking sys-
tem [Khazanov et al., 2013]. A more active strategy is a spiking neural network, as
applied to tensegrity robots by Rieffel et al. [Rieffel et al., 2010] for the structures
from [Rieffel et al., 2009]. The inputs of the network are the tensions in the cables,
and a spike results in a 50% change in rest length. Rieffel et al.’s controllers relied
on the physical structure to communicate control information, a concept known as
morphological communication. The weights of the network and the positions of the
actuated cables were tuned with a genetic algorithm. Rieffel et al.’s control is closely
related to the idea of morphological computation, which relies on compliance and
nonlinearities in the physical structure to handle typically complex control problems
[Pfeifer and Gémez, 2009, Hauser et al., 2011, Hauser et al., 2012]. The icosahedron
tensegrity configuration has also been used for morphological computation for lo-
comotion, performing a gait change after changing the equilibrium length of a few
springs [Caluwaerts et al., 2013].

In contrast to much of the prior work, the controller’s output could be the ten-
sion of the cables. Impedance control (originally developed for manipulators by
[Hogan, 1985]), allows for the specification of a stiffness along a trajectory, and thus
allows for both the tension and length of cables to be considered. Orki et al. adapted
impedance control to tensegrity structures with a scalar equation for the force in each
cable [Orki et al., 2012]. Orki et al. then use a binary descending control to com-
mand the cables to lengthen or shorten for motion resembling caterpillar crawling.
The advantage of the impedance control approach is that impedance control explicitly
considers the forces of the actuators, which allows for distributed reflexes for terrain

adaptation.

23

CHAPTER 2. BACKGROUND AND RELATED WORK

2.6 Central Pattern Generators

The previously discussed algorithms have not dealt with generating online adaptations
for a complex robot. Animals are capable of generating adaptive behavior through the
many degrees of freedom in their bodies, so control ideas from neuroscience may be
effective for tensegrity robots. To handle the challenge of coordinating many degrees
of freedom, motor control in animals is distributed across neural centers, ranging
from higher centers in the brain, to local control circuits [Grillner et al., 2007]. Well
designed low level controllers for robots will allow for descending commands to be
relatively simple, easing the job of an operator or high level controller.

The quintessential low-level neural circuit for locomotor control has been de-
scribed as a central pattern generator [Grillner, 1985b], which is a group of
neurons capable of generating a rhythmic pattern. Networks of coupled os-
cillators forming a central pattern generator (CPG) are typically found in the
spinal cord in vertebrates [Grillner, 2006] or in thoracic ganglia in invertebrates
[Biischges et al., 2008]. CPGs have been found to control multiple types of loco-
motion, including walking [Brown, 1911], swimming [Grillner et al., 1981], and flying
[Wilson, 1961, Stevenson and Kutsch, 1987], as well as non-locomotor functions such
as digestion [Robertson and Moulins, 1981]. Feedback is used to modulate the CPG
and adapt the rhythm to the environment [Delcomyn, 1980, Grillner, 1985a]. Addi-
tional behaviors can be generated by descending commands from the brain, which
change the CPG’s rhythmic patterns, such as the transition from walking to swim-
ming in the salamander [Cabelguen et al., 2003].

Computational models of central pattern generators need to represent both oscilla-
tors and the connectivity between them. These can range from using detailed models
of individual neurons as a ‘node’ [Hellgren et al., 1992, Daun-Gruhn and Téth, 2011],
to neuron models based on firing frequency [Ekeberg, 1993], to abstract dynamical

systems that produce oscillations [Matsuoka, 1985]. For review see [Ijspeert, 2008].

24

CHAPTER 2. BACKGROUND AND RELATED WORK

These computational CPGs produce what is known as a stable limit cycle, a path
through phase space that is robust to perturbations. The drawback is system complex-
ity; the detailed neuron models require at least two differential equations, including
several exponential and hyperbolic terms [Daun-Gruhn and Téth, 2011], and have a
strong dependence on coupling in order to produce sustained oscillations. Simpler
nodes have two linear differential equations [Matsuoka, 1985], but again are highly
dependent upon coupling. These drawbacks can make CPGs for robots hard to design
and tune.

An important simplification for engineering use is to assume a node has
all of the properties it needs to oscillate, representing a population of neurons
[Buchli et al., 2006]. Thus a designer can focus on the network dynamics, and os-
cillator parameters can have clear effects on the output. One example is an ampli-
tude controlled phase coupled oscillator implemented by Crespi and Ijspeert at Ecole
Polytechnique Fédérale de Lausanne in Switzerland (EPFL) on a lamprey-like swim-
ming robot [Crespi and Ijspeert, 2006] (see equations 6.2, 6.3, and 6.4 in section 6.2).
This CPG successfully simplified the parameters to clear amplitudes and phase dif-
ferences. The same oscillator with a different network topology was also used in their
salamander [Ijspeert et al., 2007] and boxfish inspired robots [Crespi et al., 2007].
CPGs in those robots also simulated a descending command from the mesencephalic
locomotor region of the brain to change gaits and turn, similar to salamanders
[Cabelguen et al., 2003].

Properly formulated oscillator equations can even adapt to their environment
online using local feedback, and continue using that pattern if feedback is lost
[Righetti et al., 2009]. This entrainment behavior was used on a swimming tenseg-
rity by Bliss et al. [Bliss et al., 2013]. Feedback can also come from non-rhythmic
sources. Utilizing feedback from a simulated gyroscope, Gay et al. implemented

the phase coupled oscillators of the salamander/lamprey research on a quadruped

25

CHAPTER 2. BACKGROUND AND RELATED WORK

with a rigid torso [Gay et al., 2013]. The feedback parameters were learned offline
though particle swarm optimization, which enabled the simulated robot to traverse a
55 degree downward slope and randomized rough terrain.

One of the problems with existing tensegrity controllers was that controllers
needed to be re-tuned for each terrain type. CPGs could solve this problem by al-
lowing for online adaptations via feedback functions. Additionally, properly designed
low level controllers can mimic reflexes, to complement the mechanical compliance
of the tensegrity structure. Therefore this dissertation will use CPGs with feedback
and impedance controllers with a compliant tensegrity spine for locomotion on ir-
regular terrain. Machine learning methods will help determine parameters for these

controllers.

26

Chapter 3

The NASA Tensegrity Robotics
Toolkit

A primary focus of this dissertation was developing the NASA Tensegrity Robotics
Toolkit as a platform for simulating tensegrity robots and developing control algo-
rithms for those robots!. This chapter summarizes the architecture and features of
NTRT that were developed for and used in this work.

Note that capabilities and accuracy of NTRT have improved dramatically through
this work, and many papers that comprise this dissertation were written before rele-
vant features of the toolkit were implemented. For reference, Appendix B summarizes
the features and their implementation dates, as well as the dates that relevant data
was recorded from the simulator. Generally speaking, the control algorithms discussed
in Chapter 6 have been successful throughout the improvements to the simulator, with

appropriate retuning of parameters.

Information, source code, and documentation for NTRT can be found at
http://irg.arc.nasa.gov/tensegrity/NTRT

27

CHAPTER 3. THE NASA TENSEGRITY ROBOTICS TOOLKIT

3.1 The Bullet Physics Engine

Rigid body physics simulation engines handle the task of integrating the equations
describing the motion of objects and detecting and resolving their collisions. Depend-
ing upon the constraints of the system, it may be more effective to write simulator
equations directly in terms of the positions of joints, rather than world space (Carte-
sian coordinates). Physics simulators can thus either be implemented in Cartesian
space, or joint space. Given that there are not rigid constraints between rigid bodies
in tensegrity structures, in NTRT they are simulated in Cartesian space. Addition-
ally, implementing terrain interaction is easier when simulating in Cartesian space.
The NTRT simulator uses Bullet Physics version 2.82 as its underlying physics engine

[Coumans, 2012]. The initial choice of Bullet was motivated by:

1. Bullet’s inclusion of soft body dynamics
2. The desire to use all open source code with NTRT

3. The large community of developers that use Bullet, and an active support forum

(1) and (3) were the key reasons for choosing Bullet over the Open Dynamics
Engine (ODE), another common choice within robotics. [Erez et al., 2015] provides
a recent comparison between the rigid body capabilities of these and other engines.

Simulations in NTRT are run at a fixed timestep (between 1000 and 4000 Hz for
the work in this dissertation), at which they can either run in real time with render-
ing (60 Hz), or faster than real time without rendering. For example, a 60 second
simulation without rendering or cable contact dynamics can run in approximately 7
seconds on an Intel Core™ i7 CPU. The use of numerical integration for CPGs also
slows runtimes, the slowest simulations with contact cables and complex terrains tend
to be about 1/2 of real time (two real seconds to one simulation second).

We construct models in NTRT using a set of builder tools that takes a tagged

set of Cartesian coordinates (nodes) and their connectivity (pairs), and generates

28

CHAPTER 3. THE NASA TENSEGRITY ROBOTICS TOOLKIT

a tensegrity structure according to physical properties of the rods (radius, density,
friction, restitution) and cables (stiffness, damping, motor properties). Models can
either use objects of uniform mass, such as a series of compounded rods, or place
point masses at nodes to simulate mass concentrations such as motors and increase the
accuracy of the inertia matrices used by the simulator. Examples of model parameters
are given in Appendix A. Units used within the simulator are scaled to keep the
numbers within reasonable ranges for numerical integration, and gravity is scaled
accordingly. Simulations were run at cm scale unless otherwise noted (gravity at 981

cm/sec), data presented in this dissertation has been scaled as necessary.

3.2 NTRT’s Cable Models

My initial work in [Tietz et al., 2013] used Bullet’s default soft-body cables, which
use a position based animation method. Later work determined that these cables
were not realistic. In particular, the cables’ elasticity coefficient did not have a force
term, therefore they could not simulate the forces required to appropriately scale
the world. Additionally, their behavior was wildly different with varying timesteps.
Therefore we implemented our own custom cable models. Changing the cable model
has not reduced the speed of the spine like robots, but it has made crossing rough

terrain realistically difficult. Comparison data is provided in Chapter 6.

3.2.1 Internal Dynamics
NTRT’s custom cable model uses a Hooke’s law based spring and cable model origi-

nally implemented in [Caluwaerts et al., 2014]:

0 x| < 4
f = (3.1)

(k(ell = &) + Bllx]% = flx]| > 4

29

CHAPTER 3. THE NASA TENSEGRITY ROBOTICS TOOLKIT

//——[—

f=0 —
S O,

4
S | —/
f>0 Pl B @
S— —/
k

Figure 3.1: A graphical representation of equations 3.1 and 3.2. The top picture
represents a slack cable. In the bottom the motor has spun clockwise, tightening the
cable and applying equal and opposite forces to the rods.

X = Pio— Pi1 (3.2)

where £ is the spring stiffness, b is a linear damping term, x is the Fuclidean dis-
tance between the attachments of the spring-cable assembly (p;o and p; 1), and
is the cable length. Actuation is accomplished by changing ¢;, which is subject to
speed and force constraints comparable to the actuators in hardware designs. Our
simulation with this cable model was validated by our prior Planetary Lander work
to be accurate within 15 mm for a robot with 1 m struts when performing a roll
[Caluwaerts et al., 2014]. Further validation on tensegrity spine models is discussed
in Chapter 7.

Initially our actuator model was ideal (flat torque speed curve) and inertia free,
so that as long as these constraints were not violated, the rest length would change
as desired. Subsequently, I implemented a model of an actuator with inertia and

friction, using the following equation for a brushless DC motor:

30

CHAPTER 3. THE NASA TENSEGRITY ROBOTICS TOOLKIT

0= (ra—bx0+roxT)/I (3.3)

where 6 is the angle of the rotor, 7, is the torque applied by the stator, b is a
damping constant (units of length? x mass/second), ry is the radius of the rotor and
spool, T is the tension in the cable, and [is the inertia of the rotor. Setting ro =1
models a linear actuator, 7, is typically constrained by a linear torque-speed curve.
0 is integrated semi-explicitly within the model’s class. The motor model can either

be backdrivable (movable by external forces alone) or non-backdrivable.

3.2.2 Collision Handling

The above cable model was originally implemented without contact dynamics, so it
only interacted with the two rigid bodies to which it was attached. When restoring the
contact dynamics, a major design consideration was whether or not to add mass to the
cables. [Servin et al., 2011] provides an equation for determining the maximum force
a given cable can simulate in a numerically stable fashion, based on the vibrational

modes of the cable and its numerical stability:

LM

fcm’t - AN2R2 (34)

In a typical tensegrity simulation: a reasonable maximum force, f..;; is 100 N, the
length of the cable L = 0.3 m, the mass of the cable M = 0.004 kg, and the timestep
h = 0.001 s. N represents the number of mass nodes. Under these conditions, a
stable simulation could only use three mass nodes, which is not sufficient to properly
determine contacts. Thus, I developed a massless contact model using behavior in-
spired by [Servin and Lacoursiere, 2007] and [Servin et al., 2011]. Collision detection
is handled by ghost objects within Bullet, placing a small cylinder between the two

endpoints for collision detection. As additional contacts are accumulated, additional

31

CHAPTER 3. THE NASA TENSEGRITY ROBOTICS TOOLKIT

Fc

Figure 3.2: Left: Two rods and a cable encounter a square block, creating a single
point of contact. The cable in this case would be modeled with two cylinders for col-
lision detection. Right: A graphical representation of equation 3.5 for this situation.
The contact force f. is applied to the block, while cable forces —f, and —f;, are applied
to the rods.

cylinders are added to a compound object, subject to a maximum resolution. Thus,
Bullet determines contact points, and NTRT’s code resolves the contacts. Forces are

applied to detected contacts by the following equation:

f.=f,+f, (3.5)

where f, and f, are the forces along the length of the cable between the two
nearest end or contact points and f. is applied to the contacted object along the
contact normal. A diagram of the application of this equation is shown in Figure 3.2.
Figure 3.3 shows a NTRT simulation of a similar situation.

After they are placed, contacts are subject to an overall cable length minimization
similar to [Servin et al., 2011], which accounts for sliding. Contacts are removed when
they violate the resolution constraint, their force would be applied ‘outward’ of the
geometry (i.e. the cable would push), or when contact is lost. Additional details of

the algorithm are specific to Bullet, and are discussed in Appendix B.

3.3 Additional Features

NTRT also includes:

1. Machine learning algorithms, discussed in Section 4.1.

32

CHAPTER 3. THE NASA TENSEGRITY ROBOTICS TOOLKIT

Figure 3.3: An analogous situation to Figure 3.2 simulated in NTRT, except the cable
contacts the rod in two places due to its orientation. The axes indicate the geometric
center of each collision object.

2. Classes to implement Impedance Control and PID Control (Chapter 6).

3. Numerical integration using ODEInt [Ahnert and Mulansky, 2011], for the Cen-

tral Pattern Generator models discussed in Section 6.2.

33

Chapter 4

Machine Learning and Metrics

4.1 Learning Algorithms

This section discusses how I approached parameterizing controllers for tensegrity
robots, and tradeoffs between the algorithms I used. The specific structures and
controllers for my tensegrity work are discussed in the next chapters. However, the
metrics and learning algorithms can generalize to the control of most types of robotic
locomotion.

Determining an effective controller is one of the challenges of using robots with
many degrees of freedom, such as tensegrity robots. While these controllers can
be hand tuned, this typically requires a reduction of the dimension of the problem.
To preserve the advantages of many degrees of freedom, controllers are frequently
designed using machine learning or optimization techniques. Machine learning has

two major advantages:

1. Machine learning algorithms can ‘discover’ designs and parameterizations that

a human might not think of intuitively.

2. The algorithms can be run in the background, freeing the designer to work on

other things, such as writing.

34

CHAPTER 4. MACHINE LEARNING AND METRICS

The disadvantage is that machine tuning a controller for locomotion is difficult,
since the algorithm might not get enough information to differentiate between modes
of failure. For example, the robot falling over may produce an indistinguishably
low score of an objective function, compared to the robot getting stuck on a terrain
feature. Without meaningful score differences between scenarios, many algorithms
have trouble determining what changes to make to parameters. On the other hand,
highly random algorithms frequently need a large number of function evaluations in
order to find an effective controller (known as the tradeoff between exploration and
exploitation).

This work uses algorithms that explore the state space more randomly, with the
objective function generally being distance traveled. Using highly exploratory algo-
rithms enables handling high dimensional spaces, such as fully actuated structures.
Thus, future efforts will understand what tradeoffs are being made when grouping or
reducing the number of actuators.

For this section, a ‘trial” refers to a single instance of the simulation, running from
zero to N simulation seconds. A ‘generation’ refers to a group of trials with a fixed
set of controllers. Finally, a ‘run’ refers to a complete evolution, which has ideally

converged on a maximum.

4.1.1 Monte Carlo

If simulation times are sufficiently short, it is possible to randomly sample the pa-
rameter space and locate the neighborhood of good solutions. This is called Monte
Carlo sampling. Since the parameter estimation is random, trials can be run entirely
in parallel, there is no need to synchronize for a mutation step. Monte Carlo provides
a significant advantage to cluster computing, since the speed of the algorithm scales
linearly with the number of processors. This algorithm allows for a rapid (though not

exhaustive or optimal) search of a complex parameter space, allowing us to quickly

35

CHAPTER 4. MACHINE LEARNING AND METRICS

identify parameters for effective locomotion. Domain knowledge is sometimes neces-
sary to bound solutions, such as setting the maximum frequency and amplitude for
cable trajectories. A typical result of a Monte Carlo run is shown in Figure 4.1. Most
of the solutions are terrible, moving less than 14 c¢m in 30 sec. However, around one
in a thousand is good enough for effective locomotion. These can be tuned further

using other algorithms.

Monte Carlo Run for Tetrahedral Complex

140 15000

120

100 &
10000

80 [

Score

60

5000

Frequency of score (number of trials)

0 5000 10000 15000 0 50 100
Trial (run order) Score (bin size 14)

Figure 4.1: The results of a typical Monte Carlo learning run. As expected, there
is no correlation between trial number and score. Scores above a certain threshold
become the seed of the subsequent learning run.

4.1.2 Gaussian Sampling

In order to optimize the controllers determined by Monte Carlo, I typically sampled
nearby control parameters using a Gaussian distribution. Thus, the prior controllers
become the ‘seed’ of the Gaussian sampling step. If the new controller is better, sam-
pling continues around the new controller’s parameters. A single random controller

is unlikely to be good in this application, so seeding with prior controllers is strongly

36

CHAPTER 4. MACHINE LEARNING AND METRICS

recommended. Parameters to be mutated were chosen by chance (typically 50%) and
mutated simultaneously, with no upper limit on the number of parameters to mu-
tate. The operator needs to determine the deviation of the Gaussian used to sample.

Performing Gaussian sampling after Monte Carlo is sometimes called two-tier Monte

Carlo.
Gaussian Sampling, Best Score Over Time
200 T T T T T T T T T T setl
set2
set3
setd
180 - T set5
set6
set?
p— set8
’é“ 160 set9
o
o
@
3 AJ' — I
£ 140) —
[}
g]
w 120 4
=
2
o
& 100 ' — —
[
80 f=—"" -
60 1 1

1 1 1 1 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Trial (run order)

Figure 4.2: Sampling around the best controllers from Figure 4.1. The vertical jumps
indicate a new best controller.

Gaussian sampling can also be thought of as evolution with a population of two,
the better of which is mutated. The results for eight controllers (optimized in parallel)
are shown in Figure 4.2. Note how the improvements occur more frequently than

‘good’ parameters in Monte Carlo, especially at the beginning.

4.1.3 Evolution

A large category of algorithms fit into the category of ‘evolutionary algorithms’. The
general idea is that a population of controllers (generally, agents or organisms) is

iteratively evaluated by a fitness function. Depending on the task, in this work

37

CHAPTER 4. MACHINE LEARNING AND METRICS

population sizes for evolutionary algorithms varied from 2 to 100. The best controllers
are then allowed to reproduce (influence the next generation) by any of a number of
methods, detailed below, and the worst controllers are discarded. There are three
methods by which controllers can be chosen for the next generation.

Elitism - directly copying the best controllers over to the next generation. De-
pending on the objective function these controllers may or may not need to be re-
evaluated in the new generation.

Mutation - changing some (or all) parameters of the best controllers by a small
variation. This is similar to Gaussian sampling, but any number of controllers can be
mutated in a generation since the population is larger.

Crossover - combining groups of parameters (an analogy is often made to genes
in the literature) in the controller. There are multiple methods for crossover, the
most common of which is picking a location in the parameter vector and using one
parent’s vector before that location and the second’s after (one-point crossover). An
alternative is selecting random parameters from each parent (uniform crossover).

Population members can either be a seed from a prior method like Monte Carlo
or hand tuning, randomly determined, or some combination. Typically an artificial
neural network (discussed in detail in Chapter 6) can be evolved starting with a
random seed, whereas a CPG needs to be evolved from an existing good seed.

Other algorithms group parameters for evolution. For example, Iscen et al.’s
coevolution algorithm tested controllers for specific cables, and used an historical
average to choose the best controller for each individual cable [Iscen et al., 2013a].
This resulted in faster evolution and a better final controller than a centralized scheme.
I adapted this by grouping parameters by function, for example impedance controller,
feedback, and CPG. Thus the best historical average within each functional group
can be used.

Specific patterns for an evolution run are included in Appendix A.

38

CHAPTER 4. MACHINE LEARNING AND METRICS

4.1.4 Implementation within NTRT

Two iterations of machine learning algorithms were implemented within NTRT. The
first generation utilized C++ learning modules. As implemented, multi process learn-
ing within C++ was possible by spawning multiple processes locally on the same ma-
chine by hand, but crossover for evolution algorithms could not be multi-threaded,
since each thread was fully independent. In March and April 2015, Perry Bhandal
and I transferred the learning algorithms to Python, and provided parameters to the
C++ controllers through a JSON (JavaScript Object Notation) interface. This eased
the implementation of automated multi-process learning, which was crucial to speed
up the algorithms for learning across multiple terrains with the contact cables. In
this way, the trials for an entire population could be parallel processed, and then

synchronized for the mutation step.

4.2 Metrics and Objective Functions

4.2.1 Objective Functions

For most of this work, the most practical objective function was distance traveled for
a set length of trial. This can either be distance in any direction, or distance towards a
specific location (goal). In both cases this is measured ‘as the crow flies’ comparing the
starting and ending positions of the robot, rewarding controllers that travel relatively
straight paths. There are several key caveats to this. First, the length of the trial
matters. If a goal directed trial is too short for the robot to arrive at the goal, the
learning algorithm has no knowledge of whether the robot will in fact get to the goal,
as the robot could leave its current path after the trial. Second, there is the question
of historical averaging: Should controllers keep scores from previous generations?

Historical averaging is particularly valuable for non-deterministic evaluations, so the

39

CHAPTER 4. MACHINE LEARNING AND METRICS

best controllers continue to incorporate information about possible worlds. Averaged
evaluations can consist of multiple goal positions, starting robot orientations, and
terrains. However, it is difficult to optimize for all of these criteria in one run, so we

organized the sub-problems as follows:

1. Use Monte Carlo to determine a controller that coordinates effective locomotion

in a structure (any direction).

2. Improve the performance of that controller on flat ground using Gaussian sam-

pling (any direction).

3. Add a feedback controller, tune the performance on rough terrain using evolu-

tion (any direction).

4. Determine a controller that can reach a single goal on rough terrain using evo-

lution.

5. Evolve from a single goal to multiple goals on rough terrain.

Terrain Types

Figure 4.3: The two primary rough terrain types used throughout this work. Left,
sinusoidal hills. Right, randomly placed blocks.

Terrains considered in this work included flat ground, hills, and a field of blocks.

Hilly terrain was composed of sinusoidal hills with an amplitude of 2 cm, and was

40

CHAPTER 4. MACHINE LEARNING AND METRICS

represented as a single triangular mesh within Bullet. The block field consisted of
500 randomly placed blocks on otherwise flat ground. The blocks were 5 cm wide,
0.5 c¢m tall and were fixed to the ground within a 200 cm by 200 cm area around the
origin. These terrains are shown in Figure 4.3.

These terrains were chosen since they represent slightly different problems. While
the hills are a larger perturbation, they are perfectly smooth and were implemented
to be deterministic. The sharp corners on the blocks are more likely to catch cables.
The randomness of the blocks provides some assurance that the controllers have not
been overfit. The size of the terrain features was chosen as the smallest features that
impeded the existing spines and controllers, more details are given in Chapter 6.

In the original work, Tetraspine was also capable of traversing a wall and going
up a ramp via manual steering and adjustment of cable tensions. These obstacles are
not feasible to learn without autonomous goal direction, as a controller without a goal
input would always go in an easier direction. Given that a goal directed controller is

included in this work, future work could re-implement these behaviors.

4.2.2 Cost of Transport

While distance traveled is a good metric for evaluating a new structure, it is not the
only metric that should be considered. Therefore we also computed the efficiency
metric cost of transport (COT) and included it in the results. It was not included
in the optimizations. Cost of transport is defined using Equation 4.1, as discussed in
[Tucker, 1970]:

%%

T= 4.1
CO rad (4.1)

Where W is the work put in to the system, m is the mass, g is gravity, and d is
the distance traveled. Cost of transport is unitless, and provides a means to compare

different mobile systems. Given equation 4.1, a lower COT indicates a more efficient

41

CHAPTER 4. MACHINE LEARNING AND METRICS

system.

This metric highlights a tradeoff between the overall capability of the system and
its performance on flat ground. Bicycles are great on roads, but become much more
difficult to use in the woods without a path, where walking or running is much more
effective.

The most efficient legged robots are typically designed by studying the pas-
sive dynamics of walking, taking advantage of the resonance modes of these sys-
tems on flat ground, and then seek to minimize control input by using reflexes
[Bhounsule et al., 2014]. Their approach achieved the record cost of transport in
a legged robot of 0.19, comparable to human walking (0.2). Of note this record
cost of transport was achieved on a linoleum lab floor, a controller that was robust
enough to walk on Cornell stadium’s track for 65 km had a higher cost of transport
(0.28). For efficient running, Seok et al. focus on an electromechanical optimization
for their cheetah like robot, and utilize custom, regenerative motors and low inertia
legs [Seok et al., 2013]. A recent implementation can run at 4.5 m/s with a COT of
0.5 [Park et al., 2015].

Within legged robots, the most capable robots, such as those from Boston Dynam-
ics, have an estimated total cost of transport of up to 15 [Ruina, 2011]. Honda’s Asimo
is estimated to have a total cost of transport of 3.2 [Collins et al., 2005]. The mechan-
ical cost of transport in simulation for our current tensegrity systems range from 1.55
to 3.2, depending on the structure and controller [Iscen, 2014, Mirletz et al., 2014].
This is within the expected range for robots that have not yet been optimized for
efficiency, and these gaits have been able to perform agile goal directed locomotion
through rough terrain [Iscen et al., 2014], whereas the more efficient robots have only
shown basic turning on relatively flat ground.

To compute the energy input to the tensegrity spines with the basic actuators, we

used the sum of the work to shorten the strings: Tension times distance shortened at

42

CHAPTER 4. MACHINE LEARNING AND METRICS

each timestep. For energy calculations on the basic (ideal) motor model, we assumed
that relaxation was passive, similar to biological muscles or a backdriven motor. The
cost of transport for a system similar to our hardware implementation may be higher
if the motors are actively unspooled during relaxation. With the kinematic (brushless

DC) motors, we integrate power (applied torque times speed) over time.

43

Chapter 5

Tensegrity Spine Structures

My exploration of tensegrity spines has been an iterative process. The four spines
presented here represent different design goals, which is the focus of this chapter.
Quantitative results for all spines are discussed in the next chapter, alongside the
relevant controllers.

Given their software implementation, all spines could be lengthened or shortened
with a single parameter (see 6.3 for details on how the controller adapts.) Spines
were typically tested with twelve segments in computationally simple scenarios (no
contact dynamics in the cables), and six for more complex scenarios. The length of a

given spine in segments will be given in each iteration of the results.

5.1 Tetraspine

For our initial morphology, our primary goal was to simplify the morphology to de-
termine the feasibility of a tensegrity spine as a robotic structure. Inspired by the
structures in [Flemons, 2007], Tetraspine (Figure 5.1) uses tetrahedrons as ‘verte-
brae’, with six cables connecting each segment, the minimum for a tensegrity spine as
defined for this dissertation. The arrangement of the cables allows for active control

of pitch, yaw, and axial translation, and each cable has a clear line of action within

44

CHAPTER 5. TENSEGRITY SPINE STRUCTURES

M
A
W

“n
N\
AW

N
W

\‘\m\\\\“
AW

A\
\

W\
W

\

'f

e

e

... 1

_ e

\ e
I'I.I:I:l:l:l:l:l.l =\ mEEl
:':':.l.l'l:l'l'l.l.l.-.l.l e -...‘:I
E .l:l:l:l.l:ll . .:.:-.'
| I.l.l.l:l:I:l:l:.:l:l:I.l. m e
!'!:!:;:-lll.l.l.l.l.lll.-.-.-.:.: m -:!._ll

Figure 5.1: Tetraspine, a tensegrity spine robot with tetrahedrons as segments, and
six cables connecting each segment. From [Tietz et al., 2013, Mirletz et al., 2014]

these degrees of freedom. Three cables extend from each outer vertex to the segment
behind it, and three cables extend from the tip of each segment to the outer vertexes
of the segment in front of it. Convex tetrahedrons for segments also allow a lot of room
for mounting motors, sensors, and control boards for a hardware implementation, as
in Chapter 7. This morphology successfully demonstrated the first locomotion of a

tensegrity spine robot both in simulation and hardware [Tietz et al., 2013].

45

CHAPTER 5. TENSEGRITY SPINE STRUCTURES

Figure 5.2: The tetrahedral complex spine, with eight cables between segments, sim-
ulated in NTRT performing a sidewinding motion.

5.2 Tom Flemons’ Designs

Once NTRT was sufficiently developed with tools to assist the creation of structures
and design of controllers, I implemented Tom Flemons’ spine design as shown in
Figure 5.2. This structure uses a tetrahedral complex as its vertebrae, with four cables
composing a tensegrity saddle joint [Flemons, 2007], and four cables running along the
outside. All eight cables are actuated in this case. Changing the morphology of the
structure from a convex tetrahedron to a tetrahedral complex and the addition of two
cables adds two important elements to the structure, when compared to Tetraspine.
First, the cable routing allows control of all six degrees of freedom. Second, the
center of mass of the structure is now over its line of support, which decreases the
tension required to hold the structure’s shape by a factor of 500 when compared to
Tetraspine: 10 N on Tetraspine vs 0.2 N on the tetrahedral complex. Note that
the force required to hold a static shape with Tetraspine increased to 25 N once we
accounted for motor placement. We have not yet done detailed simulations with
motor placement on the tetrahedral complex, though mechanisms are being designed
for a hardware implementation [Sabelhaus et al., 2015]. This design has stood out

with the fastest locomotor speeds and the highest efficiency.

46

CHAPTER 5. TENSEGRITY SPINE STRUCTURES

| Pl SRCRITERN . (© 2014 Tom Flemons

Figure 5.3: Octahedral complexes form the vertebrae, with four passive (white) and
four active (blue) connections between segments. The simulated spine has twice as
many actuated cables. Every saddle joint has a pair of actuators on either side. Image
courtesy of Tom Flemons, originally from [Mirletz et al., 2014]

One possible disadvantage of the tetrahedral complex shape is the high number
of actuators per segment. In order to reduce the number of actuators and maintain
stability we decided to place passive cables at each of the tetrahedral saddle joints.
However, in the previous morphology this would severely limit the range of motion,
so Mr. Flemons suggested we try cross-linking through the saddle joints. Four cables
compose the saddle joint, while another four cross link on either side of the saddle
to provide antagonistic actuation. We also transitioned to an octehedral complex as
the vertebrae shape, to avoid interference between the cables and vertebrae (this was
initially implemented prior to the cables’ contact dynamics). See Figure 5.3 for a
passive model with half the number of cross linked cables (blue cables). Note how the
angle of the spine changes between each vertebrae. This structure is bistable, each of
these can be ‘switched’ to the other position and stay there as well. When resting on
the ground, only one rod from each vertebrae touches.

This structure was my first attempt with unactuated cables, as opposed to the
Tetraspine cables with their velocity setpoint of zero. This morphology also success-

fully demonstrated locomotion in simulation.

47

CHAPTER 5. TENSEGRITY SPINE STRUCTURES

5.3 Novel Designs

In order to do additional analysis on how the shape of the structure affects its motion,
I designed one novel structure. We hypothesized that snake like slithering motions
would be easier on a closely packed vertebrae structure with longer attachments, like
the ribs on a snake skeleton. I created the shape by attaching 3/4 of an ellipse in

place of one of the rods of the tetrahedral complex.

Figure 5.4: Ribs are rigidly attached to three rods in a configuration that mimics
three rods of the tetrahedral complex. cables that only touch ribs are passive, the
other seven are active. Originally from [Mirletz et al., 2014]

Actuator locations were chosen by examining anatomy textbooks and mimicking
muscles [Gray, 1918, Myers et al., 2001]. Five cables surrounding the spine mimic
the Interspinales and Intertransversarii muscles. Our initial tests with these muscles
proved unstable, so we added four passive cables between each segment’s ribs, mim-
icking fascia in the thoraxic region. The passive cables were half of the stiffness of
active cables (500 N/m), and were not pretensed. This was still insufficient, so we
added two more muscles connecting the transverse processes to the inferior ribs. Upon
reexamination of the anatomy books, we realized these may play a role similar to the
Levatores costarum. This spine displayed two forms of locomotion, one of which was

slithering.

48

Chapter 6

Control Methods and Simulation

Results

This chapter details the evolution of the tensegrity spine controller over the course of
this project, starting with the simplest controller and ending with a controller capable
of goal directed locomotion over rough terrain. Occasionally this includes the literal
evolution of the controllers via machine learning, as good controllers from a previous
iteration make good seeds as new components are added. Rather than presenting
all of the controllers and then all of the results in a separate chapter, this chapter

presents simulated, full-system results as closely as possible to the relevant controller.

49

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

To Other
gggleess/ Impedance™,
: - Control
+ A
CPG '>@ > K, 2
+A
To
SetpomtV
/ ——> PD Control
T L v | Sensor
Values |
AN A vd " Torque
Bhysics | Commandy
S/mglatlon Cable Model <24 Motor Model
Environment

Internal
ontact
Forces
Forces

Rigid Bodies [« Environment

Figure 6.1: The control system for a single cable. A block diagram for impedance
control is shown in the upper right hand corner, graphically representing Equation
6.1. CPG connectivity is shown in Figure 6.6.

6.1 Impedance Control

As discussed in Section 3.2, in NTRT we assume the robot’s cables are actuated.
Given typical sensors and actuators, this means that there are two variables to control:

the cable’s length and its tension. In order to incorporate both, we use a distributed

20

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

form of impedance control, adapted for tensegrity by [Orki et al., 2012]. Impedance
control provides tunable stiffness through changing its gains. The equation is as

follows:

T =Ty+ K(L— L)+ B(V — V) (6.1)

Where T is the tension setpoint, T is a tension offset, K is a position gain
on the difference between the cable’s current actual length L (z in (Equation 3.1))
and desired length Ly. B serves a similar function for V' and V; (velocity, equiva-
lent to &), where Vj is the trajectory: a control input from the CPGs or sine waves
[Tietz et al., 2013]. In Orki et al.’s implementation V; is always zero [Orki et al., 2012].
All variables except V' and V; should be greater than or equal to zero for stability,
given the convention that lengthening is positive. Lg is typically the initial length of
the cable, assuming the robot starts in a desirable shape. If the result is T' < 0, the
controller will set 7" = 0. The tension setpoint is then sent to a PD controller for
low level motor control. Typical PD control values were P = 20000, D = 5. A block
diagram is shown in Figure 6.1. Typical impedance controller gains are given in the
caption of Figure 6.2.

The trajectory is controlling the velocity for three reasons. First, since I am
targeting dynamic locomotion, moving the cables is desirable, hence not setting V) = 0
as in [Orki et al., 2012]. Second, keeping L constant allows for information about
the shape to be maintained in the controller, oscillations are then maintained around
the equilibrium of the length and tension offsets. Finally, avoiding a slack cable is
desirable for maintaining coherent sensor information. The tension offset can be used
to increase the equilibrium point of oscillations for this purpose, and for minor shape
changes. In practice, effective amplitudes for V|, are far larger than the motors are
capable of, thus the oscillations increase and decrease the tension in the cable.

Figure 6.2, shows how one of the top outside cables behaves while Tetraspine

o1

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Top Outside Cable Impedance Control

[
o

CPG Output (cm/s)
o

50 L— 1 1 1 1 1 1
0 2 4 6 8 10 12 14
25 T T T T T T
’g Actual Length
o Rest Length
~20 | B
=
)]
c
[}
- 15 - -
Q@
aq
©
O 10 1 1 1 1 1 1
0 2 4 6 8 10 12 14
15 T T T T T T
z
stor I
7}
c
0
o ° i
a
©
O O 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Time (s)

Figure 6.2: A twelve segment Tetraspine (38 cm to a rod) crawling over flat ground.
The top cable is shown responding to an impedance controller where T, = 35 N,
K =300 N/m, and B = 50 N/m — s. The CPG’s output specifies the impedance
controller’s trajectory (V5). The difference between actual length (L) and rest length
(Lo) is the stretch in the cable, which correlates with the tension. The cables take
about four seconds to reach the desired length as specified by the impedance con-
troller’s parameters. The tension offset is high enough to prevent the cable from
going slack, and the high amplitude of the velocity causes a 6.5 cm oscillation in the
length of the cable.

52

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Cable Length Change while Crawling over Hills
T T T T T T

N
(&)1

N
o

i
)]

i
o

[¢)]

Top Cable Length (cm)

0 10 20 30 40 50 60 70 80 90 100

N
o

=
[&)]
T
1

Segment Height (cm)

50 60 70 80 90 100
Time (s)

=
o

o
N
o
[N)
o
w
o
N
o

Figure 6.3: Tetraspine (38 cm to a rod) crawling over 5 cm bumps. The impedance
controller adapts the length of the cable (top) to the terrain (visible in the height
of the segment, bottom), while still tracking the signal provided by the CPG and
producing locomotion. On the hills, this robot travels at 0.79 ¢cm/s or 0.2 body
lengths per minute.

crawls across flat ground. The hand tuned, sine wave input simulates the output of
a CPG, and is sufficient for forward locomotion on flat ground and 5 cm hills (15%
of the segment height). The ‘step height’ (amount each segment is raised during
locomotion) is about 1 em, so whole body adaptations are required for this obstacle.
The impedance controller is capable of making the required adjustments for the 5
cm hills, as shown in Figure 6.3. As the robot crawls over the hills, the rest lengths
around which the oscillations occur conforms to the terrain. For more complex terrain
types we have to add adaptations to the trajectory as well.

In my initial work on Tetraspine, I used the tension setpoint in order to change
the shape of the robot for turning and rearing, shown in Figure 6.4. If the impedance
controller’s tension offset T is higher on the left inside and outside cables than on
the right side, we get a curve similar to the top picture in Figure 6.4. Tetraspine will

then start turning toward the left. That approach can be reversed for right turns.

23

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Similarly, we can increase the tension in the top outside cables to produce rearing

behaviour, which is useful to prepare to ascend an obstacle.

Figure 6.4: Overall body shape is controlled controlled by adjusting cable tensions.
Top: Tetraspine executing a left turn. Bottom: The simulated robot rearing before
climbing a wall. From [Tietz et al., 2013].

6.2 Central Pattern Generators

As discussed in the preceding section, I used central pattern generators to generate
adaptive trajectories for the impedance controller. Due to their relative simplicity
and physical meaning of their parameters, the specific CPG equations we chose are

amplitude controlled phase coupled oscillators, also used in Ijspeert et al.’s salamander

o4

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

robot [Ijspeert et al., 2007]:

éi = 27TUi + erwijsin(ﬁj — 91 — (sz) (62)
Vi = ri(cos(0;)) (6.4)

The phase of the CPG is determined by equation 6.2, where v; is a frequency term,
and coupling is determined by r;, the amplitude of the coupled node, a coupling weight
w;j, and the phase difference between nodes, and a phase offset ¢;;. The amplitude
is determined by equation 6.3, and is constant after it reaches the setpoint R;. a; is
a positive constant. The final output is on the velocity of the impedance controller,
as determined by equation 6.4. v; and R; can be specified as one parameter each, or
as the combination of an offset, a gain on a descending command, and the command
itself [Ijspeert et al., 2007]. Equations were integrated using ODEInt, part of the
Boost C++ libraries [Ahnert and Mulansky, 2011].

6.2.1 Hand Tuned Results

Prior to setting up the machine learning architecure, I hand tuned controllers for
the tensegrity spines. These fell into two categories: (1) tuning the parameters of
the CPG directly, or (2) tuning a set of sine waves (amplitude, frequency, phase
differences) as an approximation. The data in Figures 6.2, 6.3, and 6.5 are from a set
of sine waves. This gait, with the adaptability provided by the impedance controllers,
is sufficient for Tetraspine to slowly traverse hills.

The CPG parameters in [Tietz et al., 2013] were hand tuned. The connectivity of
the CPG used each outside cable as a node, and connected the cables to equivalent

nodes on other segments. Each node was connected to five other nodes. Inside cables

95

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

—

=S ——
?::“**\
————

—
e

Figure 6.5: A sine wave controller for Tetraspine making slow progress over hills (0.2
body lengths per minute). This is the same controller as Figures 6.2 and 6.3.

26

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

had Vj set to zero. Machine learning determined a sidewinding gait for Tetraspine
that was 43% faster than the hand tuned gait with the same CPG morphology, even
allowing the unrealistic cables. Thus all subsequent gaits have been determined by

machine learning.

6.3 Automated CPG Morphologies

While Tetraspine’s morphology had obvious directions for actuation and control, the
other morphologies I investigated did not. Since I had already seen that machine
learned gaits could be better than hand tuned, I decided to use machine learning to
determine the coupling of the CPGs, in addition to the parameters. The coupling of
the CPGs (w;; and ¢;; from equation 6.2) determine how the oscillations coverage to
a steady state oscillation, specifying the gait of the robot. The maximum possible
coupling would be “all to all,” where every node is connected to every other node
in the CPG. However, letting machine learning decide the appropriate coupling out
of “all to all” quickly becomes intractable, leading to n(n — 1) couplings, where n
is the total number of nodes. If there are k segments with m nodes each, then this
becomes km(km — 1). Thus, I developed rules based on the morphology of the spine
to reduce the number of possible couplings, and reduce the corresponding machine
learning time.

As a starting set of coupling rules, I decided that each node (actuator) would
be coupled to nodes (actuators) with shared rigid bodies. This is similar to nearest
neighbor coupling, which is the basis for models of swimming and walking networks
in the salamander [Bicanski et al., 2013]. Since the rigid bodies are in a chain, this
assumption means there are at most three rigid bodies worth of nodes in any repeated
coupling set. For example, in Tetraspine with the outside cables forming the CPG,

this leads to twenty four connections per segment (m(3m — 1)), as opposed to the

57

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

twelve in the hand tuned version. Couplings are bi-directional, and can have different
sets of parameters for each direction. In the case of Tetraspine, this would lead to
forty eight parameters for the edges. Therefore, in addition, I specified that symmetric
couplings would be the same, consistent with the prior work in [Tietz et al., 2013].
This additional assumption reduces the number of possible couplings to m(3m+1)/2.

An example with a two node, three segment system is shown in Figure 6.6.

%

@ e
%

Figure 6.6: The coupling rules used on the CPGs, as applied to a hypothetical two
dimensional tensegrity spine with four rigid bars, and six cables connecting them
(two per segment). This gives the CPG two nodes per segment, with three segments.
When scaled up, this system leads to m(3m + 1)/2 possible couplings, where m is
the number of nodes. In this case, there are a total of ten edges per node, but the
edges are sorted by geometry into seven possible edges. These rules reduce the rate of
scaling to half of that for specifying each coupling separately. [Mirletz et al., 2014].

Given the CPGs morphologies, I then used the Monte Carlo method for parameter
estimation. Trials were scored by the distance the center of mass of the tensegrity
spine moved in 30 or 60 seconds of simulation time, depending on computational
intensity. After 10,000 - 20,000 trials we took the best sets of parameters and ran
Gaussian sampling on them with a standard deviation of 0.005. If a better set of
parameters was found, sampling continued around the new best set. The resulting
best parameters are discussed below. On a desktop computer purchased in 2011 (Intel

Core™7 at 3.4 GHz), this search procedure takes 24 - 48 hours.

28

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

0.00 0.42 1.00 1.42 2.08 2.42

4 & & §
“ a7

Figure 6.7: Tetraspine executing a form of sidewinding, determined by machine learn-
ing. The vertex of the rear segment functions as a tail pushing the robot to the right,
unlike my hand tuned initial work where we treated it as the head [Tietz et al., 2013].
Only the outside cables were included in the CPQG, the velocity setpoint for the inside
cables was zero. The time in seconds at each step is shown in the upper left corner.
From [Mirletz et al., 2014].

A

£,
A

' b

R

6.3.1 Results on Various Morphologies

For each morphology from Chapter 5 we recorded the best machine learned gait, its
speed, and its cost of transport (COT). Note that these gaits have been exclusively
optimized for speed, COT is currently only for comparison.

Our first attempt with this parameter estimation paradigm used the same CPG
as our initial Tetraspine work, with four connections per segment. We also main-
tained the original coupling weights (0.5). This CPG morphology resulted in nine
total parameters for estimation, as we left amplitude and frequency offsets and gains
separate in this case since the equations were set up for descending commands, as in
[Ijspeert et al., 2007]. However, commands were held constant throughout the trials.

The resulting sidewinding gait! travels at 9.46 centimeters per second with a
COT of 3.2. Scaling our prior results, this is 43% faster than the hand tuned gait of
[Tietz et al., 2013] (6.6 cm/s).

Six key frames of video for this gait are shown in Figure 6.7. A second gait,
similar to the hand tuned gait in [Tietz et al., 2013] but traveling in the opposite

direction, traveled at 7.78 cm/s with a COT of 2.4. Both of these gaits contradicted

Video of the tetraspine sidewinding is available at https://www.youtube.com/watch?v=
I-7jCGT-WKk

29

https://www.youtube.com/watch?v=I-7jCGT-WKk
https://www.youtube.com/watch?v=I-7jCGT-WKk

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

0.00 1.07 1.80 3.27 4.67 5.80

Ty

Figure 6.8: The tetrahedral complex based spine also learned a gait similar to
sidewinding. Large twists of the body are possible since all eight cables are actu-
ated, moving the robot to the right and down. Other gaits (not shown) included
rolling. From [Mirletz et al., 2014].

our intuition for hand tuning the robot, where we assumed based on the shape, that
the end segment with the extra vertex would function as a head. Machine learning
indicates it is more effective as a tail.

As simulated, one rod of the tetrahedral complex measured 17.3 cm. The best
gait for the ‘tetrahedral complex’ spine, shown in Figure 6.8, was another form of
sidewinding?, and is the first to use the automated morphology algorithm (all follow-
ing controllers use it). This gait moved at 6.13 centimeters per second, with a COT of
2.13, the lowest cost of transport of all four morphologies. A lower COT for sidewind-
ing relative to other gaits matches results from biological snakes [Secor et al., 1992].

For the Octahedral Complex, the gait in Figure 6.9 utilizes one rod of each segment
as a leg in a walking like gait with a speed of 4.6 centimeters per second, and a cost
of transport of 3.4. A similar gait® which was slightly slower (3.2 cm/sec) had a cost
of transport of 2.6. These differences illustrate the common tradeoff between speed
and efficiency in locomotor systems.

Parameter estimation for the ribbed spine returned two gaits of interest. One,

pictured in Figure 6.10 is a crawling motion similar to slithering. The fastest gait?

2Video of the tetrahedral complex sidewinding is available at https://www.youtube.com/watch?
v=Wyt7B7-0ebl

3Video of the lowest COT gait for the octahedral complex based spine is available at https:
//www . youtube.com/watch?v=Wk9x_40xWjM

4Video of the gait pictured in Figure 6.10 is available at https://www.youtube.com/watch?v=

60

https://www.youtube.com/watch?v=Wyt7B7-OebI
https://www.youtube.com/watch?v=Wyt7B7-OebI
https://www.youtube.com/watch?v=Wk9x_40xWjM
https://www.youtube.com/watch?v=Wk9x_40xWjM
https://www.youtube.com/watch?v=j0UXr59C9mY
https://www.youtube.com/watch?v=j0UXr59C9mY

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Figure 6.9: When on a flat surface, the octahedral complexes have one contact per
vertebrae. The learned gait uses these contacting rods as legs and alternates sides
in a walking pattern. While the robot mostly moves to the left, the motion is not
purely two dimensional, the segments alternate slightly away from the central axis.
In this plot phase of the CPG can be seen in the color of the cables, red indicates
high tension cables, blue indicates low tension. This is also true in the previous plots,
but the cables were typically too small to see. The time in seconds at each step is
shown in the lower right corner From [Mirletz et al., 2014].

traveled at 5.37 centimeters per second, with a cost of transport of 6.0. While this
gait is neither the fastest, nor most efficient, it has the advantage that the ‘head’
segment stays relatively stable during locomotion. This stability provides a potential
advantage for sensors such as cameras or laser range finders, used in higher level

navigation behaviors.

jOUXr59C9mY. The fastest gait can be viewed at https://www.youtube.com/watch?v=PL22dswN2RA

61

https://www.youtube.com/watch?v=j0UXr59C9mY
https://www.youtube.com/watch?v=j0UXr59C9mY
https://www.youtube.com/watch?v=j0UXr59C9mY
https://www.youtube.com/watch?v=j0UXr59C9mY
https://www.youtube.com/watch?v=j0UXr59C9mY
https://www.youtube.com/watch?v=j0UXr59C9mY
https://www.youtube.com/watch?v=j0UXr59C9mY
https://www.youtube.com/watch?v=PL22dswN2RA

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

i

s e TR g A~ Fors
?.-. x '?a?.' N e '?a

Figure 6.10: The second fastest gait of the ribbed tensegrity is shown. This gait
exploits turning the body left and right to move forward (down on the page), similar
to lateral undulation.

62

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

6.4 Feedback for CPGs

Once I developed the contact dynamic modules for the cables, I was able to test
the spines on rough terrain. In order to make things realistically difficult, I also
added the brushless DC motor model at this point. As expected, the spines quickly
became stuck in some terrains, particularly the block field. While the impedance
controllers can generate some adaptations (as in Figure 6.3), the resulting gaits are
extremely slow. Thus, I looked for ways to incorporate environmental feedback into
the CPG as well, so the trajectory can be adapted to rough terrain. Additionally,
properly specified feedback allows the oscillations of the CPG to synchronize with the
structure and the environment.

The specific CPG equations we use are a combination of the adaptive phase-
coupled oscillator equations of Righetti et al. [Righetti et al., 2006] (feedback on the

frequency) and Gay et al. [Gay et al., 2013] (feedback on the amplitude and phase):

#s = (R + k. F, —), (6.5)

0; = wi + koFy + > rjwisin(0; — 0; — bij) (6.6)
J

W; = k,F,sin(6;) (6.7)

Vi = ri(cos(6;)) (6.8)

where r; is the amplitude of the wave, w; is the frequency, 0; is the phase, and
V; is the input to the impedance controller. The amplitude (equation 6.2) is set by
convergence parameter v, and setpoint R;. The phase relates to connected nodes
through weight w;;, phase offset ¢;;, and the other node’s amplitude 7; in equation
6.3. The terms k,., kg, k., are scalar gains on feedback functions F,, Fy, and F,,
which, similar to [Gay et al., 2013], are the outputs of an artificial neural network.

The network contains two inputs (tension and length), four hidden nodes, and the

63

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

three output functions to the CPG. Each neuron contains a sigmoid function, and is
the weighted sum of nodes in higher layers. The same network weights are used for
each cable’s feedback function. An updated control diagram is shown in Figure 6.11.
Note that due to differences in r and w, parameters need some additional tuning to

transfer from the previous CPG implementation.

To Other
z\:lggleess/ Impedance ™,
E - Control
Lo @—> Ko
+ A
> K, Z
To
SetpomtV
——> PD Control
T L v | Sensor
Values |
™ A vd " Torque
/Physics », Commandy
S/mg/atlon Cable Model |<—2 Motor Model
Environment

Internal
ontact
Forces
Forces

Rigid Bodies [« Environment

Figure 6.11: Feedback to the CPG is provided through an artificial neural network
(center). The same network is re-used at each cable.

In order to determine a controller for rough terrain, we tuned and tested the

tensegrity spine on three types of terrain: flat ground, sinusoidal hills with an am-

64

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

plitude of 2 c¢m, and a field of 500 randomly placed blocks as described in Chapter
4. Imagining the length of one rod as a ‘leg’ this means the hills are 20% of the leg
height (blocks are 5%), and 98% of the flat ground step height. Trials were evaluated
according to distance traveled in 60 simulation seconds. If multiple terrains were
used, scores were averaged.

Given the large number of parameters, we started tuning our system by selecting
the best gaits for an open loop CPG on flat ground from 24,000 Monte Carlo trials,
with the new equations and a shorter spine (6 segments for computational efficiency).
The eight best were selected for a Gaussian sampling hill climbing optimization on all
three terrains. The hill climbing step improved the results between 100% and 200%
over Monte Carlo, but most of the improvement was on flat ground, indicating the
need for feedback to the CPG (the feedback gains were zero during the preceding
steps).

To parameterize the artificial neural network, we used a genetic algorithm with
crossover, mutation, and elitism. The population consisted of 60 members, the best
15 of which survived to the next generation. Fitness was again determined by average
score between the three terrain types (hills, blocks, flat ground). Evolution for the
feedback parameters ran for 14 generations (1,935 trials), the CPG parameters were

held constant during these trials.

6.4.1 Improvements on Rough Terrain

Once the feedback functions were tuned, we compared the performance of the closed
loop CPG controller to our previous open loop configuration, impedance control was
used in both cases. The differences between the two CPG signals are shown in 6.12
when the feedback function is activated mid trial (10 seconds). The feedback decreases
the frequency and increases the amplitude of the signal. Flat ground and hilly terrain

results were both deterministic, and are summarized in Table 6.1, block field results

65

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Changes to CPG Output with Feedback
T

T T

20 T

-10

-15

5 10 15 20 25 30 35 40
Time (s)

-20

CPG Output (cm/s)
én o
Sl
1 1

Figure 6.12: The feedback functions are activated at 10 s while a six segment tetrahe-
dral complex spine craws across flat ground. The CPG equations are able to smoothly
integrate this new information. The result is a lowered frequency but increased am-
plitude.

are summarized in Figure 6.14. While for this gait, feedback slows locomotion on flat
ground by about 1%, the robot’s ability to handle rough terrain improves significantly.
This morphology and controller move 7 times faster on hills than Tetraspine with
sine wave inputs and impedance controllers, relative to its size (1.36 body lengths per

minute).

Table 6.1: Distance traveled in 60 seconds with deterministic terrain types

] Terrain H Without Feedback ‘ With Feedback ‘

Flat Ground 492.8 [cm] 487.1 [cm]
2 cm Hills 30.4 [cm)] 105.3 [cm]

To determine the robustness of these results, we set up twenty different block
fields and tested the robot’s performance with and without feedback, using the same
random seed for each controller®. Motion on the blocks is shown in Figure 6.13. Since
the robot starts at the center of the square block field, if it traveled at least 150 cm,

it is guaranteed to have ‘escaped’ the block field. The controller with feedback moved

®Video: https://www.youtube.com/watch?v=94yqYPUYjHO

66

https://www.youtube.com/watch?v=94yqYPUYjH0

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Figure 6.13: A motion sequence of the tetrahedral complex crawling over blocks with
the feedback control system. This spine is 77.5 cm long.

further than the open loop controller in all cases, and ‘escaped’ in 17 out of 20 trials.

Performance details are shown in Figure 6.14.

67

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Performance in Block Field

350 ; . : ,
— ® Openloop CPG
5 300 L [Feedback to CPG
(2] [| m
©
S 250 | | - []
3 - .

2 [|] [|

200 N |
3 8 I I
= |
- 150 -
QL m
[5)
= 100 t 1
= e o -
© 50t [X @ o®]
e o %o ®_ o °
i e o L] L]

@ 0 : o ® . S
& 0 5 10 15 20
Trial

Figure 6.14: Tests of locomotion on a random block field with and without feedback
at the CPG level, using the same random seed. From [Mirletz et al., 2015b].

6.5 Goal Directed Controllers

Up to this point in the work, the controllers have been scored by their distance
traveled in any direction. However, the ideal robot can be sent in a specific direction
with simple descending commands. Thus, I investigated methods for steering the
robot towards a goal location.

Figure 6.15 shows results from the final controller with only the feedback controller
from the previous section, no goal direction. The robot tends to move perpendicular
to its length, in a clockwise arc. The robot’s path changes on each terrain type (flat
ground, block field, and hills). Thus, the ideal controller will be able to direct the

robot to the same locations across multiple terrains.

68

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Final Controller without Goal Direction

Flat Ground Block Field Hilly Terrain
400 400
300 W)////////// 300 i 300 A
200 \\ 200 X 200
g | ‘ \
. 100 § 100 \§ 100
5 \ Y B
@ o B W{) otH ///%M ot® w
I Zml /
N -100 -100 -100 y
-200 -200 -200
C
-300 0 : 2300 0 : 2300 0

-400 -200 0 200 -400 -200 0 200 -400 -200 0 200

Figure 6.15: The final controller on three terrain types without goal direction input.
The three square blocks indicate the possible goal positions during training (the CPG,
feedback function, and impedance controller were all optimized for this task during
learning). The small lines indicate the positions of the center of mass of each segment
of the robot. Color indicates the timestep, with blue at 0 s, fading to red by the
end of the trial at 120 s. With no goal direction, the robot finishes in three different
positions after 120 s.

One of the challenges for learning a goal directed controller is the choice of ob-
jective function. I used the objective function of distance moved towards the goal.
The goal was represented by a large rigid body in the simulation, so I could compare
the center of mass of the robot’s ‘head’ with the goal position. This means that not
moving is better than moving away from the goal, which can cause CPGs that don’t
move to be favored over those that do. Machine learning required careful control over
the seeding of controllers, the choice of initial goal location, and the complexity of
trials.

My first attempt was to use a neural network mapped from the goal direction to the
same CPG feedback functions as the feedback network. I used the same network for
each segment, so this network had two inputs, 24 hidden neurons and 24 outputs. This

worked for a single goal, but had trouble generalizing to multiple goals and multiple

69

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

orientations of the robot. Thus, I added two more inputs for the robot’s orientation
(4 total). In essence, this is similar to having a compass heading, and a compass
heading of your destination, both of which update over time. In hardware, a compass
and GPS could provide this information, or any high level mapping controller.

While this was successful on flat ground, interference between the two types of
feedback equations prevented it from being successful on rough terrain. Thus, using
inspiration from the early work on Tetraspine, I changed the goal direction network
to map from the existing inputs to the tension gain on the impedance controller. In
essence, this technique uses the neural network to generalize the modifications I was
making to Tetraspine’s tension setpoints by hand (as in Figure 6.4). The resulting
network has four inputs, eight hidden layer neurons, and eight outputs.

The ‘seed’ for the goal directed controller was the rough terrain controller from
section 6.4. Based on the natural direction of motion of the rough terrain controller,
I trained the goal directed controller to move toward a goal roughly straight to the
left, 350 cm away (-x in Bullet’s coordinates, location B in Figure 6.15). I started
evolution just tuning the goal direction controllers from a random seed, with a pop-
ulation of 80, running each trial for 120 sec to give the robot sufficient time to get
to the goal on hilly terrain. After running this overnight (15 generations), I took
the best controllers and attempted to co-evolve a full system. Ultimately, for this
particular controller, centralized evolution of the full system proved more effective,
and a controller capable of a single goal on hills and flat ground (only trained on hills)
was trained in 45 generations. Generalization to multiple goals (A, B, and C) took
an additional 26 generations of training on two additional goal positions, placed 350
cm away in different directions. The controller also trained on flat ground with the
same locations in this final stage, scores were averaged across these six trials.

Figure 6.17 shows the results on hills for the three trained positions. Due to the

geometry of the goal block and the robot, if the center of mass of one of the robot’s

70

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Goal

Direction Cable Control System
" Goal
Position
To Other
Nodes /
Impedance ™,
;. Cables - Control
Lo "@—’ Ko
+ A
(5 5
~(2) g 2
+A
| T,
SetpointV
" § / —>1 PD Control
5 Feedback .~ %\\\//

Networkg’ T L v | Sensor
z Values |
AN A %l " Torque
!"‘ﬁhysics \: Commandy
S/mylatlon Cable Model |<—2L Motor Model
Environment

Internal
ontact
Forces
Forces

Rigid Bodies [« Environment

Figure 6.16: The final control system for a single cable. The new component is an
artificial neural network on the left side of the figure which maps the goal location
and the robot’s orientation to the tension input of the impedance controller. The
network has four inputs, eight hidden nodes, and eight outputs: the tension setpoint
of each cable’s impedance controller. Connections between nodes are weighted linear
functions, which sum into a sigmoid function. Each final output node is another
sigmoid, which combines the outputs of the hidden nodes. The same network is used
for each segment, resulting in the goal directed feedback providing commands like
‘tense all of the top cables.’

71

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Goal Directed Motion on Hilly Terrain

300 1 A 501 B 501 C
250t By LR ot m
: or %
A \
200 \ \ -50
: \
.50 L
o 150 \ \ -100
° : ~
B I / 150 |
@ 100 100 | 72 150
a Y.
N 50 \ % -200
§ -150 |
or = -250 | \
\Y
.50 - - . 200 - - . .300 O ' ‘
-400 -200 0 200 -400 -200 0 200 -400 -200 0 200

X Position. cm

Figure 6.17: Goal directed motion on hilly terrain. The goal position is indicated
with the large blue box, and the center of mass of each of the robot’s segments is
indicated with the colored lines. The color fade again occurs from 0 to 120 seconds.

segments passes within 20 cm of the goal block’s center of mass, the robot will contact
the goal block and achieve the maximum score. This distance is slightly larger on
the hills, since the goal block falls over. The robot reaches the goal at the location
B (center) on the hilly terrain, for location A the robot comes within 20 cm, and for
the location C it ‘misses’ by 60 cm.

The geometry of the hills forces the robot to move differently than it would on
flat ground. This is because moving perpendicular to the robot’s length causes it
to cross the hills. In particular, with the goal at location C, the robot spends a
noticeable portion of the trial moving along its length, rather than perpendicular
to its length. The goal directed controller is just under two times faster than the
undirected controller of the prior section, covering 201.9 cm in the first 60 seconds of
the middle trial.

The goal direction is more precise on flat ground. Comparing Figure 6.15 with
Figure 6.18, the shape changes yielded by the goal direction network change the radius

of the arced path taken. For flat ground and on the blocks, the robot was tested on an

72

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Goal Directed Motion on Flat Ground

400 r A 300 1D
8
200 @W 200 \\h
§ 100 §\
0 =) §
== ¥ or = WN)
200 : : : : : 100 o h -
400 300 -200 -100 0 100 -400 300 -200 -100 0 100
e 50 1B 50 r E
% 5(()) % ////MRW 5((3) WWW
Bw| ' I
-100 -100
7400 300 200 -100 0 100 7400 -300 200 -100 0 100
100 1 C 400 [F -
e
i //f//f)ﬁ) 200 §W
-100)V /)////”/ // // 0 %«%/ ¥ W
-200 y //////// | | -200 | . ,%/wf w%. |
600 -400 -20-0 0 200 P00 200 0 200 400 600

X Position, cm

Figure 6.18: Goal directed motion on flat ground. I tested on three additional un-
trained locations (D, E, and F) for flat ground and the blocks. For the first five plots
(A through E), blue is 0 s, and red is 82 s. For location F (lower right, red is 267
seconds. The robot contacts the goal block in four out of six locations, two of which
were untrained.

additional three goal locations on which it was not trained (locations D through F).
In these trials, it hit the goal block in two trained locations (A, B) and two untrained
locations (D, E). Some of the time the robot will hit the goal block before the end
of the trial. The goal block is heavy enough that hitting the block stops the robot’s
continued motion, as in the trial with location B in Figure 6.18 (middle left) and
location A (top left) in Figure 6.21. While the robot misses the goal in the bottom
two trials (C and F), the longer run time of location F’s trial (bottom right) shows
that with the proper inputs, the goal direction controller can also produce counter

clockwise turns. This controller displays its fastest motion on flat ground, moving up

73

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Goal Directed Motion on Block Field

400 1 A 200
o
200 \\\\WW- 100
N
=
= 0
0 — B ﬁ/m
T e -100
200 : : : : . 200 .
4400 -300 200 -100 0 100 -400 100
= 600 1 B 200 E
U_ 400 \sobW 4(//««//////// — . Wﬂ
c Q°
S 200 SN o
=] §§
7 ol m -200 - M\“
£ ==tV
200 . . . -400
N -400 -200 0 200 -600 -400 -200 0 200
100 600
C ¥ F
0 400 A e
MM \\&*bom []
-100 M])ﬂ/ 200 N
.) %
-200 S y //////M 0 b
=__
-300) | - | -200 - - - |
-600 -400 -200 0 200 -300 -200 -100 0 100

X Position, cm

Figure 6.19: Goal directed motion on a block field. All six trials used a block field
with the same random seed. The robot contacts the goal in three out of six trials.
The trial length was 100 seconds in all cases.

to 501.34 cm in 60 seconds. However, the behaviors designed for rough terrain led to
a high cost of transport of 11.2. Note that the DC motor model makes more accurate
assumptions about energy use than prior work, such as including the applied torque
when lengthening.

The block field was particularly difficult due to the random placement on the
blocks. To avoid over-fitting to a particular block field I left them out of the learning
entirely, as deterministic objective functions converge more quickly. My hope was
since the hills were larger than the blocks, if the robot was capable of performing
passably precise paths, it would be able to move off blocks and then to the goals.

Between the training for motion over rough terrain, and training in the block field
in section 6.4, the robot was able to ‘escape’ in all twelve tests of the goal directed
controller (six locations, two block fields). Note that using the goal direction network

enables the robot to ‘escape’ the block field 28 seconds faster than the controller with

74

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

=,‘. '. . AR S = : :
*’z&./ AT Za R AR e ,
SN » QLN AW N | ~

AN ...N' LT ..N ety ~
N ST A i ST R e
Figure 6.20: Images from 25 s to 30 s of the trial with location A on the blocks (top
left of 6.19). The robot successfully departs the blocks, and then crawls on flat ground
to the goal (the large block in the upper right corner of each image).

no goal information. Six locations with a single block field are shown in Figure 6.19,
and the same six locations with a different block field are shown in Figure 6.21. The
robot contacts the goal block in six out of twleve trials. Each goal block set produces
a success in one of the two cases where the controller missed on flat ground (C and
F). Thus, the controller reaches all six goal locations in at least one trial.

Tests on sloped terrains (global ramps) showed that with this controller the sim-
ulated robot was capable of climbing up to 7.5 degree slopes, and can reach the goal

on small slopes of 2 degrees.

5

CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Z Postion, cm

Figure 6.21: Goal directed motion on a second block field. All six trials use the same
random seed, which was different from Figure 6.19. The robot reaches the location

Goal Directed Motion on a Second Block Field

X Position, cm

A again, as well as locations B and C (left side).

76

300 17 ,\] 401D W/MW@
200 | % i \@U
§ 200 m N
100 r §
= of S
0 —WM
-100 : : : ; -200 : : : ;
-300 200 -100 0 100 -400 -200 0 200 400
400 400
B E
W 5
200 [\ 200 =
= T
of W= et of =
]
-200 : : : : ; -200 : : : ;
4400 -300 -200 -100 0 100 -800 -600 -400 -200 0 200
200 400
C F =]
of W 200 f i
§\ —_—
200 [N of —==)
= &
=B/
-400 : : - : ; -200 - : : ;
4400 -300 -200 -100 0 100 -300 -200 -100 0 100

Chapter 7

Robot Hardware and Simulator

Verification

In order to ensure the prior results could be realized in robotic hardware, I con-
ducted hardware trials on two versions of Tetraspine, each of which consisted of three
segments. The original version of Tetraspine was constructed by the senior project
team at the University of Idaho in 2012. Dr. In-Won Park upgraded this robot
to make it capable of locomotion during 2013, but due to a lack of force sensors it
was only capable of position control. I constructed my first version in the CWRU
Biorobotics Laboratory with assistance from Ross Carnahan and Richard Bachmann
[Tietz et al., 2013]. Based on his experience with the University of Idaho Tetraspine,
Dr. In-Won Park designed a new implementation and built Tetraspine 3 at NASA
Ames, and we performed validation tests together using its high quality load cells
as force sensors [Mirletz et al., 2015a]. These validation tests complement those per-
formed in [Caluwaerts et al., 2014], where the positions of an icosahedron tensegrity
robot (a prototype planetary lander) were validated for one step of a rolling motion to
be within 15 mm on a robot with 1 m struts. This section discusses the construction

of each Tetraspine prototype, followed by the validation trials that showed NTRT can

7

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

be used to design future robots with reasonable safety factors.

7.1 Carbon Fiber Spine

T SRR TR
S e T B TR IR

- INO 405 845 = o .
BT 1 sy T T I 1 B 1 1 HIE 1 O TSR 1, SRR 1, SRR

Figure 7.1: The three segment carbon fiber Tetraspine robot, circa April 2013. One
Arduino Mega microcontroller controls each segment. Four out of the twelve strings
are visible; the units on the ruler are inches.

The version of Tetraspine Ross Carnahan and I constructed in the biorobotics
lab provided a proof of concept for the controller I developed in simulation, but was
not able to provide sufficiently accurate data for simulator verification. The robot is
pictured in Figure 7.1. The carbon fiber segments of the robot measure 28 cm to a
‘rod’ (along the diagonal from the front to the rear veracities) and were manufactured
in the CWRU Biorobotics Additive Manufacturing Lab. Ross constructed a wooden
mold of the appropriate dimensions, and then wrapped it with Teflon, carbon fiber,
perforated Teflon, and finally a cotton outer layer, before placing everything in a
vacuum bag and baking it in the carbon fiber oven for two hours. After the piece

cooled and was removed from the mold, we drilled holes in the resulting shell and

78

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

mounted the motors and electronics using screws and nuts. I later sealed the edges
of these holes with superglue, as carbon fiber is conductive.

The segments are connected with strings that are spooled and unspooled with
Pololu 12V 50:1 DC motors with encoders. The inside cables were routed through
nylon fisheye screws! to bring their line of action closer to the tip of the robot.
Each segment of the prototype is controlled by an Arduino Mega R3. The outside
segments each have a mass of approximately 0.9 kg without batteries, while the middle

segment’s mass is 1.6 kg.

7.1.1 Stretch Sensors

Tension in the strings was a major piece of sensory data in the simulator. Many
off-the-shelf stretch sensors are too elastic for the forces we needed to apply through
the strings, rubber sensors will easily stretch to 50 or 100% of their rest length. More
accurate load cells were not within budget for this robot. Thus, we opted to use
in-line stretch sensors by knitting conductive thread with yarn, an example is shown
in Figure 7.2.

The sensors were constructed using a circular loom. Each end of the conductive
thread was attached to a soldered loop of wire with a knot, after the thread was
looped around the wire several times. The length of the knit portion was varied
based on the application of the stretch sensor.

This creates a resistance that changes non-linearly, for example, a 6 cm sensor
changes from 47.6 Ohms to 25.4 Ohms over a 2 cm stretch. The stiffness was also
non-linear; the first cm of stretch accumulated 0.7 N of force, while the second cm ac-
cumulated an additional 11.3 N. We placed 68 Ohm current limiting resistors between
the sensor and the ground, after burning out an Arduino by going over its current

limit. The final circuit is shown in 7.3. We ran 5 Volts over these sensors and after

!These screws would almost always bend, and occasionally break.

79

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

Figure 7.2: A knit stretch sensor at slack length. The conductive yarn is silver, the
actuator yarn is black. Units on the ruler are centimeters. From [Tietz et al., 2013].

Stretch
Sensor

+ 5_/ To

Arduino

Figure 7.3: A diagram of the sensor and current limiting resistor.

the analog to digital conversion had a resolution of approximately 200 units over the
2 cm length change.

While these sensors were ultimately sufficient for control, they required extensive
calibration, which was never directly convertible into units of force. In addition, the
knots in the knitting would slip, changing the amount of resistance. Finally, the
conductive yarn was fairly thin and prone to breaking, meaning the sensors had to

be replaced fairly often.

7.1.2 Carbon Fiber Spine’s Performance

With proper calibration, the three segment spine demonstrated forward locomotion
at a speed of 7.6 cm per minute. Stills from a one minute video of this motion are
shown in Figure 7.4. This result provided a qualitative, visual match of simulator

behavior.

80

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

Figure 7.4: Motion of the Carbon Fiber spine on lab carpet. These images represent
approximately one minute of motion.

Figure 7.5: The five segment version of the Carbon Fiber spine. Ultimately the forces
required for movement of this spine were beyond the strength of the knit stretch
Sensors.

I attempted to extend this version of Tetraspine to five segments, but this was
ultimately unsuccessful due to the limitations in the stretch sensors, especially under

the higher forces required by the longer spine, shown in Figure 7.5.

81

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

7.2 Tetraspine 3

In order to perform simulator validation tests, Dr. In-Won Park constructed the
Tetraspine3 hardware at NASA Ames Research Center. Figure 7.6 shows a snapshot
of the Tetraspine3 hardware, which has 12 DC motors, 12 vectran cables, and 12 load
cells. The length and diameter of Tetraspine3’s rods is to 38.10 cm and 0.64 cm,
respectively. One end of each vectran cable is connected to a DC motor (Faulhaber
1524) with a spool for rotation. The other end is attached to a 222 N (50 1b) ten-
sion and compression load cell (Load Cell Central LCC-CTD) for measuring cable
tension. For 8 out of 12 cables, a 227 N/m spring is placed before the load cell to
increase compliance. Since the other four cables (top inside and top outside) required

additional stiffness to support the weight of the robot, they did not include springs.

Figure 7.6: Snapshot of TetraSpine3 hardware (the first segment is the farthest right).
From [Mirletz et al., 2015a)].

The Tetraspine 3 prototype used carbon fiber rods to form the tetrahedrons, which

simultaneously reduced the weight compared to the University of Idaho aluminum

82

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

120
100F /

\

Force [N]
3

e

N
2

d

N
2

/

0O 100 200 300 400 500 600 700 800
Microcontroller ADC Value

Figure 7.7: The load cell calibration. From [Mirletz et al., 2015a).

spine, and increased strength relative to the carbon fiber shell of the CWRU spine.
Table 7.1 compares the mass of all three prototypes. Note that middle segments have
six motors, whereas outer segments have three.

Six Arduino Nano slave boards (two per segment) control the motors via a Pololu
MC33926 motor driver, a LTC3260 voltage regulator and two instrumentation am-
plifiers. The instrumentation amplifier increases the voltage range of the load cell
before it is connected to the Arduino’s 10 bit ADC. Figure 7.7 shows the output of
the calibrated load cell, where the maximum measurable tension is 111.2 N (25 lbs).

The following linear relationship describes the resolution of the load cell in terms of

ADC bits.

f=0.1567(ADC) — 4.9363 (7.1)

A PC and the six slave boards communicate using fast-mode I>C protocol (400
kHz) through a Devantech USB-ISS communication module. Every 10 milliseconds,

the PC broadcasts a packet to all six slave boards simultaneously, which contains

Table 7.1: Mass comparison between the three prototypes

] Segment H Carbon Fiber Spine H TetraSpine2 ‘ TetraSpine3 ‘

First 0.9 [kg] 1.45 [kg] 0.73 [kg]
Middle 1.6 [kg] 1.54 [kg] 0.91 [kg]
Last 0.9 [kg] 1.18 [kg] 0.73 [kg]

83

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

all 12 desired motor commands. Within 20 milliseconds, the PC then connects to
each slave board in order to receive the actual and target tension values, the motor
encoder value, and the motor PWM output value. During experiments, the process
of broadcasting the packet to all six slave boards and receiving the packet from all
six slave boards takes less than 3 milliseconds. Every 200 milliseconds, the PC also
stores all feedback values from all six slave boards and displays them in a GUI.

The microcontroller supports both position and impedance control modes, which
are selected from the PC. The communication packet contains the desired motor
angles in position control, whereas it represents the desired cable velocity during
impedance control. Position control is used initially to set the length of each cable.
When impedance control is switched on, the current length and tension values are
used as the Ly and T parameters in (6.1). In both control modes, the motor is
controlled with a PID controller every millisecond (1000 Hz), where the measured
loop times of position control and impedance control are 400 microseconds and 800
microseconds, respectively. Filtering the tension sensor, and calculating the cable
length and velocity add the additional time to impedance control. The tension offset,
the rest length, the stiffness gain, and the velocity gain in (6.1) can be set differently

for each cable from the PC.

7.3 Simulator Validation

With this new robot, we were now able to directly compare the forces experienced
by the robot with the simulator. We chose to focus on force for two reasons: first,
the impedance controllers’ output is force, so this provides a good test of the control
system. Second, force is a key property in the design of new structures and selection
of actuators. By ensuring the simulator’s forces are in range with the hardware, we

now have confidence in future simulated designs.

84

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

We started by updating the simulated version of Tetraspine to match, as closely
as possible, the material properties of the robot such as cable stiffness, inertia, and
friction. To verify these properties, we used a quasi-static tests of dragging the robot
at a steady velocity and applying a 20 N force to the front segment of the robot. Once
we were confident in the match between the simulation and hardware, we tested a
trajectory, which was hand tuned on the robot, in the simulator. Finally we ran a
simulator learned trajectory for a different gait on the robot. These simulations were
run at 1000 Hz. Decreasing the timestep to 250 Hz changes the predicted force on this
test by 6% (worst case), increasing the time step to 4000 Hz changes the predicted
force by 1.3%. Since the contact cables were not necessary for this simulation, 60
simulation seconds takes between 7 and 14 seconds of real time, depending on the

simulation timestep.

7.3.1 Quasi-static

We started by attempting to calibrate the simulation to the hardware and determine
properties such as dynamic friction by measuring the force to drag the robot at a
steady velocity. We then applied a steady state disturbance of approximately 20 N
(a forward force on the front of the robot, and a restoring force on the rear two

segments), and verified that the control response was similar in both cases.

Table 7.2: Control parameters used in Fig. 7.8

’ Value H Top Cables ‘ Other Cables ‘
K 500 [N/m)] 100 [N/m]
B 100 [N/m-s] 100 [N/m-s]

The results of this test are shown in Fig. 7.8. The overall system dynamics are
similar, with the added tension from the disturbance being split between the outside

cables. When tuning for this test, we found that even without springs in the top

85

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

Front Segment Tensions
Response to External Disturbance

’2 ! ! 4
S 30 - mm
£
b 20 1
g | 4
2 10
g) 0 1 1 1 1 1
£ 5 10 15 20 25 30
T T T T T
30 F .

Outer Top String (N) Inner Right String (N) Inner Left String (N)

0 1 1 1 1 1

5 10 15 20 25 30
= T T T T T
=30 | -
£
i o A Asain Mg anaftdaddiane ;’Q-T
3 10 —-—-:-v—-—---‘-—-- --.-.--—-—-—-—--
EJ 0 1 1 1 1 1
>
o 5 10 15 20 25 30
g T T T T T
o 30 B -
£
n 20 i
£ . .
E’ 10 -.--—-—-—----
31:) 0 1 1 1 1 1
8 5 10 15 20 25 30

Time Step (1 step = 0.2 sec)

Figure 7.8: We tested the steady state responses of the control by applying a steady
load of approximately 20 N (measured using a hand-held scale) to the front segment of
the robot while holding the other two in place. The resulting displacement and added
tension causes the impedance controller to increase the tension setpoint, mostly in the
outside cables. The forces experienced in each cable are plotted, with the hardware’s
setpoint in blue, its actual tension in red, and the simulator’s predictions in black.
The simulator’s error on the system’s maximum tension is within 6.1% (top plot).
(from [Mirletz et al., 2015al)

Actual Tension == mm mm Target Tension ™= mmmmmm Simulated Tension |

86

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

outside and inside cables, it was effective to model them at the same stiffness as the

rest of the system (227 N/m), we refer to this as the ‘effective stiffness’ of these cables.

7.3.2 Hand Tuned Trajectory

Subsequently, we hand tuned a sine wave as the velocity input to the impedance
controller on the hardware. The final tuning resulted in the inside cables having the
inverse sign of the outside cables, and the rear cables having a phase offset of 7 from
the front cables.

The velocity input in this case required some additional scaling. Amplitudes given
to the simulator were 1/10 what they were in the hardware (with identical input, the
simulated robot’s segments would slide together, causing it to topple). The results
of this test (Fig. 7.9) show some differences in the system’s pretension levels, but
similar sizes of oscillations for each cable. This confirms that some of the actuator
properties such as effective stiffness and actuation speed were sufficiently accurate.
We suspect the differences are due to the absence of perfect sticking from Bullet’s
default Coulomb friction model, as the segments tend to slide together under higher
pretension. Another difference is sensor noise, which is present in the tension readings
(red line), but not in the simulator data (black line). These experiments show the

control is robust to this level of noise.

7.3.3 Simulator Generated Trajectory

In order to ensure that we have a useful model, as opposed to a fit of existing data, we
chose to make a prediction and test it on the hardware. For our prediction, we used
our tuning methods in simulation to generate a trajectory through an open loop CPG
capable of sideways motion, similar to the side-winding gait for the twelve segment
version [Mirletz et al., 2014]. We exported these values to a text file and then used

them as the velocity input on the hardware, without additional scaling. The resulting

87

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

Front Segment Tensions
Hand Tuned Sine Wave

W
o
1

=N
o o
| B |
&
&
N
3,
1

o

Inner Top String (N)

W
o
T
1

20

10

=N W
o O o

o

PN W
o O o

o

N W
o O

=
o

20 25 30

o
[any
[&)]

PN W
o O o

o
[any
[&)]
N
o
N
)]

30

Outer Right String (N)outer Left String (N) Outer Top String (N) Inner Right String (N) Inner Left String (N)

Time Step (sec)

Figure 7.9: A comparison of the tensions experienced by the hardware and simulation
under a hand tuned, sine wave input on the velocity term of the impedance controller.
This figure shows the full trial, with the trajectory applied to the simulation the entire
time, but on the hardware it is only active between timesteps 70 and 170 (14 and
34 s). The simulated maximum system tension in this case is within 7.9% of the
hardware. (from [Mirletz et al., 2015a])

Actual Tension == mm mm Tgrget Tension ™= mmmmmm Simylated Tension |

88

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

Front Segment Tensions
CPG Trajectory

E T T T T
~— 30 -
=2 L & \
& 20 -
S 10 F i
'_
EI;) 0 1 1 1 1 1
= 5 10 15 20 25
T T T T T
30 -

Outer Top String (N) Inner Right String (N) Inner Left String (N)

E T T T T T

<30 .
£

b 20 F 7
=

5 0 o\.fs.' AR Y, \Io Y 4 4 '., (R a4 ' Tal T’ Y -

3 5 10 15 20 25

g | | | | |

o 30 B -
£

& 20 F .
=

210 L -

go c".‘""’. ﬂ'ol\ﬂ 2N Vu? T N Ty

3 5 10 15 20 25

Time Step (sec)

Figure 7.10: A comparison of forces experienced under a simulator-tuned CPG based
gait. Like the sine wave, this shows the full trial, with the hardware’s trajectory
activated later than the simulator’s. The maximum tension experienced by the robot
is within 1.6% of what was predicted by the simulator. (from [Mirletz et al., 2015al)

Actual Tension == mm mm Tgrget Tension == mmmmmm Simulated Tension |

89

CHAPTER 7. ROBOT HARDWARE AND SIMULATOR VERIFICATION

forces are shown in Fig. 7.10.

The gait produced successful locomotion on the hardware implementation®. Note
how the amplitude of the CPG’s velocity trajectory forces the inside cables to a
more saturated triangle-wave like oscillation in both cables (sharper peaks), while the
outside cables are more sinusoidal, verifying the output of the impedance controllers
to this input. Again, the pretension is lower in the outside cables, and the speed
of locomotion in hardware is slower due to additional static friction and unmodeled
cable friction, but the overall direction of locomotion is similar.

We found that the forces predicted by the NASA Tensegrity Robotics Toolkit
were within expected errors for robotic design, and that the accuracy extended from
a single motion caused by a single actuator to the continuous coordinated motion of
twelve actuators. Due to the nature of our cable implementation (applying impulses
directly) changing Bullet constraint parameters such as the error reduction parameter
(by a factor of 4) changes our results by less than 0.3%. We expect improving the
friction models, both in actuators and within collisions will be the most effective way
to improving the accuracy of this work. The accuracy of the work presented here
could also be improved with more formal, automated system identification methods,
especially if motion capture is used along with the force results. The errors as dis-
cussed would allow for designs with a safety factor of 1.15, whereas the actual safety
factor we used in Tetraspine3’s design was close to 2. These results confirm that we
can continue to use NTRT for the design of new robots, with reasonable safety factors

on parameters.

2Video available at: .https://www.youtube.com/watch?v=VRdKwPsjmcI

90

https://www.youtube.com/watch?v=VRdKwPsjmcI

Chapter 8

Conclusions

8.1 Contributions

The contributions of this dissertation to the field of tensegrity robotics are algorithms
that control adaptive tensegrity spines with many degrees of freedom, and simula-
tion tools such as cable models with realistic forces and contact dynamics that are
implemented in the open source NASA Tensegrity Robotics Toolkit. Use of CPGs
coupled with impedance controllers was proven in two hardware implementations,
one of which validated the forces predicted by the NASA Tensegrity Robotics Toolkit
Simulator, and demonstrated locomotion of a machine learned controller. The final
algorithms produced locomotion on a 72 degree of freedom spine with 88 actuators,
and directed a six segment spine to multiple goal locations over three types of terrain.
In doing so, this work also contributed to the field of biologically inspired robotic con-
trol, demonstrating the first CPG based robotic controller capable of goal directed

locomotion on rough terrain.

91

CHAPTER 8. CONCLUSIONS

8.2 Future Work: Methods and Details

8.2.1 Machine Learning

Though machine learning has enabled the tuning of controllers far faster and more
efficiently than hand tuning, there is still room for improvement here. A logical
extension of our current approach would be to conduct ‘meta-learning,” where the
algorithm automatically chooses when and how to make the problem more difficult.
These algorithms exist in artificial intelligence applications [Vilalta and Drissi, 2002],
and may benefit robotics.

Another approach would be to find online methods for tuning CPGs. This
has already been attempted for a small, modular system using Powell’s method
[Sproewitz et al., 2008]. In order to scale up to the types of systems presented here,
a more stochastic approach may be necessary. Work on using chaos to explore lo-
comotion behaviors looks promising for online tuning [Shim and Husbands, 2012]. If
properly designed, these methods could also tune parameters on hardware.

Finally, if tuning the controller is sped up or automated sufficiently, applying ma-
chine learning techniques could optimize the structures. Since most existing tenseg-
rities have been designed as static structures, this could lead to the first tensegrity
structures specifically designed for their dynamic motion. Additional components to
optimize would be the placement of cables, and adding cables that span multiple

segments.

8.2.2 Cable Models

As of this writing, the cables in NTRT do not interact with each other. Adding
a collision resolution algorithm between cables would allow for more accurate sim-
ulation of nested tensegrity structures, meshes, and soft terrain features. This

may require adding three dimensional internal dynamics, and mass, to the ca-

92

CHAPTER 8. CONCLUSIONS

ble. One possible model, Corde, has already been partially implemented in NTRT
[Spillmann and Teschner, 2007], but has not yet been used outside of simple test
cases. The collision dynamics as currently implemented for this model (based on
Spillman’s dissertation) need improvement. The collision resolution algorithm that
is being used for the massless cables (Section 3.2) would be a suitable replacement.
Implementing the Corde model would also improve motor models, since this would

better approximate friction between the cable and the spool.

8.2.3 Sensors

Tension and length sensors are certainly not the only sensors available to robots.
Future work could consider how to incorporate additional sensors, such as ground
contact sensors into the CPG for better performance on rough terrain. The goal
directed motion on rough terrain could be improved by adding exteroceptive sensors
such as vision or a laser range finder for planning or other high level control. Humans
and animals are good at determining the path of least resistance, and adjusting the
path given the terrain. Ideally, this sort of planning will be part of an autonomous
controller. Incorporating sensor noise would also be a good way to improve the

robustness of the control algorithms.

8.3 Future Work: High Level Research Directions

8.3.1 Tensegrity Quadruped

As may be obvious from the Chapters 1 and 2, the next high level work for tensegrity
spines may be integrating them with a legged robot. There are two possible directions
for this: either placing the spine as a component with traditional legs, or constructing
an entire tensegrity quadruped. The latter is currently underway at UC Santa Crugz,

pictured in Figure 8.1. A quadrupedal design should enable a tensegrity system to

93

CHAPTER 8. CONCLUSIONS

Figure 8.1: A prototype tensegrity quadruped ‘big puppy’ implemented in NTRT,
inspired by a passive design by Tom Flemons. Printed with permission of Dawn
Hustig-Schultz.

handle larger perturbations in the terrain more easily than the spine models.

In addition to the features of the NTRT simulator, the automatically gener-
ated CPG morphologies will be particularly valuable to designing controllers for the
quadruped. Additionally, the concept of tension offsets and shape control as a steer-
ing mechanism from the goal direction work could inform whole body behaviors for
this type of robot.

Cable routing and good design of tensegrity ‘joints’ will be important features
in this work. In the spine work, the velocity of the robot never exceeded 150% of
the actuator’s maximum velocity. This is because the structures in this work never
featured cables that spanned multiple segments. By creating properly constrained
joints with actuators working in parallel, a quadruped robot should be able to exceed

this speed limitation and maintain whole body compliance.

94

CHAPTER 8. CONCLUSIONS

8.3.2 Tensegrity Biomechanics

It is worth asking whether a bio-inspired robotics effort can contribute to knowledge to
biology, or in this case, biomechanics. While qualitative theories of tensegrity biome-
chanics are already being discussed, particularly by bodyworkers such as massage
therapists and chiropractors (referred to by Myers as spatial medicine [Myers, 2014]),
more work is necessary to quantify the tensegrity model relative to biomechanical
data. The insight of tension holding bones apart, as opposed to traditional ball
and socket joints, seems sufficiently valuable to merit further investigation, especially
given recent advances in computing power. It is not clear whether tensegrities as
simulated in this dissertation would have distinct advantages over tensegrity inspired
finite element models in this respect, as the finite element models would be able to

include more detailed material properties in their meshes.

8.4 Conclusions

This work will hopefully inform and encourage future work in compliant, adaptive
robotic systems with many degrees of freedom, particularly robots with flexible spines
and torsos. Future robots with flexible spines and torsos will be better able to perform
in situations such as search and rescue, planetary exploration, and environments

dangerous to humans.

95

Appendix A

Parameters Used In Simulation

The goal of this appendix is to capture a full set of parameters in one place so they
do not have to be pieced together from disparate sections of code. This appendix will
focus on hard coded or configuration based parameters, learned parameters can be

found on Github (see Appendix B).

A.1 Learning Parameters

The following are from the final learning step that produced the goal directed con-
troller. These are associated with the ‘node’ values of the CPG (radius, frequency,

feedback gains).

"7learning” : true,
"startingControllers” : 25
"monteCarlo” : false ,
"numberOfStates” : 0,
"numberOfOutputs” : 5,
"numberOflnstances” : 1,
"populationSize” : 50,

96

APPENDIX A. PARAMETERS USED IN SIMULATION

"useAverage” : true,
"numberToMutate” : 15,

"numberOfChildren” : 10,

"mutationChance” : 0.5,
"mutationDev” : 0.01,
"paramMax” : 1.0,

"paramMin”: 0.0,
?childMutationChance” : 0.5

The previous trials had 25 elite controllers, so it made sense to start with the
controllers that had already been tested. This could be increased to 50 if the trial
needed to be restarted in exactly the same place (depending on the random seed). 50
trials were run per generation, meaning that controllers were run together in groups
(no co-evolution). Number of states would indicate the number of inputs to a neural
network. numberOfChildren indicates the output of crossover. mutationDev was
often run at 0.03, this was finer tuning. Neural network weights were 41, note that
scaling for individual parameters typically occurs in the C++ main application file,

where controllers are declared.

A.2 Structure and actuator parameters

Note that this simulation was run at cm scale. Units of force are centi-Newtons

(cm — kg/s?)

Rods:
const double density = 4.2/300.0 kg/cm"3
const double radius = 0.5 cm

const double friction = 0.5;

97

APPENDIX A. PARAMETERS USED IN SIMULATION

const double rollFriction = 0.0;

const double restitution = 0.0;

const double elasticity = 1000.0 kg/s" 2

const double damping = 10.0 kg/s

const double pretension = 0.0 centi—Newtons
const bool history = false;
const double maxTens = 7000.0 centi—Newtons

const double maxSpeed = 12.0 cm/s

const double mRad = 1.0 cm
const double motorFriction = 10.0 em”2 kg / s
const double motorlInertia = 1.0 ecm”2 kg

const bool backDrivable = false;

98

Appendix B

NTRT Implementation Detalils

This appendix highlights how the controllers and algorithms discussed in this disserta-
tion were implemented in the NASA Tensegrity Robotics Toolkit. The main project
page for NTRT is: http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/
tensegrity/ntrt/. Current documentation detailing how to use the code can be
found at http://ntrt.perryb.ca/doxygen. Each section of this appendix provides
the relevant classes to look up within NTRT, with links that will help readers track
the current code. If you wish to see the exact code that was used for the data
presented here, look at commit ¢274e296{86ee640e6506155850df2b7hc7dect9. This
requires replacing the text in the link with the string of that commit number. For
example:
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/

blob/master/src/core/tgBulletSpringCable.cpp points to the most re-
cent version of tgBulletSpringCable in the master (main) branch, while
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/
c274e296£86ee640e6506155850df2b7bc7dccf9/src/core/tgBulletSpringCable.
cpp points to the specific version written about here. Note that as of this writing

that particular file has not changed since December 12, 2014, so those two links

99

http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/ntrt/
http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/ntrt/
http://ntrt.perryb.ca/doxygen
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/c274e296f86ee640e6506155850df2b7bc7dccf9/src/core/tgBulletSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/c274e296f86ee640e6506155850df2b7bc7dccf9/src/core/tgBulletSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/c274e296f86ee640e6506155850df2b7bc7dccf9/src/core/tgBulletSpringCable.cpp

APPENDIX B. NTRT IMPLEMENTATION DETAILS

should be identical.

B.1 Reference dates

Below lists the dates when data for this dissertation was taken. If use of features is

not explicitly stated, this will provide a reference relative to implementation dates.

Jan. 2013 Data for [Tietz et al., 2013]

May 2013 Videos of Carbon Fiber Tetraspine

April 2014 Multiple spines for [Mirletz et al., 2014]

June 2014 NTRT’s open source release on Github

September 2014 Data taken from Tetraspine 3 for simulator validation

December 2014 Contact cables and brushless motor model finalized

January 2015 NTRT version 1.1 released, data for CPG feedback

[Mirletz et al., 2015b]

February 2015 Data for simulator validation updated to V 1.1

[Mirletz et al., 2015a)]
April 2015 Controllers transitioned to JSON interface

June 2015 Goal directed motion

B.2 Chapter 3: NTRT Core and Cable Models

This section primarily deals with code located in src/core. Classes that are expected

to be used by multiple applications are prefixed with ‘tg’.

100

APPENDIX B. NTRT IMPLEMENTATION DETAILS

B.2.1 Bullet Simulation Core

The Bullet Physics Engine is primarily designed for collision detection and
then solving the resulting linear complimentary problem for contact dynam-
ics [Coumans, 2014]. Bullet includes several solvers for doing this, we found
the best results with the Projected Gauss Seidel solver. Our interface
for this (including collision detection algorithms) are included in tgWorld-
BulletPhysicsImpl: https://github.com/NASA-Tensegrity-Robotics-Toolkit/
NTRTsim/blob/master/src/core/tgWorldBulletPhysicsImpl.cpp This class also
includes some enabling components for the cables with contact dynamics. This was

last updated December, 12, 2014.

B.2.2 Cable Internal Dynamics

Due to the assumption of a cable being in line with a spring for each actuator, the
base class for cables and actuators is a tgSpringCable. This defines the interface,
the details of equation 3.1 are Bullet specific, and are therefore implemented in
tgBulletSpringCable https://github.com/NASA-Tensegrity-Robotics-Toolkit/
NTRTsim/blob/master/src/core/tgBulletSpringCable.cpp Note the use of the
applylmpulse function. I found that the friction behavior was more ac-
curate with this function than with applyForce, since applylmpulse allows
the actuator forces to be accurately considered when friction is applied.
The cables interface with Bullet’s rigid bodies via tgBulletSpringCableAn-
chor https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/
master/src/core/tgBulletSpringCableAnchor.h The type of contact specified by

the anchor (fixed or sliding for the contact cables) is specified in its configuration.

101

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgWorldBulletPhysicsImpl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgWorldBulletPhysicsImpl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletSpringCableAnchor.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletSpringCableAnchor.h

APPENDIX B. NTRT IMPLEMENTATION DETAILS

B.2.3 Cable Contact Dynamics

Contact dynamics are handled by tgBulletContactSpringCable,
which is a child class of tgBulletSpringCable https://github.com/
NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/

tgBulletContactSpringCable.cpp The high level interface is identical to other
spring cables, but the low level maintains a Bullet collision object: mghostOb-
ject. This class maintains vectors of tgBulletSpringCableAnchors, which are then
related to Bullet’s btPersistentManifold for collision detection. This pointer is
somewhat problematic, as Bullet can update it without notifying NTRT. Thus
tgBulletContactSpringCable::updateManifolds tries to rectify this. Problems
with the anchors and the contact dynamics are being discussed here: https:

//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/issues/119

B.2.4 Motor models

NTRT contains two models for actuating the cables. The base of both
of these classes is tgSpringCableActuator. The basic behavior for chang-
ing the rest length of the system exists in tgBasicActuator: https:
//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/
src/core/tgBasicActuator.h. As long as you dont exceed the force or speed
constraints set by the config (from tgSpringCable) then it will make your desired
changes to the cables rest length.

tgKinematicActuator is the implementation of equation 3.3. This adds four addi-
tional parameters to the configuration, the motor’s radius, the rotor’s inertia, a fric-
tion value, and a Boolean indicating whether the motor is backdrivable. This model
also implements a linear torque speed curve, and accounts for the external force when
actuation is desired. PID control adjusts the desired applied tension. Numerical inte-

gration for the motor’s acceleration and speed is handled internally with semi-implicit

102

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletContactSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletContactSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBulletContactSpringCable.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/issues/119
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/issues/119
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBasicActuator.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBasicActuator.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgBasicActuator.h

APPENDIX B. NTRT IMPLEMENTATION DETAILS

Euler integration. https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/core/tgKinematicActuator.h

B.3 Chapter 4: Machine Learning

Many of the details of this chapter are available in src/learning. An updated Python
implementation is available in scripts (this will change shortly to scripts/src/learn-
ing). https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/
master/scripts. The Python scripts include code to translate parameters from the
C++ specification (.nnw comma delimited text files) to JSON.

Rather than implementing each method in a separate file, we imple-
mented the methods in the same class and switched between them us-
ing configuration files. A summary of the options is available here:
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/

master/doc/source/learning-library-walkthrough.rst

B.4 Chapter 5: Structures

Each of the spines discussed in Chapter 5 is implemented in src/examples/learn-
ingSpines. The design is specified as nodes in cartesian coordinates, pairs of nodes,
and tags according to what should be created for each pair. This code utilizes the
builder library in src/tgcreator in order to translate this structure specification into

objects in the Bullet physics world. The procedure is as follows:
1. Declare a tgStructure - the container for a structural specification
2. Add nodes to this structure, as a point in three dimensions

3. Pair these points as rigid bodies and cables by node numbers, and tag them

accordingly using words

103

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgKinematicActuator.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/tgKinematicActuator.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/master/scripts
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/master/scripts
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/doc/source/learning-library-walkthrough.rst
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/doc/source/learning-library-walkthrough.rst

APPENDIX B. NTRT IMPLEMENTATION DETAILS

4. Duplicate these structures, move them around, and place them in a super struc-
ture as you desire (for spines this is done inside of a for loop, since they are a

linear chain)
5. Repeat steps 2 - 4 as desired

6. Declare the physical properties of your structure in a tgBuildSpec. This relates
tags to 'info’ classes which contain construction details, such as tgBasicActua-

torInfo

7. Create a structure info (tgStructurelnfo) and add the build spec and the tgStruc-

ture to that

8. Specify the model and the world that is being built into (typically a pointer to

the class that is currently being setup)

9. Notify any controllers that setup is finished

The spines are implemented in the following classes:

Tetraspine https://github.com/NASA-Tensegrity-Robotics-Toolkit/
NTRTsim/blob/master/src/examples/learningSpines/TetraSpine/

TetraSpinelLearningModel.cpp

Tetrahedral Complex https://github.com/NASA-Tensegrity-Robotics-Toolkit/
NTRTsim/blob/master/src/examples/learningSpines/

TetrahedralComplex/FlemonsSpineModelLearning. cpp

Octaheadral Complex https://github.com/NASA-Tensegrity-Robotics-Toolkit/
NTRTsim/blob/master/src/examples/learningSpines/

OctahedralComplex/FlemonsSpineModelLearningCL. cpp

104

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/TetraSpine/TetraSpineLearningModel.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/TetraSpine/TetraSpineLearningModel.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/TetraSpine/TetraSpineLearningModel.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/TetrahedralComplex/FlemonsSpineModelLearning.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/TetrahedralComplex/FlemonsSpineModelLearning.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/TetrahedralComplex/FlemonsSpineModelLearning.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/OctahedralComplex/FlemonsSpineModelLearningCL.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/OctahedralComplex/FlemonsSpineModelLearningCL.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/OctahedralComplex/FlemonsSpineModelLearningCL.cpp

APPENDIX B. NTRT IMPLEMENTATION DETAILS

Ribbed Spine https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/examples/learningSpines/ribDemo/RibModel.

cpp

B.5 Chapter 6: Control

B.5.1 Impedance Control

Common control classes are located under src/controllers. tglmpedance-
Controller can be used with either motor model: https://github.com/
NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/controllers/

tgImpedanceController.cpp

B.5.2 CPG Implementation

The initial CPG implementation is located in src/util. The numerical
integration is handled with the CPGEquations: https://github.com/
NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/util/
CPGEquations.h The value of any node can be pulled from this using the [|
operator, as used by tgBaseCPGNode. Equations for each node are determined by
the CPGNode class https://github.com/NASA-Tensegrity-Robotics-Toolkit/
NTRTsim/blob/master/src/util/CPGNode. cpp. Implementations for these
equations can be found in BaseSpineCPGControl https://github.com/
NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/
learningSpines/BaseSpineCPGControl.h and JSONCPGControl https:
//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/

src/dev/btietz/JSONTests/JSONCPGControl.h

105

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/ribDemo/RibModel.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/ribDemo/RibModel.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/ribDemo/RibModel.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/controllers/tgImpedanceController.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/controllers/tgImpedanceController.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/controllers/tgImpedanceController.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/util/CPGEquations.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/util/CPGEquations.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/util/CPGEquations.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/util/CPGNode.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/util/CPGNode.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/BaseSpineCPGControl.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/BaseSpineCPGControl.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/BaseSpineCPGControl.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/JSONTests/JSONCPGControl.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/JSONTests/JSONCPGControl.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/JSONTests/JSONCPGControl.h

APPENDIX B. NTRT IMPLEMENTATION DETAILS

B.5.3 CPG Morphology Determination

The high level behavior here is dictated by the controller, the most basic of which
is BaseSpineCPGControl’s setupCPGs method. This requires the structure, and the
parameters from learning or a configuration file. The method assigns nodes to each
of the structure’s cables, which associates that cable’s controller with a pointer to the
CPG class (both of which are owned by BaseSpineCPGControl). Then setupCPGs
calls each cable’s setConnectivity method, and passes it a vector of all the cables
in the structure. This method searches through all of the cables, and checks if it
shares a rigid body. If it does, it gets the correct parameter from a four dimen-
sional vector, based on whether the segment is in front of, behind, or the same as
this cable, the cable’s number within the segment (the remainder after dividing by
the number of cables per segment), the other cable’s number, and the parameter
list. https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/
master/src/examples/learningSpines/tgCPGActuatorControl. cpp

The data from [Mirletz et al., 2014] uses this control code and the applications
associated with the spines as indicated in the previous section. Updates since that
data was taken include adding the kinematic cables, the contact cables, and changes
that occured during the validation work. An integration test ensures that performance
never degrades without a good reason (and, has in fact upgraded since that paper was
published): https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/

blob/master/test_integration/SpineTests/WorldConf_Spines_test.cpp

B.5.4 Feedback Code

The feedback code requires a separate set of CPG equations. These
are implemented in CPGEquationsFB, CPGNodeFB, which are located
in: https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/

tree/master/src/dev/CPG_feedback This folder also includes structure

106

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/tgCPGActuatorControl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/learningSpines/tgCPGActuatorControl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/test_integration/SpineTests/WorldConf_Spines_test.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/test_integration/SpineTests/WorldConf_Spines_test.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/master/src/dev/CPG_feedback
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/master/src/dev/CPG_feedback

APPENDIX B. NTRT IMPLEMENTATION DETAILS

level and cable level controllers for this class. It is used in the multi-
Terrain application, which generated the data for [Mirletz et al., 2015b]:
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/

master/src/dev/btietz/multiTerrain That application can adjust terrain,
robot, and controller features from the command line. This required an
implementation of the tetrahedral complex spine with kinematic contact ca-
bles: https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/
blob/master/src/dev/btietz/TCContact/FlemonsSpineModelContact.cpp

This behavior has been reproduced with a JSON based controller: https:
//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/

src/dev/btietz/JSONTests/JSONFeedbackControl . cpp

B.5.5 Goal Direction

In addition to the controller, goal directed spines needed to add the
goal box to the simulation. This is done through BaseSpineModelGoal:
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/
master/src/dev/btietz/TC_goal/BaseSpineModelGoal.h The final goal di-
rected controller is called JSONGoalTensionNNW: https://github.com/
NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/

dev/btietz/TC_nn_Tension/JSONGoalTensionNNW.cpp

B.6 Chapter 7: Hardware

Each plot in Chapter 7 used a different controller, so for simplicity they were each im-
plemented in a different application. They all use common hardware, implemented in:
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_

Tension_length/src/dev/btietz/TetraSpineStatic/TetraSpineStaticModel_

107

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/master/src/dev/btietz/multiTerrain
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/master/src/dev/btietz/multiTerrain
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/TCContact/FlemonsSpineModelContact.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/TCContact/FlemonsSpineModelContact.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/JSONTests/JSONFeedbackControl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/JSONTests/JSONFeedbackControl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/JSONTests/JSONFeedbackControl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/TC_goal/BaseSpineModelGoal.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/dev/btietz/TC_goal/BaseSpineModelGoal.h
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TC_nn_Tension/JSONGoalTensionNNW.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TC_nn_Tension/JSONGoalTensionNNW.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TC_nn_Tension/JSONGoalTensionNNW.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TetraSpineStatic/TetraSpineStaticModel_hf.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TetraSpineStatic/TetraSpineStaticModel_hf.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TetraSpineStatic/TetraSpineStaticModel_hf.cpp

APPENDIX B. NTRT IMPLEMENTATION DETAILS

hf.cpp Note that in addition to the standard build process, this places several
spheres at locations around the structure to more accurately model heavy com-
ponents. The static test (Figure 7.8) uses the following controller: https://
github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_
length/src/dev/btietz/TetraSpineStatic/SerializedSpineControl.cpp Note
that that controller directly applies forces to the rigid body via abstract mark-
ers. This is not recommended behavior, and we are working on alternative
solutions. An integration test has been implemented to preserve this behav-
ior: https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/
master/test_integration/ICRA2015Tests/ICRA2015_test.cpp

Figure 7.9 utilizes: https://github.com/NASA-Tensegrity-Robotics-Toolkit/
NTRTsim/blob/TC_Tension_length/src/dev/btietz/handTunedSineWaves/
htSpineSine.cpp and Figure 7.10 uses: https://github.com/
NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/
dev/btietz/hardwareLearning/LearningSpineJSON.cpp Raw robot data will be

posted online and linked to NTRT after publication of the paper.

B.6.1 Arduino Code for Carbon Fiber Spine

Below is the full Arduino code for one segment of the carbon fiber Tetraspine:

#include <Encoder.h>
#include <PID_v1.h>
#include 7 DualMC33926MotorShield.h”

int k =0;

const float pi = 3.141592654;
long time;

long prevTime;

long tempTime;

//1T, IR, IL, OT, OR, OL
const int analogInPins[6] = {

108

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TetraSpineStatic/TetraSpineStaticModel_hf.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TetraSpineStatic/TetraSpineStaticModel_hf.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TetraSpineStatic/SerializedSpineControl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TetraSpineStatic/SerializedSpineControl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/TetraSpineStatic/SerializedSpineControl.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/test_integration/ICRA2015Tests/ICRA2015_test.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/test_integration/ICRA2015Tests/ICRA2015_test.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/handTunedSineWaves/htSpineSine.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/handTunedSineWaves/htSpineSine.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/handTunedSineWaves/htSpineSine.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/hardwareLearning/LearningSpineJSON.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/hardwareLearning/LearningSpineJSON.cpp
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/dev/btietz/hardwareLearning/LearningSpineJSON.cpp

APPENDIX B. NTRT IMPLEMENTATION DETAILS

A2, A3, A4, A5, A6, AT);
const int motorSensorPins[6] = {
A8, A9, Al10, All, Al12, A13};
double sensorValue [6];
double prevSensorValue [6];
double sensorMin [6] = {
220, 180, 160, 100, 280, 280};
double sensorMax[6] = {
290, 215, 250, 130, 350, 350};

double motorOutputs [6];
double setPoints[6] = {
730, 730, 730, 780, 730, 670};
double offSets[6] = {
430, 335, 370, 250, 470, 470};
//double setPoints[6] = {200, 340, 466, 356, 158, 251};
double finalOutputs [6];

long enc_value [6];
long prev_enc [6];

DualMC33926MotorShield md OL.OR(22, 4, Al13, 24, 5, Al2, 12, 53);
DualMC33926MotorShield md OTIR(26, 6, All, 30, 8, A9, 12, 49);
DualMC33926MotorShield md_IL_IT (28, 7, A10, 32, 9, A8, 12, 43);
int otherInterrupts|[3] = {

45, AT, 41);
//MIDIR, MIPWM, MIFB, M2DIR, M2PWM, M2FB, nD2, nSF)

PID stringControl_IT (&sensorValue[0], &motorOutputs|[0],
&setPoints [0], 1, 0, 0, DIRECT);
PID stringControl IR (&sensorValue[1l], &motorOutputs|[1],
&setPoints [1], 1, 0, 0, DIRECT);
PID stringControl_IL(&sensorValue [2], &motorOutputs|[2],
&setPoints [2], 1, 0, 0, DIRECT);
PID stringControl OT (&sensorValue [3], &motorOutputs|[3],
&setPoints [3], 1, 0, 0, DIRECT);
PID stringControl_ OR(&sensorValue [4], &motorOutputs [4],
&setPoints [4], 1, 0, 0, DIRECT);
PID stringControl_OL(&sensorValue [5], &motorOutputs[5],
&setPoints [5], 1, 0, 0, DIRECT);

Encoder enc_OL(3,23);
Encoder enc_.OR(18,25);
Encoder enc.OT (2,27);
Encoder enc_IL(19,29);

109

APPENDIX B. NTRT IMPLEMENTATION DETAILS

Encoder enc_ IR (20,31);
Encoder enc_IT(21,33);

boolean faultValue;

int encDiff;
float sensorDiff;

int led = 13;

static inline int sgn(float val) {
if (val < 0) return —1;
if (val==0) return 0;
return 1;

}

void stoplfFault ()
{
faultValue = false;
for(int j = 0; j< 3; j++){
if (! digitalRead (otherInterrupts|j])){
Serial.println (j);
faultValue=true;
}
}
for (int j=0; j<6; j++){
if (time>10&&(sensorValue [j] <25||sensorValue[j]>1020)){
Serial.println(j);
Serial.println (time);
Serial.println (sensorValue[j]);
faultValue=true;

}
encDiff = enc_value[j]—prev_enc|j];
sensorDiff = sensorValue[j]—prevSensorValue|[j];

if ((sgn(sensorDiff)l=—sgn(encDiff))
&&(sensorDiffxencDiff!=0)&&(abs(sensorDiff)>=15)
&&abs (encDiff)>20&&(abs (finalOutputs[j]) >150))

{

Serial.println(j);

Serial.print (”Vel: 7);

Serial.print (sensorDiff);

Serial.print (” Command ”);

Serial.println (finalOutputs|[j]);

//faultValue=true;

110

APPENDIX B. NTRT IMPLEMENTATION DETAILS

}

if (md-OL.OR.getFault ()||md-OT_IR. getFault ()
|| md_IL_IT. getFault ()|| faultValue)
{
if (md OL.OR. getFault ()){
Serial.println (”Pin 537);
}
if (md OT.IR. getFault ()){
Serial.println (”Pin 497);
}
if (md IL_IT.getFault()){
Serial.println (”Pin 43”);

}

Serial.println (” fault”);

md OL_.OR.setSpeeds (0, 0);
md OT_IR.setSpeeds (0, 0);
md_IL_IT .setSpeeds (0, 0);
while (1);
¥
}
void setup ()
{
analogReference (EXTERNAL);

Serial.begin(115200);
Serial2 .begin (9600);
Serial3 .begin (9600);
Serial.println (” Dual MC33926 Motor Shield”);

for (int 1 =0; i<3; i++){
pinMode(otherInterrupts[i], INPUT);
}

md OL.OR. init ();

md OT_IR. init ();

md_IL_IT.init ();

md OL_OR.setSpeeds (0, 0);

md_OT_IR.setSpeeds (0, 0);

md_IL_IT.setSpeeds (0, 0);

stringControl _OL .SetMode (AUTOMATIC) ;

stringControl _OR . SetMode (AUTOMATIC) ;
();
()

stringControl_OT . SetMode (AUTOMATIC
stringControl_IL .SetMode (AUTOMATIC

Y

Y

111

APPENDIX B. NTRT IMPLEMENTATION DETAILS

stringControl_IR . SetMode (AUTOMATIC) ;
stringControl _IT .SetMode (AUTOMATIC) ;

for (int 1=0; i<6; i++){
prev_enc[i]=0;
prevSensorValue [i]=analogRead (analogInPins [i]);
}
pinMode(led , OUTPUT);
time= millis ();
prevTime = millis ();

}

void loop ()

{
time= millis ();
//stoplfFault ();
enc_value [5] = enc_.OL.read
enc_value enc_OR .read
enc_value enc_OT .read

();
();
();
= enc_IL.read ();
();
();
Tim

[S S [SR S T—

= enc_IR .read
enc. Value[] = enc. IT.read

e);

for (int 1=0; i<6; i++){
//stoplfFault ();

sensorValue[i] = analogRead(analoglnPins[i]);
//sensorValue[i] = stretchValue[i];
if (1>3){ //Set 2 outside bottom

setPoints[i] = offSets[i] 4+ enc_value[i]/75.0

+(enc_value[i]—prev_enc[i])/(time—prevTime)/1000.0
+100.0%sin (pi/1250xtime+pi /2);
¥
else if(i>2){ //Set 2 outside top
setPoints[i] = offSets[i] 4+ enc_value[i]/75.0
+(enc_value [i]—prev_enc[i])/(time—prevTime)/1000.0
+100.0%sin (pi/1250xtime+pi /2);
¥
else if (i>0){ //set 1 inside bottom
setPoints[i] = offSets[i] + enc_value[i]/10.0
+(enc_value[i]—prev_enc[i])/(time—prevTime)/1000.0
—100.0%sin (pi/1250xtime);

else{ //Set 1 inside top

112

APPENDIX B. NTRT IMPLEMENTATION DETAILS

setPoints [i] = offSets[i] 4+ enc_value[i]/10.0
+(enc_value [i]—prev_enc[i])/(time—prevTime)/1000.0
—100.0%sin (pi/1250«time);
}
}
stoplfFault ();

//Serial.print (” Encoder: 7);
//Serial.println (newLong/250.0);

//Serial . print ("PID In: 7);
//Serial.println (sensorValue);

stringControl_IT . Compute ()
stringControl_IR . Compute ()
stringControl _IL .Compute () ;
stringControl_OT . Compute ()
stringControl_OR . Compute ()
stringControl_OL . Compute ()

for (int i=0; i<6; i++){
//stoplfFault ();
//motorOutputs[i] = (setPoints|[i]—sensorValue[i]);
//finalOutputs [i] = 3xmotorOutputs|[i];

if (i>2){

finalOutputs [i] = 3x(motorOutputs|[i]—128);
}
elseq{

finalOutputs[i]| = 3%(motorOutputs|[i]—128);
}

if (((sensorValue|[i]<sensorMin[i])&&(finalOutputs|[i]<0))
|| ((sensorValue [i]>sensorMax [i])&&(finalOutputs[i]>0))){
finalOutputs[i]=0;

}

if (k>500&& Serial){
Serial .print (” Time: 7);
Serial . print (time);
Serial.print(” Out: 7);
Serial.print (i);
Serial . print (7 enc: 7);
Serial.print (enc_value[i]/125.0);
Serial.print (” sensor: 7);
Serial.print (sensorValue[i]);

113

APPENDIX B. NTRT IMPLEMENTATION DETAILS

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

}
}

" PID 7);

finalOutputs[i]);

print (7 desired: 7);

print (setPoints[i]);

print (” Curr 7);

println (analogRead (motorSensorPins[i]));

print
print

b

P

if (k>500){
//Serial.println (analogRead (A0));

k=0;
}

//Get Base Voltage

md_OL_OR.
md_OT_IR .
md_IL_IT.

K++;

setSpeeds (0xfinalOutputs [5], OxfinalOutputs[4]);
setSpeeds (0% finalOutputs [3], OxfinalOutputs[1]);
setSpeeds (0% finalOutputs [2], OxfinalOutputs[0]);

if (millis()%1000>900){
digitalWrite (led , HIGH);

}
else{

digitalWrite (led , LOW);

}

for (int 1=0; 1<6; 1++){
prev_enc[i]=enc_value [i];
prevSensorValue[i] = sensorValue[i];

}

prevlime =

time ;

114

Bibliography

[Agogino et al., 2013] Agogino, A., SunSpiral, V., and Atkinson, D. (2013). Super
ball bot: structures for planetary landing and exploration. NASA Innovative Ad-
vanced Concepts (NIAC) Program, Final Report.

[Ahnert and Mulansky, 2011] Ahnert, K. and Mulansky, M. (2011). Odeint - Solving
ordinary differential equations in C++-. In AIP Conf. Proc. 1389, pages 1586—1589.

[Aldrich et al., 2003] Aldrich, J., Skelton, R., and Kreutz-Delgado, K. (2003). Con-
trol synthesis for a class of light and agile robotic tensegrity structures. In Ameri-
can Control Conference, 2003. Proceedings of the 2003, volume 6, pages 5245-5251.
IEEE.

[Alexander, 1988] Alexander, R. M. (1988). Why mammals gallop. American zoolo-
gist, 28(1):237-245.

[Allen et al., 2003] Allen, T. J., Quinn, R. D., Bachmann, R. J., and Ritzmann, R. E.
(2003). Abstracted biological principles applied with reduced actuation improve
mobility of legged vehicles. In Intelligent Robots and Systems, 2003.(IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, volume 2, pages 1370
1375. IEEE.

[Bhounsule et al., 2014] Bhounsule, P. A.; Cortell, J., Grewal, A., Hendriksen, B.,
Karssen, J. D., Paul, C., and Ruina, A. (2014). Low-bandwidth reflex-based control
for lower power walking: 65 km on a single battery charge. The International
Journal of Robotics Research, 33(10):1305-1321.

[Bicanski et al., 2013] Bicanski, A., Ryczko, D., Knuesel, J., Harischandra, N., Char-
rier, V., Ekeberg, O., Cabelguen, J., and Ijspeert, A. J. (2013). Decoding the
mechanisms of gait generation in salamanders by combining neurobiology, model-
ing and robotics. Biological cybernetics, 107(5):545-564.

[Bliss, 2011] Bliss, T. (2011). Central pattern generator control of a tensegrity swim-
mer. Ph.D. thesis, Dept. Mech. Aerosp. Eng., Univ. Virginia,.

[Bliss et al., 2013] Bliss, T., Werly, J., Iwasaki, T., and Bart-Smith, H. (2013). Ex-
perimental validation of robust resonance entrainment for cpg-controlled tensegrity
structures. Control Systems Technology, IEEE Transactions on, 21(3):666-678.

115

APPENDIX B. BIBLIOGRAPHY

[Bliss et al., 2008] Bliss, T. K., Iwasaki, T., and Bart-Smith, H. (2008). CPG Control
of a Tensegrity Morphing Structure for Biomimetic Applications. Advances in
Science and Technology, 58:137—142.

[Boeing and Bréunl, 2007] Boeing, A. and Bréunl, T. (2007). Evaluation of real-
time physics simulation systems. In Proceedings of the 5th int. conf. on Computer
graphics and interactive techniques in Australia and Southeast Asia, pages 281-288.

ACM.

[Brown, 1911] Brown, T. G. (1911). The intrinsic factors in the act of progression
in the mammal. Proceedings of the Royal Society of London. Series B, Containing
Papers of a Biological Character, 84(572):308-319.

[Bruce et al., 2014] Bruce, J., Caluwaerts, K., Iscen, A., Sabelhaus, A. P., and Sun-
Spiral, V. (2014). Design and evolution of a modular tensegrity robot platform. In
IEEFE Int. Conf. on Robotics and Automation (ICRA-2014).

[Buchli et al., 2006] Buchli, J., Righetti, L., and Ijspeert, A. J. (2006). Engineer-
ing entrainment and adaptation in limit cycle systems. Biological Cybernetics,

95(6):645-664.
[Burt, 2013] Burt, S. J. (2013). Kinematics algorithms for tensegrity structures.

[Biischges et al., 2008] Biischges, A., Akay, T., Gabriel, J. P., and Schmidt, J. (2008).
Organizing network action for locomotion: insights from studying insect walking.
Brain research reviews, 57(1):162-171.

[Cabelguen et al., 2003] Cabelguen, J.-M., Bourcier-Lucas, C., and Dubuc, R. (2003).
Bimodal locomotion elicited by electrical stimulation of the midbrain in the sala-
mander notophthalmus viridescens. The Journal of Neuroscience, 23(6):2434-2439.

[Caluwaerts et al., 2014] Caluwaerts, K., Despraz, J., Isgen, A., Sabelhaus, A. P.,
Bruce, J., Schrauwen, B., and SunSpiral, V. (2014). Design and control of compliant

tensegrity robots through simulation and hardware validation. Journal of The
Royal Society Interface, 11(98):20140520.

[Caluwaerts et al., 2013] Caluwaerts, K., D’Haene, M., Verstraeten, D., and
Schrauwen, B. (2013). Locomotion without a brain: Physical reservoir comput-
ing in tensegrity structures. Artificial life, 19(1):35-66.

[Cholewicki and McGill, 1996] Cholewicki, J. and McGill, S. M. (1996). Mechanical
stability of the in vivo lumbar spine: implications for injury and chronic low back
pain. Clinical Biomechanics, 11(1):1-15.

[Collins et al., 2005] Collins, S., Ruina, A., Tedrake, R., and Wisse, M. (2005). Effi-
cient bipedal robots based on passive-dynamic walkers. Science, 307(5712):1082—
1085.

116

APPENDIX B. BIBLIOGRAPHY

[Connelly and Back, 1998] Connelly, R. and Back, A. (1998). Mathematics and
tensegrity: Group and representation theory make it possible to form a complete
catalogue of” strut-cable” constructions with prescribed symmetries. American
Scientist, pages 142—-151.

[Coumans, 2012] Coumans, E. (2012). Bullet physics library. http://
bulletphysics.org/wordpress/.

[Coumans, 2014] Coumans, E. (2014). Exploring mlcp solvers and featherstone. In
Game Developers Conference.

[Crespi and Ijspeert, 2006] Crespi, A. and Ijspeert, A. J. (2006). Amphibot ii: An
amphibious snake robot that crawls and swims using a central pattern generator. In
Proceedings of the 9th int. conf. on climbing and walking robots (CLAWAR 2006),
volume 11, pages 19-27. Citeseer.

[Crespi et al., 2007] Crespi, A., Lachat, D., Pasquier, A., and Ijspeert, A. J. (2007).
Controlling swimming and crawling in a fish robot using a central pattern generator.
Autonomous Robots, 25(1-2):3-13.

[Daltorio et al., 2008] Daltorio, K., Witushynsky, T. C., Wile, G. D., Palmer, L. R.,
Malek, A. A., Ahmad, M. R., Southard, L., Gorb, S. N., Ritzmann, R. E., Quinn,
R. D., et al. (2008). A body joint improves vertical to horizontal transitions of a
wall-climbing robot. In Robotics and Automation, 2008. ICRA 2008. IEEE Inter-
national Conference on, pages 3046-3051. IEEE.

[Daun-Gruhn and Téth, 2011] Daun-Gruhn, S. and Téth, T. 1. (2011). An inter-
segmental network model and its use in elucidating gait-switches in the stick insect.
Journal of computational neuroscience, 31(1):43-60.

[Delcomyn, 1980] Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals.
Science, 210(4469):492-498.

[Djouadi et al., 1998] Djouadi, S., Motro, R., Pons, J., and Crosnier, B. (1998). Ac-
tive control of tensegrity systems. Journal of Aerospace Engineering, 11(2):37-44.

[Duperret et al., 2014] Duperret, J., Kenneally, G., Pusey, J., and Koditschek, D.
(2014). Towards a comparative measure of legged agility. In International Sympo-
stum on Fxperimental Robotics.

[Eckert et al., 2015] Eckert, P., Sprowitz, A., Witte, H., and Ijspeert, A. J. (2015).
Comparing the effect of different spine and leg designs for a small bounding
quadruped robot. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 3128-3133. IEEE.

[Ekeberg, 1993] Ekeberg, O. (1993). A combined neuronal and mechanical model of
fish swimming. Biological cybernetics, 69(5-6):363-374.

117

http://bulletphysics.org/wordpress/
http://bulletphysics.org/wordpress/

APPENDIX B. BIBLIOGRAPHY

[Erez et al., 2015] Erez, T., Tassa, Y., and Todorov, E. (2015). Simulation tools for
model-based robotics: Comparison of bullet, havok, mujoco, ode and physx. In
Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages
4397-4404. IEEE.

[Fest et al., 2004] Fest, E., Shea, K., and Smith, I. F. (2004). Active tensegrity struc-
ture. Journal of Structural Engineering, 130(10):1454-1465.

[Flemons, 2007] Flemons, T. (2007). The geometry of anatomy. http://wuw.
intensiondesigns.com/geometry_of_anatomy.html.

[Flemons, 2012] Flemons, T. (2012). The bones of tensegrity.
http:/ /www.intensiondesigns.com/bones_of-tensegrity.

[Franklin et al., 2010] Franklin, K., Ozkan, E., and Powell, D. (2010). Design of the
kurilpa pedestrian bridge for dynamic effects due to pedestrian and wind loads. In
5th Civil Engineering Conference in the Asian Region and Australasian Structural
Engineering Conference 2010, The, page 885. Engineers Australia.

[Friesen et al., 2014] Friesen, J., Pogue, A., Bewley, T., de Oliveira, M., Skelton, R.,
and SunSpiral, V. (2014). Ductt: a tensegrity robot for exploring duct systems. In
IEEE Int. Conf. on Robotics and Automation (ICRA-2014). IEEE.

[Fuller, 1962] Fuller, R. (1962). Tensile-integrity structures. US Patent 3,063,521.
[Fuller, 1965] Fuller, R. B. (1965). Laminar geodesic dome. US Patent 3,203,144.

[Gay et al., 2013] Gay, S., Santos-Victor, J., and Ijspeert, A. (2013). Learning robot
gait stability using neural networks as sensory feedback function for central pattern
generators. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Interna-
tional Conference on, pages 194-201. IEEE.

[Gracovetsky, 1985] Gracovetsky, S. (1985). An hypothesis for the role of the spine
in human locomotion: a challenge to current thinking. Journal of biomedical engi-
neering, 7(3):205-216.

[Gray, 1918] Gray, H. (1918). Anatomy of the human body. Lea & Febiger.

[Grillner, 1985a] Grillner, S. (1985a). Neural control of vertebrate locomotion-central
mechanisms and reflex interaction with special reference to the cat. In Feedback
and motor control in invertebrates and vertebrates, pages 35—56. Springer.

[Grillner, 1985b] Grillner, S. (1985b). Neurobiological bases of rhythmic motor acts
in vertebrates. Science, 228(4696):143-149.

[Grillner, 2006] Grillner, S. (2006). Biological pattern generation: the cellular and
computational logic of networks in motion. Neuron, 52(5):751-766.

118

http://www.intensiondesigns.com/geometry_of_anatomy.html
http://www.intensiondesigns.com/geometry_of_anatomy.html

APPENDIX B. BIBLIOGRAPHY

[Grillner et al., 2007] Grillner, S., Kozlov, A., Dario, P., Stefanini, C., Menciassi,
A., Lansner, A., and Hellgren Kotaleski, J. (2007). Modeling a vertebrate motor

system: pattern generation, steering and control of body orientation. Progress in
brain research, 165:221-234.

[Grillner et al., 1981] Grillner, S., McClellan, A., and Perret, C. (1981). Entrainment
of the spinal pattern generators for swimming by mechano-sensitive elements in the
lamprey spinal cord in vitro. Brain research, 217(2):380-386.

|Guizzo and Ackerman, 2015] Guizzo, E. and Ackerman, E. (2015).
Darpa robotics challenge: A compilation of robots falling down [on-
line]. http://spectrum.ieee.org/automaton/robotics/humanoids/
darpa-robotics-challenge-robots-falling. Accessed: 2015-06-18.

[Hauser et al., 2011] Hauser, H., Ijspeert, A. J., Fiichslin, R. M., Pfeifer, R., and
Maass, W. (2011). Towards a theoretical foundation for morphological computation
with compliant bodies. Biological cybernetics, 105(5-6):355-370.

[Hauser et al., 2012] Hauser, H., Ijspeert, A. J., Fiichslin, R. M., Pfeifer, R., and
Maass, W. (2012). The role of feedback in morphological computation with com-
pliant bodies. Biological cybernetics, 106(10):595-613.

[Heartney, 2009] Heartney, E. (2009). Kenneth Snelson: forces made visible. Hard
press editions Lenox.

[Hellgren et al., 1992] Hellgren, J., Grillner, S., and Lansner, A. (1992). Computer
simulation of the segmental neural network generating locomotion in lamprey by
using populations of network interneurons. Biological cybernetics, 68(1):1-13.

[Hirai and Imuta, 2012] Hirai, S. and Imuta, R. (2012). Dynamic simulation of six-
strut tensegrity robot rolling. In Robotics and Biomimetics (ROBIO), 2012 IEEE
Int. Conf. on, pages 198-204. IEEE.

[Hogan, 1985] Hogan, N. (1985). Impedance control: An approach to manipulation:
Part I - Theory. Transactions of the ASME, 107(March 1985):1-7.

[Ijspeert, 2008] Ijspeert, A. J. (2008). Central pattern generators for locomotion
control in animals and robots: a review. Neural networks: the official journal
of the Int. Neural Network Society, 21(4):642-53.

[Ijspeert et al., 2007] Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J. M.
(2007). From swimming to walking with a salamander robot driven by a spinal
cord model. Science (New York, N.Y.), 315(5817):1416-1420.

[Ingber, 2003] Ingber, D. E. (2003). Tensegrity ii. how structural networks influence
cellular information processing networks. Journal of cell science, 116(8):1397-1408.

119

http://spectrum.ieee.org/automaton/robotics/humanoids/darpa-robotics-challenge-robots-falling
http://spectrum.ieee.org/automaton/robotics/humanoids/darpa-robotics-challenge-robots-falling

APPENDIX B. BIBLIOGRAPHY

[Ingber et al., 2014] Ingber, D. E., Wang, N., and Stamenovi¢, D. (2014). Tensegrity,
cellular biophysics, and the mechanics of living systems. Reports on Progress in
Physics, 77(4):046603.

[Iscen, 2014] Iscen, A. (2014). Multiagent learning for locomotion and coordination
in tensegrity robotics. PhD thesis, Oregon State University.

[Iscen et al., 2013a] Iscen, A., Agogino, A., SunSpiral, V., and Tumer, K. (2013a).
Controlling tensegrity robots through evolution. In Proceeding of the Fifteenth An-
nual Conference on Genetic and Fvolutionary Computation Conference, GECCO
'13, pages 1293-1300, New York, NY, USA. ACM.

[Iscen et al., 2013b] Iscen, A., Agogino, A., SunSpiral, V., and Tumer, K. (2013b).
Robust distributed control of rolling tensegrity robot. In The Autonomous Robots
and Multirobot Systems (ARMS) workshop at AAMAS 2013.

[Iscen et al., 2014] Iscen, A., Agogino, A., SunSpiral, V., and Tumer, K. (2014). Flop
and roll: Learning robust goal-directed locomotion for a tensegrity robot. In Intel-
ligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pages 2236-2243. IEEE.

[Juan and Tur, 2008] Juan, S. H. and Tur, J. M. M. (2008). Tensegrity frameworks:
static analysis review. Mechanism and Machine Theory, 43(7):859-881.

[Kern, 2012] Kern, N. I. (2012). Cable-Driven Flexible Spines for Human Orthoses
and Mobile Robots. PhD thesis, Case Western Reserve University.

[Khazanov et al., 2013] Khazanov, M., Humphreys, B., Keat, W., and Rieffel, J.
(2013). Exploiting dynamical complexity in a physical tensegrity robot to achieve
locomotion. In Advances in Artificial Life, ECAL, volume 12, pages 965-972.

[Kim et al., 2014] Kim, K., Agogino, A. K., Moon, D., Taneja, L., Toghyan, A.,
Dehghani, B., SunSpiral, V., and Agogino, A. M. (2014). Rapid prototyping design
and control of tensegrity soft robot for locomotion. In International Conference on
Robotics and Biometrics.

[Koizumi et al., 2012] Koizumi, Y., Shibata, M., and Hirai, S. (2012). Rolling tenseg-
rity driven by pneumatic soft actuators. In 2012 IEEFE Int. Conf. on Robotics and
Automation (ICRA), pages 1988-1993.

[Korkmaz et al., 2011] Korkmaz, S., Ali, N. B. H., and Smith, I. F. (2011). Deter-
mining control strategies for damage tolerance of an active tensegrity structure.
Engineering Structures, 33(6):1930-1939.

[Leeser, 1996] Leeser, K. F. (1996). Locomotion experiments on a planar quadruped
robot with articulated spine. Master’s thesis, Massachusetts Institute of Technol-

ogy.

120

APPENDIX B. BIBLIOGRAPHY

[Levin, 1997] Levin, S. M. (1997). Putting the shoulder to the wheel: a new
biomechanical model for the shoulder girdle. Biomedical sciences instrumentation,
33:412-417.

[Levin, 2002] Levin, S. M. (2002). The tensegrity-truss as a model for spine mechan-
ics: biotensegrity. Journal of Mechanics in Medicine and Biology, 2:375-388.

[Levy, 1991] Levy, M. (1991). Floating fabric over georgia dome. Civil Engi-
neeringASCE, 61(11):34-37.

[Lipson, 2014] Lipson, H. (2014). Challenges and opportunities for design, simulation,
and fabrication of soft robots. Soft Robotics, 1(1):21-27.

[Liu et al., 2009] Liu, S.-Y., Cheng, T.-H., Yan, J.-L., and Huang, H.-P. (2009). De-
velopment of a dexterous cable driven spine mechanism for humanoid robots. In
Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International
Conference on, pages 1588-1593. IEEE.

[Masic and Skelton, 2004] Masic, M. and Skelton, R. E. (2004). Open-loop control
of class-2 tensegrity towers. Proc. of the 11th Smart Structures and Materials
Conference, 5383:298-308.

[Masic et al., 2005] Masic, M., Skelton, R. E., and Gill, P. E. (2005). Alge-
braic tensegrity form-finding. International Journal of Solids and Structures,
42(16):4833-4858.

[Matsuoka, 1985] Matsuoka, K. (1985). Sustained oscillations generated by mutually
inhibiting neurons with adaptation. Biological cybernetics, 52(6):367-376.

[McGarry and Prendergast, 2004] McGarry, J. G. and Prendergast, P. J. (2004). A
three-dimensional finite element model of an adherent eukaryotic cell. FEur Cell
Mater, 7:27-33.

[Mirats-Tur and Camps, 2011] Mirats-Tur, J. M. and Camps, J. (2011). A three-dof
actuated robot. Robotics & Automation Magazine, IEEFE, 18(3):96-103.

[Mirletz et al., 2014] Mirletz, B. T., Park, I. W., Flemons, T. E., Agogino, A. K.,
Quinn, R. D.; and SunSpiral, V. (2014). Design and control of modular spine-like
tensegrity structures. In The 6th World Conf. of the Int. Association for Structural
Control and Monitoring (6 WCSCM).

[Mirletz et al., 2015a] Mirletz, B. T., Park, I. W., Quinn, R. D., and SunSpiral, V.
(2015a). Towards bridging the reality gap between tensegrity simulation and robotic
hardware. In To appear at 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems.

[Mirletz et al., 2015b] Mirletz, B. T., Quinn, R. D., and SunSpiral, V. (2015b). Cpgs
for adaptive control of spine-like tensegrity structures. In 2015 International Con-
ference on Robotics and Automation (ICRA2015) Workshop on Central Pattern
Generators for Locomotion Control: Pros, Cons € Alternatives.

121

APPENDIX B. BIBLIOGRAPHY

[Mizuuchi et al., 2005] Mizuuchi, I., Yoshikai, T., Nakanishi, Y., Sodeyama, Y., Ya-
mamoto, T., Miyadera, A., Niemela, T., Hayashi, M., Urata, J., and Inaba, M.
(2005). Development of muscle-driven flexible-spine humanoids. In Humanoid
Robots, 2005 5th IEEE-RAS International Conference on, pages 339-344. IEEE.

[Moored et al., 2011] Moored, 111, K. W., Taylor, S. A., and Bart-Smith, H. (2011).
Optimization of a Tensegrity Wing for Biomimetic Applications. Proceedings of
SPIFE, 6173:617313.

[Mori and Hirose, 2002] Mori, M. and Hirose, S. (2002). Three-dimensional serpen-
tine motion and lateral rolling by active cord mechanism acm-r3. In Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on, volume 1,
pages 829-834 vol.1.

[Myers, 2014] Myers, T. (2014). Spatial medicine—a call to arms. Journal of bodywork
and movement therapies, 18(1):94-98.

[Myers et al., 2001] Myers, T. W., Chaitow, L., and Juhan, D. (2001). Anatomy
Trains: Myofascial Meridians for Manual and Movement Therapists, 1e. Churchill
Livingstone, 1 edition.

[Nagase and Skelton, 2015] Nagase, K. and Skelton, R. (2015). Double-helix tenseg-
rity structures. AIAA Journal, 53(4):847-862.

[Orki, 2012] Orki, O. (2012). A Model Of Caterpillar Locomotion Based On Assur
Tensegrity Structures. PhD thesis, Tel Aviv University.

[Orki et al., 2012] Orki, O., Ayali, A., Shai, O., and Ben-Hanan, U. (2012). Modeling
of caterpillar crawl using novel tensegrity structures. Bioinspiration € Biomimetics,

7(4):046006.

[Park et al., 2015] Park, H.-W., Park, S., and Kim, S. (2015). Variable-speed
quadrupedal bounding using impulse planning: Untethered high-speed 3d running
of mit cheetah 2. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 5163-5170. IEEE.

[Paul, 2006] Paul, C. (2006). Morphological computation: A basis for the analy-
sis of morphology and control requirements. Robotics and Autonomous Systems,
54(8):619-630.

[Paul et al., 2005a] Paul, C., Lipson, H., and Cuevas, F. J. V. (2005a). Evolutionary
form-finding of tensegrity structures. Proceedings of the 2005 Genetic and Evolu-
tionary Computation Conference (GECCO), pages 3-10.

[Paul et al., 2005b] Paul, C., Roberts, J. W., Lipson, H., and Cuevas, F. J. V.
(2005b). Gait production in a tensegrity based robot. In Advanced Robotics, 2005.
ICAR °05. Proceedings., 12th Int. Conf. on.

122

APPENDIX B. BIBLIOGRAPHY

[Paul et al., 2006] Paul, C., Valero-Cuevas, F. J., and Lipson, H. (2006). Design and
control of tensegrity robots for locomotion. IEEE Transactions on Robotics, 22(5).

[Pfeifer and Gomez, 2009] Pfeifer, R. and Goémez, G. (2009). Morphological
computation—connecting brain, body, and environment. In Creating Brain-Like
Intelligence, pages 66-83. Springer.

[Pfeifer et al., 2013] Pfeifer, R., Marques, H. G., and lida, F. (2013). Soft robotics:
the next generation of intelligent machines. In Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence, pages 5—11. AAAI Press.

[Raibert et al., 2008] Raibert, M., Blankespoor, K., Nelson, G., Playter, R., et al.
(2008). Bigdog, the rough-terrain quadruped robot. In 17th World Congr. The
Int. Federation of Automatic Control, pages 10823-10825.

[Rieffel et al., 2008] Rieffel, J., Trimmer, B., and Lipson, H. (2008). Mechanism as
Mind : What Tensegrities and Caterpillars Can Teach Us about Soft Robotics The
Manduca Sexta Caterpillar : Morphological Communication in Tensegrity Robots.
Artificial Life, pages 506-512.

[Rieffel et al., 2009] Rieffel, J., Valero-Cuevas, F., and Lipson, H. (2009). Automated
discovery and optimization of large irregular tensegrity structures. Computers &
Structures, 87(5):368-379.

[Rieffel et al., 2010] Rieffel, J. A., Valero-Cuevas, F. J., and Lipson, H. (2010). Mor-
phological communication: exploiting coupled dynamics in a complex mechanical

structure to achieve locomotion. Journal of the Royal Society, Interface / the Royal
Society, 7(45):613-21.

[Righetti et al., 2006] Righetti, L., Buchli, J., and Ijspeert, A. J. (2006). Dynamic
hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenom-
ena, 216(2):269-281.

[Righetti et al., 2009] Righetti, L., Buchli, J., and Ijspeert, A. J. (2009). Adaptive
frequency oscillators and applications. Open Cybernetics € Systemics Journal,
3:64-69.

[Robertson and Moulins, 1981] Robertson, R. M. and Moulins, M. (1981). Oscillatory
command input to the motor pattern generators of the crustacean stomatogastric
ganglion. Journal of comparative physiology, 143(4):453-463.

[Roos et al., 2006] Roos, L., Guenter, F., Guignard, A., and Billard, A. G. (2006).
Design of a biomimetic spine for the humanoid robot robota. In Biomedical Robotics
and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS Interna-
tional Conference on, pages 329-334. IEEE.

[Rovira and Mirats Tur, 2009] Rovira, A. G. and Mirats Tur, J. M. (2009). Con-
trol and simulation of a tensegrity-based mobile robot. Robotics and Autonomous
Systems, 57(5):526-535.

123

APPENDIX B. BIBLIOGRAPHY

[Ruina, 2011] Ruina, A. (2011). Cornell ranger 2011, 4-legged bipedal robot.
[online]. http://ruina.tam.cornell.edu/research/topics/locomotion_and_
robotics/ranger/Ranger2011/. Accessed: 2015-02-02.

[Sabelhaus et al., 2015] Sabelhaus, A. P., Ji, H., Hylton, P., Madaan, Y., Yang, C.,
Agogino, A. M., Friesen, J., and SunSpiral, V. (2015). Mechanism design and
simulation of the ultra spine, a tensegrity robot. In To appear in the Proceedings
of The ASME 2015 International Design Engineering Technical Conferences €
Computers and Information in Engineering Conference (IDETC/ CIE 2015).

[Scarr, 2014] Scarr, G. (2014). Biotensegrity: The structural basis of life. Handspring
Publishing, first edition.

[Schilling and Carrier, 2010] Schilling, N. and Carrier, D. R. (2010). Function of
the epaxial muscles in walking, trotting and galloping dogs: implications for the
evolution of epaxial muscle function in tetrapods. The Journal of experimental
biology, 213(9):1490-1502.

[Schilling and Hackert, 2006] Schilling, N. and Hackert, R. (2006). Sagittal spine
movements of small therian mammals during asymmetrical gaits. Journal of Fx-
perimental Biology, 209(19):3925-3939.

[Secor et al., 1992] Secor, S. M., Jayne, B. C., and Bennett, A. F. (1992). Locomo-
tor performance and energetic cost of sidewinding by the snake crotalus cerastes.
Journal of experimental biology, 163(1):1-14.

[Seok et al., 2013] Seok, S., Wang, A., Chuah, M. Y., Otten, D., Lang, J., and Kim, S.
(2013). Design principles for highly efficient quadrupeds and implementation on the
mit cheetah robot. In Robotics and Automation (ICRA), 2018 IEEE International
Conference on, pages 3307-3312. IEEE.

[Servin and Lacoursiere, 2007] Servin, M. and Lacoursiere, C. (2007). Massless cable
for real-time simulation. In Computer Graphics Forum, volume 26, pages 172-184.
Wiley Online Library.

[Servin et al., 2011] Servin, M., Lacoursiere, C., Nordfelth, F., and Bodin, K. (2011).
Hybrid, multiresolution wires with massless frictional contacts. Visualization and
Computer Graphics, IEEE Transactions on, 17(7):970-982.

[Shim and Husbands, 2012] Shim, Y. and Husbands, P. (2012). Chaotic exploration
and learning of locomotion behaviors. Neural computation, 24(8):2185-2222.

[Skelton et al., 2001] Skelton, R. E., Adhikari, R., Pinaud, J.-P., Chan, W., and Hel-
ton, J. (2001). An introduction to the mechanics of tensegrity structures. In De-
cision and Control, 2001. Proceedings of the 40th IEEE Conference on, volume 5,
pages 4254-4259. IEEE.

[Skelton and De Oliveira, 2009] Skelton, R. E. and De Oliveira, M. C. (2009). Tenseg-
rity Systems. Springer, 2009 edition.

124

http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011/
http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011/

APPENDIX B. BIBLIOGRAPHY

[Snelson, 1965] Snelson, K. (February 1965). Continuous tension, discontinuous com-
pression structures. United States patent 3169611.

[Spillmann and Teschner, 2007] Spillmann, J. and Teschner, M. (2007). C or d e:
Cosserat rod elements for the dynamic simulation of one-dimensional elastic ob-
jects. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 63—-72. Eurographics Association.

[Sproewitz et al., 2008] Sproewitz, A., Moeckel, R., Maye, J., and Ijspeert, A. J.
(2008). Learning to move in modular robots using central pattern generators and
online optimization. The International Journal of Robotics Research, 27(3-4):423—
443.

[Sterk, 2006] Sterk, T. d. (2006). Shape control in responsive architectural structures-
current reasons & challenges. In Proceedings of the 4th World Conference on Struc-
tural Control and Monitoring, San Diego, CA, USA.

[Stevenson and Kutsch, 1987] Stevenson, P. A. and Kutsch, W. (1987). A recon-
sideration of the central pattern generator concept for locust flight. Journal of
Comparative Physiology A, 161(1):115-129.

[SunSpiral et al., 2013] SunSpiral, V., Gorospe, G., Bruce, J., Iscen, A., Korbel, G.,
Milam, S., Agogino, A., and Atkinson, D. (2013). Tensegrity based probes for plan-
etary exploration: Entry, descent and landing (edl) and surface mobility analysis.
In 10th International Planetary Probe Workshop.

[Takuma et al., 2010] Takuma, T., Ikeda, M., and Masuda, T. (2010). Facilitating
multi-modal locomotion in a quadruped robot utilizing passive oscillation of the
spine structure. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Inter-
national Conference on, pages 4940-4945. IEEE.

[Tietz et al., 2013] Tietz, B. R., Carnahan, R. W., Bachmann, R. J., Quinn, R. D.,
and Sunspiral, V. (2013). Tetraspine: Robust Terrain Handling on a Tensegrity
Robot Using Central Pattern Generators. In IEEE/ASME Advanced Intelligent
Mechatronics, pages 261-267.

[Transeth et al., 2009] Transeth, A. A., Pettersen, K. Y., and Liljebdck, P. (2009). A

survey on snake robot modeling and locomotion. Robotica, 27(07):999.

[Tucker, 1970] Tucker, V. A. (1970). Energetic cost of locomotion in animals. Com-
parative Biochemistry and Physiology, 34(4):841-846.

[Turvey and Fonseca, 2014] Turvey, M. T. and Fonseca, S. T. (2014). The medium of
haptic perception: A tensegrity hypothesis. Journal of motor behavior, 46(3):143—
187.

[Vilalta and Drissi, 2002] Vilalta, R. and Drissi, Y. (2002). A perspective view and
survey of meta-learning. Artificial Intelligence Review, 18(2):77-95.

125

APPENDIX B. BIBLIOGRAPHY

[Wang et al., 2002] Wang, N., Toli¢-Ngrrelykke, I. M., Chen, J., Mijailovich, S. M.,
Butler, J. P., Fredberg, J. J., and Stamenovi¢, D. (2002). Cell prestress. i. stiffness
and prestress are closely associated in adherent contractile cells. American Journal
of Physiology-Cell Physiology, 282(3):C606—C616.

[Webster et al., 2013] Webster, V., Lonsberry, A. J., Horchler, A. D., Shaw, K. M.,
Chiel, H. J., Quinn, R. D., et al. (2013). A segmental mobile robot with active
tensegrity bending and noise-driven oscillators. In Advanced Intelligent Mecha-
tronics (AIM), 2013 IEEE/ASME International Conference on, pages 1373-1380.
IEEE.

[Wilson, 1961] Wilson, D. M. (1961). The central nervous control of flight in a locust.
J. exp. Biol, 38(47):1-490.

[Wright et al., 2012] Wright, C., Buchan, A., Brown, B., Geist, J., Schwerin, M.,
Rollinson, D., Tesch, M., and Choset, H. (2012). Design and architecture of the
unified modular snake robot. 2012 IEEE Int. Conf. on Robotics and Automation,
pages 4347-4354.

[Wright et al., 2007] Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren,
A., Gianfortoni, P., Gonzalez-Rivero, M., Hatton, R., and Choset, H. (2007). De-
sign of a modular snake robot. In Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on, pages 2609-2614. IEEE.

[Zhao et al., 2013] Zhao, Q., Ellenberger, B., Sumioka, H., Sandy, T., and Pfeifer,
R. (2013). The effect of spine actuation and stiffness on a pneumatically-driven
quadruped robot for cheetah-like locomotion. In Robotics and Biomimetics (RO-
BIO), 2013 IEEE International Conference on, pages 1807-1812. IEEE.

126

	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Introduction
	Motivation
	Scope of this dissertation
	My Involvement and Contributions

	Background and Related Work
	Structures
	Robotic Spines

	Tensegrity Structures
	Tensegrity in Biology

	Controllers
	Tensegrity Simulation and Analysis
	Prior Work: Tensegrity Robots
	Tensegrity Robot Designs
	Actuation Methods
	Machine Learned Controllers
	Morphological Communication and Distributed Control

	Central Pattern Generators

	The NASA Tensegrity Robotics Toolkit
	The Bullet Physics Engine
	NTRT's Cable Models
	Internal Dynamics
	Collision Handling

	Additional Features

	Machine Learning and Metrics
	Learning Algorithms
	Monte Carlo
	Gaussian Sampling
	Evolution
	Implementation within NTRT

	Metrics and Objective Functions
	Objective Functions
	Cost of Transport

	Tensegrity Spine Structures
	Tetraspine
	Tom Flemons' Designs
	Novel Designs

	Control Methods and Simulation Results
	Impedance Control
	Central Pattern Generators
	Hand Tuned Results

	Automated CPG Morphologies
	Results on Various Morphologies

	Feedback for CPGs
	Improvements on Rough Terrain

	Goal Directed Controllers

	Robot Hardware and Simulator Verification
	Carbon Fiber Spine
	Stretch Sensors
	Carbon Fiber Spine's Performance

	Tetraspine 3
	Simulator Validation
	Quasi-static
	Hand Tuned Trajectory
	Simulator Generated Trajectory

	Conclusions
	Contributions
	Future Work: Methods and Details
	Machine Learning
	Cable Models
	Sensors

	Future Work: High Level Research Directions
	Tensegrity Quadruped
	Tensegrity Biomechanics

	Conclusions

	Parameters Used In Simulation
	Learning Parameters
	Structure and actuator parameters

	NTRT Implementation Details
	Reference dates
	Chapter 3: NTRT Core and Cable Models
	Bullet Simulation Core
	Cable Internal Dynamics
	Cable Contact Dynamics
	Motor models

	Chapter 4: Machine Learning
	Chapter 5: Structures
	Chapter 6: Control
	Impedance Control
	CPG Implementation
	CPG Morphology Determination
	Feedback Code
	Goal Direction

	Chapter 7: Hardware
	Arduino Code for Carbon Fiber Spine

	Bibliography

