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ABSTRACT 

 Presented in this thesis is a method for determining locomotion gaits for a modular tetrahedral 

tensegrity robot in simulation. The biologically inspired tensegrity-based robot is comprised of 

multiple rigid tetrahedrons connected with a network of adjustable tension members. Locomotion gaits 

are produced using oscillatory signals from Central Pattern Generators (CPGs) that are optimized by 

an Evolutionary Algorithm (EA). After initial generation of an EA population of random gaits, as 

defined by parameters of the CPG, the EA operates on the population in an attempt to find an optimum 

gait, as defined by the performance, or fitness, of the evolved locomotion. The results of the EA 

optimization show that the fitness of the populations were increased by an average of 32 percent over 

10 trials, and 51 percent in the best trial. The approach could be applied to a more complex tetrahedral 

tensegrity or other tensegrity structures. Future work will implement this approach on a robotic 

prototype.
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Chapter 1.  Introduction  

Tensegrity structures are composed of axially loaded compression elements suspended within 

a network of tension elements. The term tensegrity comes from the combination of the words tension 

and integrity; it’s the idea that the stability, or integrity, of these structures is due to the tension 

network. In such a structure, applied loads are distributed as only tension and compression. As 

typically materials are stronger in pure tension and compression, tensegrity structures, including 

tensegrity-based robots, can exhibit a high strength to weight ratio. 

The field of tensegrity robotics has emerged over the last decade and has potential for large 

application, including in space technology and other fields. Tensegrity is a class of structure that first 

appeared just over half a century ago [1]. Since its introduction tensegrity has been applied to 

multiple areas including engineering, architecture, medicine, biology, and art [2]. 

Tensegrity robots have the ability to change shape by changing their equilibrium [3]. This can 

be achieved by varying the lengths of either the compression or tension elements. Such changes can 

be used for a different static function or for locomotion.  

The Intelligent Robotics Group at NASA Ames Research Center is currently researching 

tensegrity structures for robotic applications. The unique characteristics of tensegrity could enable 

these robots to perform in ways not currently possible with traditional robotic design; deformable, 

Figure 1. Tetrahedral vertebrae mast structures (Left: Flemons’, Right: Modified). 
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light weight and compactible design are excellent characteristics for space transportation and 

exploration in difficult and uncertain terrain.  

The specific tensegrity structure of interest is based on Tom Flemons’ tetrahedral vertebrae 

mast [4] as seen on the left side of Figure 1. In Flemons’ original design, compression members 

extend out from a central node. The external endpoints of the compression members are connection 

points for tension members. In Flemons’ model the points of contact change as the lengths of the 

tension members are changed, which complicates robotic control of the structure. The work presented 

here uses a modified version of Flemons’ tetrahedral vertebrae mast (shown in the right side of Figure 

1), refered to herein as a five-tetrahedron tensegrity robot. This modified structure has predictable 

points of contact which simplifies the control of the structure. A robotic prototype of the modified 

tetrahedral spine, as pictured in Figure 2, was constructed at the University of Idaho and continues to 

be investigated by researchers at NASA Ames. 

Features of tensegrity robots that are advantageous in one respect are sometimes 

disadvantageous in another. Structural complexity is one such trait. As the number of compression 

members and connecting tension members is increased, so are the degrees-of-freedom of the 

structure. As such, it becomes progressively difficult to determine kinematic and kinetic reltionships 

within the structure. Furthermore, tensegrity structures are inherently nonlinear, adding to the 

Figure 2. Tetrahedral tensegrity robot 

prototype currently at NASA Ames. 
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difficulty of their analysis [5]. These factors make prescribing locomotion gaits for robotic tensegrity 

control a significant challenge.  

Because of the complexity of tensegrity structures, closed form solutions of equations of 

motion may be difficult to determine. Thus, dynamic simulation of tensegrity structures is desired. 

Researchers at NASA Ames are developing a robotic tensegrity modeling software called NASA 

tensegrity robotics toolkit, or NTRT, that is based in the open source game physics engine Bullet. 

This software is capable of simulating soft body dynamics needed to model deformable tensegrity 

robots. This software models forces on the compression members as point forces. However, modeling 

the forces on compression members using distributed inertia is a more realistic method. 

The goal for the work presented in this thesis is to develop an alternative method for dynamic 

simulation, gait generation and optimization for tensegrity-based robots, specifically for the UI’s five-

tetrahedron tensegrity robot. SimMechanics, a toolbox for The Mathworks Simulink simulation 

environment, is used to model and simulate the dynamics and ground contact forces of the five-

tetrahedron tensegrity robot. SimMechanics provides pre-built functions for modeling forces on rigid 

and soft components in a three-dimensional environment. SimMechanics also gives the user the 

ability to model solids with distributed inertia, which is an accurate representation of the rigid 

compression members in the robot. 

This tensegrity structure is biologically inspired, which suggests the use of biologically 

inspired methods, such as Central Pattern Generators (CPGs), for determining the locomotion gaits. 

In biological systems, CPGs function as non-linear neural connections and oscillators to create 

locomotion gaits. In robotics CPGs are used to create oscillatory signals that can be reference 

trajectories for joints and/or actuators of a robot. Multiple interacting CPGs can be applied to a 

combination of joints to create a locomotion gait [6]. 

There are a variety of CPG methods used to control different types of robots, including 

legged robots, robotic arms, tensegrity robots, and crawling and snake-like robots. A large amount of 
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research is in the field of gait production and control of legged robots. An overview of previous work 

on CPG controlled legged robots is provided in [7]. CPGs are versatile such that they can be applied 

to a variety of different robotic movements. Generally each degree-of-freedom of a robot is controlled 

by one CPG oscillator [8]. This idea is not only applied to robots with the goal of locomotion but is 

also applied to robotic arms as in [9], where CPG oscillators are used to learn the dynamics of a 

robotic arm in order to more effectively control it. CPGs have also been applied to tensegrity 

structures because the rhythmic nature of CPGs exploits the natural resonance of deformable 

tensegrity structures [10]. CPGs are used to create gaits for snake-like robots that move in a 

serpentine motion. One such robot, named AmphiBot I, was created by Crespi [11]. This robot takes 

its inspiration from a lamprey eel or sea-snake and is able to propel itself forward using a lateral 

undulatory mode of actuation where a repeating wave travels through it. A similar CPG controlled 

snake-like robot was created by Inoue [12]. 

For the work presented in this thesis, the Matsuoka neural oscillator model with a mutual-

inhibition network, as presented in [13], was selected as the CPG for the five-tetrahedron tensegrity 

robot. The Matsuoka CPG uses a set of coupled differential equations to model the oscillating 

network of neurons. The Matsuoka CPG has been applied to a variety of types of robots including 

bipedal robots [14] and crawling and snake-like robots [6]. Depending on the configuration of the 

Matsuoka CPG numerous parameters define the output. Hand tuning such parameters to produce a 

desired locomotion gait is difficult and unlikely to produce an optimal result. Thus, a systematic 

method is needed to determine the parameters of the CPG that create the desired locomotion gait.  

An Evolutionary Algorithm (EA) can be used to improve the performance of CPG walking 

gaits [15]. An EA takes a population consisting of a number of individual solutions, and attempts to 

improve the performance of that population. EAs search for an optimum by carrying traits of the 

strongest performing individuals through to the next generation while traits that create weak 

individuals are discarded. The performance of these individuals is called their fitness, and is defined 
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according to the application. The goal of an EA can be to minimize or maximize the fitness of the 

population depending how the fitness is evaluated [16]. Common termination criterion for EAs are 

elapsed simulation time, number of iterations, or a measure of the population diversity. 

 For the work presented in this thesis each set of parameters defining a unique instance of the 

Matsuoka CPG is considered a member of the EA population. The fitness of each member is 

evaluated via dynamic simulation of the CPG driven five-tetrahedron tensegrity; generally, fitness of 

a member depends on the quality of the locomotion gait produced in simulation and larger fitness 

values represent better performing individuals. For the work presented in this thesis the fitness 

primarily depends on the forward distance the robot travels during dynamic simulation. The EA 

operates in steady state, meaning two parents are selected from the population, operated on, and the 

resulting offspring replace current members of the population. Selection of parents and replacement 

of offspring is accomplished using a tournament method, where multiple candidate parents are 

randomly selected from the population and the candidate with the best fitness value becomes a parent. 

After parents are selected they are varied by uniform cross-over and mutation. In the uniform cross-

over step each of the corresponding parameters of the two parents have a probability of being 

swapped. In the mutation step each of the parameters of the two parents have a probability of a small 

change in value. 

 The implemented EA is terminated if the diversity of the population falls below a threshold or 

if a maximum number of iterations is reached. Similar methods have been used for real time control 

of bipedal robots using CPGs [17]. However, the CPG model used in the work presented in this thesis 

does not incorporate sensory feedback, rather a generated CPG gait defines open-loop force 

trajectories for certain tension members of the five-tetrahedron tensegrity robot. The following 

sections discuss the methods used to generate and evolve gaits, the results of those methods, and 

conclusions drawn from process.
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Chapter 2.  Methods 

The specific structure that is dynamically modeled is a five-tetrahedron tensegrity robot as 

seen in Figure 3. The compression members that make up the sides of the five tetrahedron are 

modeled as rigid rods. All tension members (cables) are modeled as springs with damping as 

described in the tension member model section. The lower, outer tension members are actuated by 

applying the CPG output signal as a superimposed force in the tension members. Each pair of the 

actuated tension members connecting adjacent tetrahedron are actuated using the same CPG signal. 

The following four sections go over the methods used to evolve CPG locomotion gaits for this robot 

in a simulation environment. The first section details the dynamic modeling of the robot and ground 

interaction forces. The second section describes the implementation of the CPG. The third section 

covers the EA optimization procedure. The fourth section describes how these models and algorithms 

were implemented in the Matlab, Simulink, and SimMechanics software environments.  

Figure 3. Five-tetrahedron tensegrity robot in SimMechanics with tetrahedra (𝑇1-𝑇5). 

Non-actuated cables: 

Actuated cables: 

Signal 1 

Signal 2 

Signal 3 

Signal 4 

 

𝑇1 
 

𝑇2 

𝑇3 

𝑇4 

𝑇5 
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2.1 Dynamic Model 

In the dynamic model, the actuated cables (as shown in Figure 3) are actuated by a simulated 

CPG as described in section 2.2. Each pair of actuated cables connecting two adjacent tetrahedra is 

actuated by one signal of the CPG. The rigid structure of the tetrahedra is modeled with 6 inch long 

struts each with a diameter of 0.125 inches. A single modeled tetrahedron was used to test and verify 

the contact and fiction models in the simulation environment. The three sections below describe the 

models used in the dynamic simulation.  

2.1.1 Normal Force Model 

The normal force, or ground force, is modeled as a nonlinear spring and damper, as presented 

in [18]. When the position of a node is above the ground surface, defined as zero on the vertical axis, 

the normal force 𝐹𝑁 is zero. When the position of a node is at or below the ground surface the 

equation for normal force, 𝐹𝑁, due to ground contact is 

𝐹𝑁 = −𝑘𝑁𝛿𝑛 − 𝜆𝛿𝑛�̇�, Eq. 1 

where 𝑘𝑁 is the spring constant, 𝛿 is the deformation (defined as positive when below the ground 

surface), 𝜆 is the damping constant and 𝑛 is a constant that accounts for the geometry of the colliding 

Figure 4. Nodes where ground and friction forces are 

modeled (represented by arrows). 
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objects (𝑛 = 1 for impacting planes and 𝑛 = 1.5 for impacting spheres) [18]. For this work we assume 

𝑛 = 1. A method for defining 𝜆 and 𝑛 using the coefficient of restitution (𝑒) and the impact velocity 

(𝑣𝑖) is given in [18]. If 𝑣𝑖 is small we can use 

𝑒 = 1 − 𝛼𝑣𝑖 and Eq. 2 

𝜆 =
3

2
𝛼𝑘𝑁, 

where 𝛼 is a velocity correction constant. Simulating the ground model with the single tetrahedron 

positioned just above the ground (zero on the vertical axis) showed that the impact velocity was 

approximately 0.12 inches per second. A value of 0.9 was used for the coefficient of restitution in 

order to allow for elastic collisions. A spring constant of 25 pounds per inch was used as an initial 

guess of the stiffness of a fairly rigid carpet material that could be used for future testing of a 

prototype. These values gave an estimate of 𝜆 = 31.1 pound second per inch using equation 2 above. 

These values were implemented into the model as initial estimates then tuned by visually comparing 

dynamic simulation results to a full scale physical model of a single tetrahedron on a representative 

ground surface. The values listed in Table 1 define the normal forces between the five-tetrahedron 

robot and the ground during dynamic simulation. 

Table 1. Normal Force Model Parameters 

Coefficient of restitution (𝑒) 0.9 

Velocity correction coefficient (𝛼) 0.72 
𝑠

𝑖𝑛
 

Spring constant (𝑘𝑁) 25 
𝑙𝑏

𝑖𝑛
 

Damping constant (𝜆) 27 
𝑙𝑏∙𝑠

𝑖𝑛
 

 

 In an effort to reduce the simulation time, ground forces are not modeled on the top and front 

nodes of each tetrahedron, as these points will never make contact with the ground during expected 

locomotion behavior. However, ground forces are modeled on the front most node on the lead 

tetrahedron, as it is allowed to contact the ground during locomotion (see Figure 4). Figure 5 shows 
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the simulated contact model behavior of a single node of the tetrahedron as it settles from an initial 

position just above the ground (above zero on the vertical axis). Because the parameters defining this 

model are determined using a relatively low impact velocity, 𝑣𝑖, the model is valid when the nodes of 

the tetrahedron do not contact the ground with a large velocity. During expected locomotion the 

impact velocities are low and this model is valid.  

 

Contact Model Behavior 
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Figure 5. Displacement and normal force during 

ground contact with a single, settling tetrahedron node. 
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2.1.2 Friction Force Model 

As with an object moving over land, the five-tetrahedron robot simulated in this research uses 

interaction with the ground to achieve forward mobility. Therefore, it is critically important to have 

an accurate model of friction. For this application, a reset integrator friction model was used. This 

model is a good approximation of the more accurate bristle model but is more computationally 

efficient [19]. The bristle model is designed using the concept that friction between surfaces is caused 

by small structures, or bristles, that flex as lateral forces are applied and break free at a threshold 

force or displacement. This allows for damped deformation to occur during static friction, or stiction. 

The reset integrator model mimics this behavior by resetting the initial integration point to zero when 

the model breaks free of stiction. The model defines stiction velocity according to 

                                 
𝑑𝑥

𝑑𝑡
=  {

0    𝑖𝑓(𝑣 > 0 𝑎𝑛𝑑 𝑥 ≥ 𝑝𝑜) 𝑜𝑟 (𝑣 < 0 𝑎𝑛𝑑 𝑥 ≤ 𝑝𝑜)
𝑣  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, Eq. 3 

where 𝑣 is the velocity of the node, 𝑥 is the relative distance the node has moved while in stiction, 

and 𝑝𝑜 is the stiction range, or the range the node is allowed to operate in static friction. Stiction is 

activated using the equation 

        𝑎(𝑥) = {
𝑎𝑐     𝑖𝑓 |𝑥|  < 𝑝𝑜

  0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, Eq. 4 

where 𝑎𝑐 is a constant. Eq. 4 reduces the force due to stiction when the node breaks free by setting 

𝑎(𝑥) to zero. These equations combine to define the frictional force, 𝐹𝐹, as 

𝐹𝐹 = 𝜎𝑜𝑣(1 + 𝑎(𝑥))𝑥 + 𝜎1
𝑑𝑥

𝑑𝑡
. Eq. 5 

The value of the stiction range 𝑝𝑜, damping coefficient during stiction 𝜎1, and stiction coefficients 𝑎 

and 𝜎𝑜 were tuned ad hoc via simulation and using a physical model of a single tetrahedron to 

resemble friction on a rough surface. The values used in this model are listed in the Table 2. Figure 6 

shows the behavior of the reset integrator friction model when one tetrahedron is simulated with 

initial velocity. This figure demonstrates that the node breaks free of, and re-enters static friction 
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before coming to a rest. This behavior is desired because intuitively the five-tetrahedron tensegrity 

robot uses static friction as a tool to generate locomotion. 

Table 2. Friction Parameters 

Stiction range (𝑝𝑜) 0.004 𝑖𝑛 

Damping under stiction (𝜎1) 0.4 
𝑙𝑏∙𝑠

𝑖𝑛
 

Stiction switching coefficient (𝑎𝑐) 0.7 

Proportional stiction coefficient (𝜎𝑜) 0.3 
𝑙𝑏∙𝑠

𝑖𝑛2  

 

 

 

 

Figure 6. Friction force and velocity of a single node during 

simulated sliding on a rough surface. 

A
p
p
li

ed
 F

o
rc

e 
(l

b
) 

Friction Model Behavior 



12 

2.1.3 Tension Member Model 

The tension members are modeled as a spring force, 𝐹𝑠, with damping included as 

𝐹𝑠 = 𝑘𝑠(𝑥𝑜 − 𝑥) + 𝑐(�̇�), Eq. 6 

where 𝑘𝑠 is the spring constant, 𝑥𝑜 is the free length of the spring, 𝑐 is the damping constant, �̇� is 

relative velocity, and 𝑥 is the relative displacement. The outer cables that connect the base triangles of 

one tetrahedron to those of adjacent tetrahedra have one spring constant and the inner cables that 

connect the tip of each tetrahedron to its adjacent base tetrahedrons have a different spring constant 

(see Figure 3). The damping constants are the same for both inner and outer cables. The free length is 

set to an appropriately small number in order to mimic cables that are always in tension. In a physical 

version of the five-tetrahedron robot, these cables would never experience compressive forces. 

Changing the value of the free length changes the average force in the tension members. This value 

was tuned ad hoc along with the spring constants to keep the five-tetrahedron tensegrity robot in an 

upright static position during simulation with no actuation. Table 3 shows the parameters used for 

both the inner and outer cables. 

Table 3. Spring Model Parameters 

Outer cable spring constant (𝑘𝑠 ) 0.2 
𝑙𝑏

𝑖𝑛
 

Inner cable spring constant (𝑘𝑠 ) 0.3 
𝑙𝑏

𝑖𝑛
 

Damping constant (𝑐) 0.05 
𝑙𝑏∙𝑠

𝑖𝑛
 

Free length (𝑥𝑜) 0.04 𝑖𝑛 

 

The value of the spring constants mimic that of typical, non-stiff, metal extension springs. 

The value of the damping constant is kept low to mimic the damping response of a metal extension 

spring. The accuracy of the damping constant has not yet been verified. Because it is important to 

know how accurately the spring model mimics a real system of spring connections, future 

experiments must be conducted using actual hardware from a robot prototype. Increasing this 
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constant takes the model away from the desired similarities to metal extension springs and slows the 

response of the tension members. This changes the dynamics of the structure and EA optimization 

would likely produce different gaits. 

Actuation of the five-tetrahedron tensegrity robot is achieved by changing the length of the 

tension members. Three methods were considered to do so. The first method is to change the free 

length, 𝑥𝑜, of the spring. The second method is to directly change the length of the spring by 

changing the displacement, 𝑥. The third method is to superimpose a force on the tension members. 

The third method was chosen because a superimposed force could realistically represent the force 

caused by an actuator as the superimposed force performs like an actuator in parallel with a spring.
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2.2 Central Pattern Generator 

The CPG used to generate locomotion gaits for the five-tetrahedron tensegrity robot consists 

of a system of Neural Oscillators (NOs) as introduced by Matsuoka [13]. Four such NOs are used to 

generate locomotion gaits and are arranged as seen in Figure 7. The NO output is applied as shown in 

Figure 3 where NO labeled 1 in Figure 7 corresponds to Signal 1 which actuates the first pair of 

cables.  

Each NO consists of two mutually inhibiting neurons, the flexor and the extensor. These 

neurons interact as seen in Figure 8 to generate an output signal. The equations that govern each 

flexor and extensor neuron, denoted with subscripts 𝑓 and 𝑒, respectively, are 

𝜏𝐴�̇�𝑖,(𝑓,𝑒) = 𝑢𝑖,(𝑓,𝑒) − ∑ 𝑤𝑖𝑗𝑦𝑗,(𝑓,𝑒) − 𝛽𝑣𝑖,(𝑓,𝑒) + 𝑢𝑜 + 𝑓𝑖
𝑛
𝑗=1 , and Eq. 7 

𝜏𝐵�̇�𝑖,(𝑓,𝑒) = −𝑣𝑖,(𝑓,𝑒) + 𝑦𝑖,(𝑓,𝑒), 

where 𝑢𝑖 is the inner state of the neuron, 𝑣𝑖 represents the self-inhibition effect of the neuron, 𝑤𝑖𝑗 are 

the inhibitory weights between 𝑖𝑡ℎ and 𝑗𝑡ℎ neurons, 𝜏𝐴 is a time constant that effects rising time of the 

output signal of an NO, 𝜏𝐵 is a time constant that effects adaptation, 𝑢𝑜 is the external input state 

which defines the maximum amplitude of the CPG output signal 𝑆𝑜𝑢𝑡 as defined in Eq. 9, 𝛽 is the 

weight of self-inhibition on the inner state, 𝑦𝑖 is the output of a neuron, and 𝑓𝑖 is the feedback term.  

 

 

 

 

 

1 2 

3 4 

Figure 7. Mutual inhibition network of four NOs. 



15 

The output of a neuron 𝑦𝑖  is found with 

𝑦𝑖 = max (0, 𝑢𝑖), Eq. 8 

which is a positive threshold function for neuron output. A pair of extensor and flexor neurons form a 

neural oscillator with 

𝑆𝑜𝑢𝑡 = 𝑦𝑒 − 𝑦𝑓, Eq. 9 

where 𝑆𝑜𝑢𝑡 is the output signal of a NO, 𝑦𝑒 is the output of an extensor neuron, and 𝑦𝑓 is the output of 

a flexor neuron. Table 4 contains the CPG parameters used. 

Table 4. CPG Parameters 

Weight of self-inhibition (𝛽) 2.5 

External input state (𝑢𝑜) 0.5 

Initial inner state (flexor and extensor) (𝑢𝑖) 0.3 

Initial extensor self-inhibition (𝑣𝑖) 0.1 

Initial flexor self-inhibition (𝑣𝑖+1) 0.5 

  

 In the current implementation, the output of each NO (𝑆𝑜𝑢𝑡) is applied as a superimposed 

force in the actuated tension members as shown in Figure 3. The external input state, 𝑢𝑜, defines the 

maximum output amplitude of the oscillatory output signal 𝑆𝑜𝑢𝑡, meaning its value maps to a 

maximum change in the superimposed force in an actuated tension member. The value of the external 

input state in Table 4 was used in an attempt to keep the net tensile force low during locomotion as 

Extensor Neuron (𝑦𝑒) 

Flexor Neuron (𝑦𝑓) 
- 

+ 

𝑆𝑜𝑢𝑡 

Figure 8. Matsuoka's neural oscillator. 
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each actuation signal has an amplitude of twice the external input state or one pound. This low net 

force reduces the likelihood of separate tetrahedron coming in contact with one another during 

dynamic simulation, eliminating the need for contact detection between tetrahedron. The value for the 

other CPG parameters were tuned ad hoc to drive the output of one NO to resemble a sinusoidal wave 

with an initial value of zero. 

 In the current implementation there are a total of 32 mutual inhibition network weights, 𝑤𝑖𝑗. 

However, eight of these weights are set as constants as described in the Evolutionary Optimization 

section, leaving 24 weights and the time constants of the CPG to be changed by the EA to adapt the 

oscillatory output. 
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2.3 Evolutionary Optimization 

The first step of the EA is to create an initial population. In this case, a member of the 

population consists of a unique set of parameters defining the CPG and the population of each trial 

contains 50 such members. A population size of 50 was chosen after experimentation with a variety 

of population sizes ranging from 10 to 200 individuals with the goal of the diversity of the population 

being reduced to a small value after 1000-2000 EA iterations. The procedure for creating the initial 

population begins with an analysis of a single neural oscillator. The adopted process was to begin 

with a CPG output that closely resembled a sine wave with the desired amplitude and a relatively 

slow frequency of approximately 0.7 Hertz. This frequency is a function of the weights and time 

constants that define an instance of the CPG. The values chosen were used because they created the 

expected gait as viewed in the SimMechanics visualization of the simulated robot.  

When one NO is considered, the mutual inhibition weights consist of two weights which 

affect the interaction between the neural oscillator’s flexor neuron and extensor neuron. Figure 10 

illustrates how changing the weights of the CPG change the shape and frequency of the output. The 

upper plot in Figure 10 resembles a sine wave so values of 1.5 are used as the weights between each 

neural oscillator’s flexor and extensor neuron. The time constants 𝜏𝐴 and 𝜏𝐵 are related by 𝜏𝐵 = 2𝜏𝐴. 

The factor of two relating 𝜏𝐵 to 𝜏𝐴 also helps shape the output to resemble a sine wave. Decreasing 

this factor below two causes the NO output to fall to zero and increasing it above two causes the 

output to stop resembling a sine wave, as seen in Figure 9. Thus, the values inhibitory weights 

between the extensor and flexor neurons of 𝑤 =[1.5 1.5] and the time constants 𝜏𝐵 = 2𝜏𝐴 creates a 

CPG output signal from a single NO that resembles a sine wave.  
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Figure 10. Comparing NO output signals with 𝜏𝐴=0.3 and 

𝜏𝐵=0.6 for weights of [1.5 1.5] (top) and [2 2] (bottom). 

Effect of CPG Weights on NO Output 

Time (s) 

Figure 9. NO output signals with weights [1.5 1.5] and 

time constant factors of 1.5, 2, and 3. 

Effect of Time Constant Factor on NO Output 

𝜏𝐵 =1.5𝜏𝐴 

𝜏𝐵 =2𝜏𝐴 

𝜏𝐵 =3𝜏𝐴 
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Inhibitory terms are added as more neural oscillators are added and the additional weights on 

those terms reshape the outputs. The four NO arrangement used, as seen in Figure 7, has a total of 32 

mutual inhibition weights. Because each NO has two neurons, eight weights are set as constant values 

of 1.5, leaving 24 weights to be changed by the EA.  

The values of the weights and time constants are bounded to help ensure a usable oscillatory 

output signal from the CPG. The bounds for the 24 inhibitory weights were narrowed ad hoc to 

ensure the output signals produced were steady state oscillations in the initial populations. Outside of 

these bounds the output signals have a tendency to become unstable or fall to zero. Similarly, 𝜏𝐴 is 

bounded, and, as stated earlier, 𝜏𝐵 = 2𝜏𝐴 in order to crease a steady state output that resembles a 

sinusoidal wave. These bounds are listed in Table 5. Using these bounds the initial population is 

filled, or seeded, with 50 randomly generated, fitness evaluated individuals, which is used as the 

initial population for the EA iterations. This process is illustrated in Figure 11.  

Table 5. CPG Parameter Initial Bounds 

Bounds of weights (𝑤𝑖𝑗) 1 - 3.4 

Bounds of time constant (𝜏𝐴) 0.2 - 0.5 

 

CPG 

Random 

Parameters 

Fitness 

evaluation 

Population full? 

Dynamic 

Simulation 

N

  
Y 

Population Seeding 

Figure 11. Initial EA population generation flow diagram. 

EA 

Iterations 
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EAs use two different types of operations to evolve the population of a system. These 

operations are selection and variation. Selection consists of collecting and replacing individuals from 

and into the population, and variation consists of changing the defining parameters themselves.  

Once the initial population is generated, two parents are selected from the population to 

create two children which have a chance to replace individuals in the population depending on their 

performance. This method is known as steady state and is commonly used because the size of the 

population remains constant, meaning the population of each trial always contains 50 individuals. 

Each parent consists of the 24 CPG weights (𝜔𝑖𝑗) and the 2 time constants (𝜏𝐴, 𝜏𝐵). 

The two parents are selected via tournament selection, where a group of five candidate 

parents are randomly selected from the population and the candidate with the highest fitness is chosen 

as a parent. Next, the two parents go through the uniform cross-over operation where they are mated, 

or have their parameters swapped randomly, producing offspring, or children. In uniform cross-over, 

a different probability of swapping is included on each CPG parameter of the parents (values listed in 

Table 6). A random number between zero and one is generated and compared against the probability 

value listed in the table to determine if the operation will occur. In addition, cross-over between 

parents can only occur between corresponding neurons. Each of the parameters of the resulting two 

children have a chance of a small amount of mutation, of the value defined in Table 6, before being 

used to evaluate a CPG output signal. The mutation is applied as a random value that has an equal 

chance of being added to, or subtracted from the existing value. 

The output signals from the CPG are applied to the robot in the dynamic simulation. Data is 

taken from the simulation and is used to compute the fitness, as defined later in this section, of each 

of the resulting children. Each child is then placed into the population, replacing an individual that 

has a lower fitness. A method similar to tournament selection, called tournament replacement, is used 

for replacement. If the tournament replacement will not improve the fitness of the population the 

child instead replaces the individual in the population with the overall lowest fitness, as long as this 
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improves the average fitness of the population. This procedure of attempting tournament replacement 

before resorting to directly replacing the worst individual helps to loosen the replacement pressure 

which can widen the solution space searched. Figure 12 displays the EA operations for each iteration. 

This process is repeated until a termination criterion is met as defined later in this section. This entire 

process including initial population generation was repeated for 10 trials. Table 6 details the 

parameters used.  

Two termination conditions were used for the evolution. The first is based on the diversity of 

the population and works by referencing the change in the average fitness of the population over a 

range of iterations. This method uses the increase of the average fitness values over the past 100 

iterations to determine diversity. If the change in average fitness of the population falls below 0.03 

over 100 iterations the simulation is stopped. The values of average fitness change and number of 

iterations were determined ad hoc by reviewing initial test trials. The second termination condition is 

based solely on the maximum number of iterations as defined in Table 6. 

Crossover 

Parent selection 

Mutation CPG 

Population 

Dynamic 

Simulation 

Fitness 

Evaluation 

Replacement 
i+1 

EA Iterations 

Figure 12. EA process overview flow diagram. 
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Table 6. EA Parameters 

Simulation time 15 sec 

Population size 50 

Tournament size 5 

Number of trials 10 

Maximum iterations per trial 2000 

Crossover type Uniform 

Crossover probability 20% 

Mutation probability 70% 

Mutation range for weights 0 - 0.2 

Mutation range for time constant 0 - 0.05 

  

 The 15 second simulation time was chosen to ensure that enough time had passed to provide 

a full picture of the motion of any individual gait. A simulation time of 10 seconds was used in initial 

trials but was discarded because some gaits were not able to produce multiple steady-state oscillations 

in the simulated robot within that amount of time. The number of trials performed was determined by 

the elapsed simulation time for each dynamic simulation as each trial took between 5 and 15 hours to 

complete with the computer that was used. The crossover type was chosen to ensure that the EA was 

swapping corresponding weights between CPG signals. This can limit the solution space searched but 

the limiting effect can be managed with a large enough number of trials. The probability of the 

crossover and mutation were tuned ad hoc using results from multiple initial trials. The small 

probability of crossover and large probability of mutation, and the small mutation value limits the 

ability of the optimization to make large parameter jumps between individuals. Instead, the 

populations of the trials will converge slowly to optimums. 

 The fitness value is calculated via a manually tuned cost-function based on steady state data 

from the dynamic simulation. Figure 13 illustrates the locations where performance data is taken from 
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the dynamic simulation of the five-tetrahedron tensegrity robot. To allow for steady state conditions 

to be achieved a 3 second delay was added prior to data collection. This time delay removes transients 

caused by initial position errors, spring forces, and the CPG signal.  

The fitness equation is defined as 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜙1𝑑𝑥1 + 𝜙2|𝑥1 − 𝑥2| + 𝜙3(𝑥3 − 𝑥1) + 𝜙4|𝑦1|, 

 Eq. 10 

where 𝜙1−4 are constants, 𝑥1, 𝑥1, 𝑥3, and 𝑦1 are distances, as illustrated in Figure 13, recorded at the 

end of a dynamic simulation, and 𝑑𝑥1 is the distance 𝑥1 recorded under steady state conditions, or 

between 3 seconds and the end of the simulation. Table 7 lists the constants used. 

Table 7. Fitness Function Constants 

𝜙1 1 

𝜙2 -10 

𝜙3 0 

𝜙4 -1 

 

The main contributor of the fitness value is the distance the robot traveled in the allotted time, 

thus, the value of 𝜙1 is unity. This makes the forward distance, 𝑑𝑥1, the basis for the fitness with the 

other three factors, 𝜙2,3,4, functioning as penalties. The second term of the fitness function multiplied 

by 𝜙2 is a reflection of the twist the robot experiences while moving forward. This constant is much 

larger compared to the other constants that define the fitness because the value of |𝑥1 − 𝑥2| is often 

small and must be amplified to have an effect on the calculated fitness value. This term is included to 

add a penalty on twisting about the vertical axis that may have been caused by unwanted initial 

conditions caused by the initial spike in the CPG actuation signal. The third term multiplied by 𝜙3 is 

a represents the direction of motion relative to the desired direction. The desired direction of the robot 

is always in the positive x direction. The third constant 𝜙3 is set to zero because it is only needed 

when the robot is moving with a slithering, lateral undulatory motion which is not currently 
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implemented. The forth term multiplied by 𝜙3 represents the offset perpendicular to the desired 

direction of locomotion, or 𝑦 direction. 

 

Figure 13. Location of 𝑥1, 𝑥2, 𝑥3, and 𝑦1on the five-tetrahedron tensegrity robot. 

+ 𝑥 

+ 𝑦 

𝑦1  

𝑥1  𝑥3 

𝑥2  
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2.4 Simulation Implementation 

 The EA (see Appendix A) and CPG (see Appendix B) were implemented using Matlab 

scripts and functions. The values and signals produced by the EA and CPG are passed to Simulink 

and SimMechanics for dynamic simulation. SimMechanics is a tool within the Matlab simulation 

environment Simulink, and is used to model mechanical systems.  

 The rigid tetrahedrons are modeled using SimMechanics. Rigid body transformations and 

rotations are applied to struts (see Appendix C.1) and SimMechanics blocks called Weld Joints (see 

Appendix C.2) fix the struts in their relative position. At each point where rigid struts are connected 

are 0.2 inch diameter spheres, also connected using Weld Joints. The points where struts are 

connected together are used as connection points for tension members while the spheres are used as 

connection points for the ground force models. 

The ground force model is implemented using a combination of Simulink and SimMechanics 

function blocks (see Appendix C.4). Data is taken from sensor ports of SimMechanics six degree-of-

freedom (DOF) joints. These six-DOF blocks supply Simulink blocks with data on the vertical 

position and velocity of the connecting node. The Simulink blocks are arranged to create the ground 

force model. The resulting value of force is fed back into actuation ports on the six-DOF 

SimMechanics joints.  

The friction model is implemented in a similar fashion to the ground force model in that it 

uses a combination of the SimMechanics six-DOF joints and Simulink block functions (see Appendix 

C.4). The velocity of the node relative to the ground is taken from sensor ports of the six-DOF joints 

and is passed through the friction force model that is modeled using Simulink. The resulting force 

value is passed back into the six-DOF SimMechanics joints. This friction model is applied in both the 

x and y directions, where x is the direction of travel of the robot and y is perpendicular to the 

direction of travel.  
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The tension members are also modeled using six-DOF joints from SimMechanics with 

Simulink blocks calculating spring forces (see Appendix C.5). The relative distance and velocity 

between corresponding connection nodes on the tetrahedron are taken from sensor ports on the six-

DOF joints and the Simulink block functions use that data to compute the force to be applied to each 

of the connecting points. This value of calculated spring force is passed into the actuation ports on the 

SimMechanics six-DOF joints. 

The dynamic simulation presented in this thesis could be applied to any tensegrity structure, 

including more complex tensegrity structures and true tensegrity structures (no rigid connections 

between compression members). The challenges in doing so would most likely be caused by initial 

conditions distance in the SimMechanics six-DOF joints. These initial conditions must be close to the 

values that would define a static pose for a tensegrity structure. This adds the issue of over defining 

the initial states of the structure which can cause SimMechanics to crash.  

One iteration of the EA constitutes two dynamic simulations, one for each of the two 

offspring, and takes an average of 22 seconds to complete. The elapsed simulation time is governed 

by the dynamic simulation as the CPG and EA Matlab execution takes very little time. The dynamic 

simulations 15 seconds long as defined in Section 2.3 meaning that the current dynamic simulation is 

actually slower than real time. 
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Figure 14. Relative distance between tetrahedra during 

locomotion with reference T1. 

Relative Distance Between T1 − T5 with T1 as Reference 
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Chapter 3.  Results 

The motion achieved by this robot is generally as illustrated in the overhead-view given in 

Figure 15, and the in graph of relative distance between tetrahedra as the robot generates forward 

motion in Figure 14. The following sections present the results of the CPG gait evolution of the five-

tetrahedron tensegrity robot. The first section shows gaits resulting from the initial gait generation, 

where gaits were created using pseudo-random number generator and the Matsuoka CPG. The second 

section shows the gaits produced by the evolutionary algorithm and the forces at work in the structure 

during locomotion. The third section covers the behavior of the EA optimization during the 10 trials.  

0s 

0.5s 

1.0s 

1.5s 

2.0s 

2.5s 

3.0s 

3.5s 

Figure 15. Time lapse of locomotion. 
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3.1 Initial Gait Generation 

 A sampling of the performance of the randomly generated initial gaits, i.e. the initial 

population, is presented in Figure 16, which shows the forward distance traveled over a 15 second 

simulation, 𝑥1. This figure displays the best and worst of the 50 individuals of the initial populations 

from each of the 10 trials performed. Figure 17 shows the performance, in terms of fitness, of the 50 

individuals from the initial population of one sample trial. These figures demonstrate the variety of 

gaits in the initial populations as nearly half of the individuals travel opposite the desired direction of 

travel. This variety helps to ensure that more of the solution space is searched by the EA. 

 The final distance reached in the best performing gait from the initial population is 

approximately 6.6 inches. The data shows periodic surges in the distance traveled from the origin; this 

is because, by the undulatory nature of the locomotion, no one section of this robot has a constant 

velocity during locomotion.  

Figure 16. Distance traveled of best and worst individual 

of each of the 10 trials. 

Best and Worst of Each Trial of Initial Populations 
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Figure 17. Distribution of fitness of initial population from a 

sample trial. 

Histogram of Initial Population Performance of all Individuals of One Trial 
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3.2 Gait Optimization 

 As defined earlier in section 2.3, all ten EA trials had a population size of 50 and used the 

main fitness performance metric of maximizing the distance traveled. Minor factors that affect the 

fitness value are minimizing the distance traveled perpendicular to the desired direction of travel, and 

minimizing the twist about the vertical axis of the robot. The minor factors were small throughout the 

trials and were nearly eliminated by the end of all trials. 

 Figure 18 is a comparison of the forward distance traveled by the best of each of the initial 

and evolved populations. The average performance increase over 10 trials is 32 percent and the best 

performing individual from all 10 trials increased the final distance traveled by 51 percent with a 

distance traveled of 14.34 inches in the 15 second dynamic simulation. 

   

Figure 18. Distance traveled performance of the best individual from the initial 

population (left) and after evolving (right). 
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 Next we look at the CPG signals that were used to generate the gaits and the resulting forces 

in the robot. As stated earlier, each pair of tension members between adjacent tetrahedron are actuated 

by one CPG signal, thus, the forces in the tension members and in the ground contact of the 

tetrahedron are symmetric and only one of each pair is shown in the following figures. Figure 19 

shows the CPG signal that was superimposed on the spring force in the actuated tension members, 

and the resulting force in those tension members. Comparing the CPG input and tension forces we 

can see that the dynamics of the robot introduced a time delay into the controlled tension member’s 

force as well as reshaped them. 

 Figure 20 shows the frictional and normal forces at work on each of the five tetrahedron in 

the robot. This graph demonstrates how the weight of the robot is distributed between the points of 

ground contact and how friction is utilized as the robot moves forward.

Figure 19. Graph of CPG signal and corresponding tension 

force in actuated tension members. 
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Currently, directional friction is not implemented in the dynamic simulation of this robot. 

However, it is noteworthy that adding directional friction to the dynamic simulation of this robot may 

improve its performance. Because directional friction is not modeled, the evolved gaits must rely on a 

different main mechanism for producing forward motion. This mechanism is seen as lifting a section, 

or tetrahedron, of the robot off the ground before moving it forward and the results show that this 

structure is able to generate forward motion using this mechanism. This behavior is apparent in 

Figure 20 whenever the normal force on a tetrahedron due to the ground is equal to zero. This is made 

possible by the mode of actuation where tetrahedron are allowed to twist about their axis. In this 

simulation such twisting is achieved by actuating only the bottom outer tension members, however, 

actuating all members could potentially achieve the same behavior. Figure 21 illustrates this effect 

with traced points overlaid on images of the robot. 

Figure 20. Friction and ground forces of tetrahedron 𝑇1, 𝑇2, 𝑇3, 𝑇4, and 𝑇5 during 

locomotion. 

Ground Interaction Forces During Locomotion 
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Figure 21. Time lapse of one step: motion achieved by shifting weight between 

tetrahedra; lifting tetrahedra off the ground before moving them forward. 
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3.3 Optimization Behavior 

 Reviewing the data shows the final results of the optimization, but it is also important to 

analyze the path the EA took to reach those results. These paths are best represented in this model by 

the average fitness of the population. 

 Figure 22 shows the progression of the average fitness of the 10 trials performed. During the 

trials the EA found multiple local maximum but in most cases was able to break out and continue 

increasing performance. It is noteworthy that the performance of the best trial was still increasing 

when it met the maximum iteration termination criterion, meaning it may have been capable of 

finding a better gait if the maximum number of iterations was increased. As this is an initial approach 

the maximum number of iterations was not increased; instead this result can be used in future work to 

improve the size of the searched solution space, allowing for the possibility of better performing 

populations. 

 Figure 23 shows the performance of the best trial when compared to the average of all ten 

trials. The dotted line represents the value of the average fitness of all ten trials and the bars represent 

Figure 22. Average fitness progression of all 10 Trials. 
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the standard deviation of the fitness of all ten trials. The trend of all solutions was to increase the 

fitness as expected and solutions other than the “best” solution had higher values earlier in the trials.  

 The results of the EA show that the average fitness of the population was increased in all 

trials. The resulting populations in all trials showed that the EA attempted to minimize the time 

constants of the CPG 𝜏𝐴 and 𝜏𝐵 to their lower limits. The final values of the weights of the CPG did 

not show any discernable patterns between trials, meaning individuals with good performance do not 

necessarily have similar CPG weights to other individuals that perform well. This is possibly because 

a wide range of gaits can be achieved by this system (i.e. walking, running). This idea is validated in 

part by Figure 22, where it is apparent that there not an optimum that the majority of the populations 

in the 10 trials agreed upon.  

 The results of the two best individual from the best performing trial show that the values of 

the inhibitory weights can vary by a large amount and still result in the same fitness value, meaning 

that there are many valid solutions to this problem. The fitness value of these two solutions varies by 

0.0006 and the time constants have exactly the same value, but, the values of the weights varies 

wildly with differences as low as 0 and as high as 0.38. Table 8 demonstrates this with the values of 

the absolute difference of the fitness and parameters defining the two best individuals produced in the 

best performing trial. Although some of the parameters of these individuals are similar (shown by 

small values in the table below), these similarities are not necessarily shared with even the next best 

individual in the same population. In addition, the best solutions of all trials show the same wide 

variety of inhibition weight values.  
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Table 8. Absolute Difference of the Two Best Solutions of the Optimization.  

Fitness 𝑤1−4 𝑤5−8 𝑤9−12 𝑤13−16 𝑤17−20 𝑤21−24 𝜏𝐴, 𝜏𝐵 

0.0006 

0.0594 

0.1063 

0.0919 

0.0329 

0.1184 

0 

0.11 

0.1364 

0.0874 

0.064 

0.1928 

0.3157 

0.0738 

0.2638 

0.1313 

0 

0.0288 

0.1233 

0.1689 

0.3806 

0.0125 

0.0244 

0.0357 

0.1322 

0 

0 

 

 

Figure 23. Average fitness of trials: best, worst, and 

average of all 10 trials. 

Fitness Data Comparison: Best, Worst and Average 
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Chapter 4.  Conclusion and Discussion 

 This thesis presents a method to create locomotion gaits for a modular tetrahedron tensegrity 

robot using an Evolutionary Algorithm (EA) to optimize the parameters of a Central Pattern 

Generator (CPG). The results from simulation demonstrate the efficacy of the approach with the 

performance metric total of distance traveled; however, other goals could be applied using the same 

method. For instance the range of optimized parameters could be extended or offset to allow for a 

wider solution space or for choosing specific types of gaits. Specifying different ranges of parameters 

could produce different characteristics in gaits such as walking or running. It may also be 

advantageous to add a factor to the fitness evaluation that promotes smoothness of CPG signals. 

 The produced locomotion is limited by the mode of actuation where the same CPG output 

signal is applied to both actuated tension members between adjacent tetrahedra to create a caterpillar 

or inchworm type locomotion where tetrahedra are lifted and step forward. This structure may also be 

capable of generating forward motion using a snake-like undulation motion. This motion could be 

achieved by adding individual CPG Neural Oscillators (NOs) to each of the lower outer tension 

members, making a total of eight separate NOs. 

 The main limitation of this simulation is computational speed. As stated in Section 2.4, the 

dynamic simulation is slower than real time. The method presented here is meant to be an initial 

attempt to validate the efficacy of the methods used. However, if in the future the simulation speed 

were increased, more processing power were added, or the trials were allowed to run for a longer 

period of time, more tetrahedron and CPG signals could be simulated for a more interesting structure 

and possibly more efficient locomotion. 

 This simulation was performed with the goal to apply the findings to a physical prototype. 

This would also help validate the CPG used, the effectiveness of the EA optimization, the actuation 

methods, and some the parameters used in the ground, friction, and tension member models. The 

prototype at NASA Ames could be used but many adjustments would have to be made to the 
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simulation to match the physical prototype. There is currently a new prototype being constructed at 

the University of Idaho that fits the design of the robot in simulation. Future work will be performed 

to compare the simulation to this prototype. 

 The gaits produced by the EA showed that the time constants were minimized. For this 

reason the values of these parameters could be set as constants depending on the desired locomotion 

cadence. There is a possibility that this would limit the performance of a population, but, current 

findings suggest that this possibility is small. The advantage of setting these parameters to constants 

could mean fewer iterations of the EA to reach the same outcome. In addition the two time constants 

are related by a factor of two, which may limit the variety of gaits produced. Future trials could allow 

the time constants to be changed independently within appropriate ranges. 

 CPGs are used in the robotics community partly because of their resistance to perturbations 

even without feedback. For this reason the simulation could be modified to include environmental 

obstacles such as inclines, steps, or objects. This would demonstrate the robustness of the final 

optimized gait. In addition feedback pathways could be added to the simulation to aid in obstacle 

maneuverability. 
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Appendix A. Evolutionary Algorithm 

 The following Matlab code is the Evolutionary Algorithm (EA), and the Central Pattern 

Generator (CPG), and included sub functions. A.1 is the initial population generator and was used to 

create bounded, fitness evaluated populations of random solutions which are made up of parameters 

that define the CPG and fitness that define the performance. A.2 is the initial fitness evaluation and 

takes the initial population and computes the fitness of each individual, then stores the results in the 

population that is used by EA main. A.3 is the main EA script with sub functions included as A.3.1-5 

 

A.1 Initial population generator 

%% George Korbel 

% Initial Population generator 

% Generates values for CPG and simulates 

% This file was created to work specifially with simulink file: 

% tetra5tv5  

% Notes: --dimensions are ips 

% Tetra5tv5: simplified addition of tetrahedron and NOs 

% Changed sensing points and method of sensing 

% Updated structure of pop 

% Tetra5_v4: version adds 3 neural oscillators in Central Pattern Generator (CPG) and population 

seeding 

% working matrix name dist_max changed to pop 

% created by: George Korbel 

 %% 

clc 

 global w tau dtau 

 % Number of simulations 

stop = 50; 

 % Time of simulation 

simtnum = 15; % simulation time in number form 

simtime = num2str(simtnum); 

set_param('tetra5tv5_fas','MaskedZcDiagnostic','none','StopTime',simtime);  

% for running one sim at a time 

if stop == 1 

    pop = 0; 

end 

%Check if pop exists 

ex = exist('pop','var'); % 1 if yes, 0 if no  

%start counter on new row of pop matrix 

if ex == 1 

    [start, na] = size(pop); % current # of rows in pop = start 

    if pop(start,1)==0 % if the last entry in the first column is zero 
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        start = start;      % start on that row 

    else 

        start = start+1;    % else start on a new row 

    end 

else 

    error('pop is not defined') % if variable pop dne throw error 

end  

% Set friction params from guessing and watching 

% (these values were taken from a random search simulation and adapted by hand to 

% help with convergence of the simulations) 

s0 = .3;   % Sigma 0 = damping during sliding 

s1 = .4;   % Sigma 1 = damping during sticking 

a = .7;    % Coefficient multiplied by sigma0 (turns friction on or off with z detection) 

p0 = .004; % Distance node can move under static friction  

% One way friction ratio 

% removed in this version 

%f_ratio = 1; % 1 = no one way friction, 0 = complete one way friction  

% Random value arrays 

N = 2000; %how many values between bounds 

wa = 1:(3.4-1)/N:3.4; %value array for weights 

taua = 0.2:(.5-.2)/N:.5;  %value array for tau   

for k = start:stop     

    display(num2str(k)) %print iteration # 

    % CPG parameters 

    % Weights 

    wnum = 24; 

    for wk = 1:wnum 

        w(wk) = wa(randi([1,N])); 

    end     

    % Time constants 

    tau = taua(randi([1,N])); 

    dtau = 2*tau;     

    tic            %start timer 

    display('CPG') %print progress     

    CPGmain() %run cpg 

    display('Simulating') %print progress 

    sim('tetra5tv5_fas')      %simulate current model    

    % Save results in pop 

    % First tetrahedron to origin 

    dist_x = sx1(end) - sx1(2); 

    pop(k,1) = dist_x;      %end distance in x of node that starts at origin 

    pop(k,2) = abs(sx1(end) - sx2(end));     %end difference in distance of rear two nodes that begin at 

origin 

    pop(k,3) = 0;  %end distance between front tetra tip and node that begins on origin 

    pop(k,4) = abs(sy1(end));   %end y distance of node that begins on origin     

    % Save CPG parameters 

    for ct = 1:wnum 

        pop(k,ct+4) = w(ct); 

    end     

    pop(k,29) = tau; 
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    pop(k,30) = dtau;  

    toc %output total time for last run 

    display(' '); display(' '); %returns for display in command window 

end 

uni_pop = unique(pop,'rows'); %deletes any repeating rows (entire row must be the same) 

sort_pop = sortrows(pop,[-1]); %sorts in descending order by first column  

% plot results 

figure;h1=stem3(sort_pop(:,2),sort_pop(:,3),sort_pop(:,1),'filled'); 

 

A.2 Initial fitness evaluation 

%% Evolutionary Algorithm fitness initial evaluation 

% unrated population is named pop 

% largest value is best fitness 

% load pop 

% Weights for EA fitness evaluation 

% origin-tetra1 

W1 = 1;   % total distance traveled % larger the better % needs to be rescaled so that it does not 

overshadow bad effects?? 

W2 = -10;   % absolute difference between two nodes that start on x = 0 (in x dir) % this value is 

generally worse when its abs is larger 

W3 = 0;   % difference between two nodes that start on x = 0. non-absolute 

W4 = -1; % y distance of origin node  

fit_w = [W1 W2 W3 W4];  

[L,tmp] = size(pop); 

population = zeros(L,27); % initialize population size  

% Evaluate fitness and store in population 

for k = 1:L 

    temp = pop(k,:); % separate out one row of unevaluated population 

    %     if temp(1,1) < 0 % If it moves backwards give it a small fitness 

    %         fit = -5; 

    %     else 

    Lfw = length(fit_w); 

    for m = 1:Lfw 

        fitsum(m) = temp(1,m)*fit_w(m); 

    end 

    fit = sum(fitsum); 

    population(k,:) = [fit, temp(1,5:end)]; 

end 

 

A.3 Evolutionary Algorithm main 

% Evolutionary Algorithm main 

% Low probability of swapping 

% High probability of mutation 

% Low mutation value 

% Details: 

% - Selects five candidate parents at random 



45 

% - Takes two best of five selected for actual parents 

% - Swaps random weights and time constants 

clear tmppop 

global w tau dtau Rp   

% Number of simulations 

stop = 2000;  

ex = exist('fit_ave'); 

%start counter on new row of fit_sum array 

if ex == 1 

    start = length(fit_ave); % current # of rows 

    start = start + 1;      % start on that row 

else 

    error('fit_ave is not defined') % if variable pop dne throw error 

end  

% Set friction params from guessing and watching 

% (these values were taken from a random search simulation and adapted by hand to 

% help with convergence of the simulations) 

s0 = .3;   % Sigma 0 = damping during sliding 

s1 = .4;   % Sigma 1 = damping during sticking 

a = .7;    % Coefficient multiplied by sigma0 (turns friction on or off with z detection) 

p0 = .004; % Distance node can move under static friction  

% One way friction ratio 

f_ratio = 1; % 1 = no one way friction, 0 = complete one way friction  

% Find size of population 

[Rp, Cp] = size(population); 

wnum = 24;  

for k = start:stop     

    display(num2str(k)) %print iteration #     

    %% Selection 

    % Select five random candidate parents     

    [parent1] = EA_select(population); 

    [parent2] = EA_select(population);         

    %% Crossover 

    sw_prob = rand(1,Cp-1);  % probability of swapping     

    for n = 1:(Cp-1) 

        if sw_prob(n) > .8 % if the probability is over threshold swap columns 

            swtmp(1,n) = parent1(1,n); 

            parent1(1,n) = parent2(1,n); 

            parent2(1,n) = swtmp(1,n); 

        end 

    end    

    parent1(1,Cp) = parent1(1,Cp-1)*2; % if tau was changed also change dtau 

    parent2(1,Cp) = parent2(1,Cp-1)*2; % if tau was changed also change dtau 

    %% Mutation 

    % weights 

    mut_op = rand(1,wnum+2);         % probability of mutation operator (0:.49 subtracts .5:1 adds) 

    mut_prob = rand(1,wnum+2);       % probability of mutation 

    mut_fact_w = rand(1,wnum+2)/5;     % factor of mutation for w (between 0 and .2) 

    parent1 = EA_mut_w(parent1, mut_op, mut_prob, mut_fact_w); % mutates weights 

    parent2 = EA_mut_w(parent2, mut_op, mut_prob, mut_fact_w); % mutates weights 
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    mut_fact_tau = rand/20; % factor of mutation for tau (between 0 and .05) 

    parent1 = EA_mut_tau(parent1, mut_op, mut_prob, mut_fact_tau); 

    parent2 = EA_mut_tau(parent2, mut_op, mut_prob, mut_fact_tau); 

    %% Re-simulate with children 

    child = [parent1; parent2]; 

    for i = 1:2 

        %tic; 

        w = child(i,1:wnum); 

        tau = child(i,wnum+1); 

        dtau = 2*tau; 

        %% Run Central Pattern Generator 

        %display('CPG') %print progress 

        CPGmain() %run cpg 

        %% Run Simulator 

        set_param('tetra5tv5_fas','MaskedZcDiagnostic','none'); % turn off warning for zero crossing 

        %display('Simulating') %print progress 

        sim('tetra5tv5_fas')      %simulate current model 

        %% Save results in tmppop 

        % First tetrahedron to origin 

        dist_x = sx1(end) - sx1(2); 

        tmppop(1,1) = dist_x;      %end distance in x of node that starts at origin 

        tmppop(1,2) = abs(sx1(end) - sx2(end));     %end difference in distance of rear two nodes that 

begin at origin 

        tmppop(1,3) = 0; %This only needs to be non zero during snake like motion  %sx2(L) - sx1(L);  

%end distance between front tetra tip and node that begins on origin 

        tmppop(1,4) = abs(sy1(end));   %end y distance of node that begins on origin 

        % Save CPG parameters 

        for ct = 1:wnum 

            tmppop(1,ct+4) = w(ct); 

        end 

        tmppop(1,wnum+5)  = tau; 

        tmppop(1,wnum+6) = dtau; 

        %% Evaluate fitness of new child solution 

        fit = EA_fitness(tmppop); 

        %% Place child back in population 

        pos = EA_replace(population);   % worst fitness out of group of 5 random 

        minfit = min(population(:,1)); % find worst fitness overall 

        [row, col] = ind2sub(size(population),find(population==minfit)); 

        or_pos = row(1); % row of worst overall 

        current_fit = population(pos,1); 

        if fit > current_fit 

            population(pos,:) = [fit, w, tau, dtau]; %replace worst out of the 5 

        elseif fit > minfit 

            population(or_pos,:) = [fit, w, tau, dtau]; %or replace worst overall 

        end 

        %toc 

    end 

    fit_ave(k) = sum(population(:,1))/Rp; %save the average fitness 

    % Print progress by summing fitness column 

    %display(num2str(fit_ave(k))) 
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    % Stopping criterion 

    if k > 200 

        diff_fit_ave = fit_ave(k) - fit_ave(k-100); 

        if diff_fit_ave < .03 

            for i = 1:1000 

                beep; 

                pause(1); 

            end 

        end 

    end 

    if k == 2000 

        for i = 1:10000 

            beep; 

            pause(1); 

        end 

    end 

    clc 

    %display(' '); display(' '); %2 returns for display in command window 

end 

 

 

A.3.1 EA Fitness 
 

 function [fit] = EA_fitness(tmppop) 

% Function Evolutionary Algorithm fitness evaluation 

% largest value is best fitness 

% load pop 

% Weights for EA fitness evaluation 

% origin-tetra1 

W1 = 1;   % total distance traveled % larger the better % needs to be rescaled so that it does not 

overshadow bad effects?? 

W2 = -10;   % absolute difference between two nodes that start on x = 0 (in x dir) % this value is 

generally worse when its abs is larger 

W3 = 0;   % difference between two nodes that start on x = 0. non-absolute 

W4 = -1; % y distance of origin node 

fit_w = [W1 W2 W3 W4]; 

temp = tmppop; 

% if temp(1,1) < 0 % If it moves backwards give it a small fitness 

%     fit = -5; 

% else 

for m = 1:4 

    fit(m) = temp(1,m)*fit_w(m); 

end 

fit = sum(fit); 
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A.3.2 EA select 

 

function [ parent ] = EA_select( population ) 

%Selects parents for next combination and mutation 

%   Takes five candidtate parents and selects the best two out of the five 

global Rp select_pop 

can1 = randi([1,Rp]); 

can2 = randi([1,Rp]); 

can3 = randi([1,Rp]); 

can4 = randi([1,Rp]); 

can5 = randi([1,Rp]); 

can = [can1, can2, can3, can4, can5]'; 

select_pop = sortrows(population([can1;can2;can3;can4;can5],:),[-1]); % select parents out of 

population and sort descending 

select_pop = [select_pop, can]; 

parent = select_pop(1,2:27); % Take best of the five selected (don't take fitness value) 

end 

 

 

A.3.3 EA weight mutation 

 

function [ parent ] = EA_mut_w(parent2, mut_op, mut_prob, mut_fact_w ) 

% Mutation function for weights array w 

%   When called in EA_main randomly mutates values of w 

for m = 1:24 

    if mut_op(m) > 0.5 

        if mut_prob(m) > 0.3 % if the probability is over threshold mutate 

            parent(1,m) = parent(1,m) + mut_fact_w(m); 

        end 

    end 

    if mut_op(m) < 0.5 

        if mut_prob(m) > 0.3 % if the probability is over threshold mutate 

            tmp = parent(1,m) - mut_fact_w(m);  

            if tmp > 0 % but only if it will not cause a negative value 

                parent(1,m) = parent2(1,m) - mut_fact_w(m); 

            end 

        end 

    end 

end 

end 

 

 

A.3.4 EA time constant mutation 

 

function [ parent ] = EA_mut_tau( parent, mut_op, mut_prob, mut_fact_tau ) 

% Mutation function for tau 

%   When called in EA_main randomly mutates values of tau 

m = 26; % Only working on tau 

if mut_op(m) > 0.5 

    if mut_prob(m) > 0.3 % if the probability is over threshold mutate 
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        parent(1,m) = parent(1,m) + mut_fact_tau; 

    end 

end 

if mut_op(m) < 0.5 

    if mut_prob(m) > 0.3 % if the probability is over threshold mutate 

        tmp = parent(1,m) - mut_fact_tau; 

        if tmp > .2 % but only if it will not go below threshhold 

            parent(1,m) = parent(1,m) - mut_fact_tau; 

        end 

    end 

end 

parent(1,m+1) = 2*parent(1,m); % dtau = 2*tau 

end 

 

 

A.3.5 EA replace 

 

function [ pos ] = EA_replace( population ) 

%Selects worst  

%   Takes five candidtates and selects the worst 

[Rp, Cp] = size(population); 

can1 = randi([1,Rp]); 

can2 = randi([1,Rp]); 

can3 = randi([1,Rp]); 

can4 = randi([1,Rp]); 

can5 = randi([1,Rp]); 

can = [can1, can2, can3, can4, can5]'; 

select_pop = population([can1;can2;can3;can4;can5],:); % select parents out of population and sort 

descending 

select_pop = [select_pop, can]; 

select_pop = sortrows(select_pop,[-1]); 

replace = select_pop(5,:); % Take worst of the five selected 

pos = replace(end); 

end 
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Appendix B. Central Pattern Generator 

 The following is Matlab code used to model the CPG. B.1 is the main script of the CPG. B.2 

is the body of the Matsuoka CPG. B.3 is the positive threshold function. 

 

B.1 CPG main 

%% CPG main 

% close all; 

global u v y tau dtau Ts NeuralN 

NeuralN = 8; 

Ts = 0.0005; 

TestT = 15; 

Fs = 1/Ts; 

TestS = TestT/Ts; 

Time = (0:TestS-1)*Ts; 

Dper1 = 1; 

Dper2 = 40; 

if(Dper1 == 1) 

    Dindex1 = 1; 

else 

    Dindex1 = TestS * Dper1 / 100; 

end 

Dindex2 = TestS * Dper2 / 100; 

u(1) = 0.3; 

u(2) = 0.3; 

u(3) = 0.3; 

u(4) = 0.3; 

u(5) = 0.3; 

u(6) = 0.3; 

u(7) = 0.3; 

u(8) = 0.3; 

v(1) = 0.1; 

v(2) = 0.5; 

v(3) = 0.1; 

v(4) = 0.5; 

v(5) = 0.1; 

v(6) = 0.5; 

v(7) = 0.1; 

v(8) = 0.5; 

for i=1:NeuralN   

   y(i) = MaxF(u(i)); 

end 

output = zeros(TestS,8); 

dout   = zeros(TestS,4); 

for i=1:TestS 

    output(i,:) = Matsuoka_CPG(); 

    dout(i,1) = output(i,1) - output(i,2); 
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    dout(i,2) = output(i,3) - output(i,4); 

    dout(i,3) = output(i,5) - output(i,6); 

    dout(i,4) = output(i,7) - output(i,8); 

end 

dout(1:2500,:) = 0;  % remove initial spike in actuation 

dout = [Time', dout]; % puts simulation time and output in matrix for simulink to read 

 

B.2 Matsuoka CPG Algorithm function 

function CPG = Matsuoka_CPG() 

global w u v y tau dtau Ts NeuralN 

Uini = .5; % max peak to peak amplitude 

beta = 2.5; 

%Mutal inhibition network 

sum(1) = -1.5 * y(2) -  w(1) * y(3)  - w(2)  * y(5) - w(3)  * y(7); 

sum(2) = -1.5 * y(1) -  w(4) * y(4)  - w(5)  * y(6) - w(6)  * y(8); 

sum(3) = -1.5 * y(4) -  w(7) * y(1)  - w(8)  * y(5) - w(9)  * y(7); 

sum(4) = -1.5 * y(3) -  w(10) * y(2) - w(11) * y(6) - w(12) * y(8); 

sum(5) = -1.5 * y(6) -  w(13) * y(1) - w(14) * y(3) - w(15) * y(7); 

sum(6) = -1.5 * y(5) -  w(16) * y(2) - w(17) * y(4) - w(18) * y(8); 

sum(7) = -1.5 * y(8) -  w(19) * y(1) -  w(20) * y(3) -  w(21) * y(5); 

sum(8) = -1.5 * y(7) -  w(22) * y(2) -  w(23) * y(4) -  w(24) * y(6); 

for i = 1:NeuralN 

    du(i) = (-u(i) + sum(i) + Uini - beta * v(i)) / tau; 

    dv(i) = (-v(i) + y(i)) / dtau; 

end  

for i = 1:NeuralN 

    u(i) = u(i) + du(i) * Ts; 

    v(i) = v(i) + dv(i) * Ts; 

    y(i) = MaxF(u(i)); 

end  

CPG = y; 

end 

 

B.3 MaxF function 

function num = MaxF(n) 

    if(n > 0) 

        num = n; 

    else 

        num = 0; 

    end 

end 
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Appendix C. Simulink and SimMechanics 

 The following sections show the Simulink and SimMechanics blocks used to create the 

dynamic simulation. 

 

C.1 Strut and sphere 

 

 Each compression member, or strut, and sphere, is defined using the Simulink subsystem 

below. The terminals Conn1 and Conn2 are the connection nodes at either end of the strut, or in the 

case of spheres, are the same point at the center of the sphere. 

 
 

C.1.1 Strut and Sphere detail 

 

 Inside the Simulink subsystem block are the following SimMechanics blocks. Joint 5 and 

Joint 2 are SimMechanics “Rigid Transform” blocks and are used in struts to define the connection 

nodes. The block labeled link is a SimMechanics “Solid” block that defines the size, shape, inertia, 

and graphic properties of the struts. For spheres the Joint blocks are ommitted.  
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C.2 Weld Joint 

 

 Struts and spheres are connected using SimMechanics blocks called “Weld Joints.” These 

blocks rigidly connect the nodes connected at the terminals in their current orientation. 
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C.3 Six Degree of Freedom Joint  
 

 The SimMechanics block “6-DOF Joint” is used to simulate the ground, friction, and tension 

member models.  
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C.4 Ground and friction model 

 

 The following is the ground and friction model implimentation. The model references the 

absolute position of the node connected to Conn1 using SimMechanics block “6-DOF Joint” and 

connected “World Frame.” Data from the “6-DOF Joint” and defining parameters are passed to the 

subsystem block labeled Ground and Friction which contains both the friction and ground force 

models. The Ground and Friction subsystem block computes the frictional and ground forces and 

feeds them back into the “6-DOF Joint” via force actuation terminals.  
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C.5 Tension member model 

 

  The following is an image of the tension member model implimentation. Conn2 and Conn1 

are the nodes between which the tension member is connected. Data is passed into the spring model 

subsystem by a “6-DOF Joint,” the defining parameters ksi (an inner tendon denoted by the i in ksi) 

and damping constant cs, and the CPG actuation signal as denoted by the terminal labeled act on the 

subsystem block. The spring model substystem calculates forces in the x, y, and z directions to be 

applied to the joint and passes those values into force actuation terminals on the “6-DOF Joint. 

 

 

 


