

CENTRAL PATTERN GENERATOR GAIT EVOLUTION OF A ROBOTIC MODULAR

TETRAHEDRAL TENSEGRITY

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Mechanical Engineering

in the

College of Graduate Studies

University of Idaho

by

George P. Korbel

December 2013

Major Professor: Eric Wolbrecht, Ph.D.

ii

AUTHORIZATION TO SUBMIT THESIS

This thesis of George P. Korbel, submitted for the degree of Master of Science and titled

"Central Pattern Generator Gait Evolution of a Robotic Modular Tetrahedral Tensegrity," has been

reviewed in final form. Permission, as indicated by the signatures and dates given below, is now

granted to submit final copies to the College of Graduate Studies for approval.

Major

Professor __________________________________Date______________

 Eric Wolbrecht

Committee

Members __________________________________Date______________

 Matthew Riley

 __________________________________Date______________
Terence Soule

Department

Administrator __________________________________Date______________
 John Crepeau

Discipline’s

College Dean __________________________________Date______________
 Larry Stauffer

Final Approval and Acceptance by the College of Graduate Studies

 __________________________________Date_______________
Jie Chen

iii

ABSTRACT

 Presented in this thesis is a method for determining locomotion gaits for a modular tetrahedral

tensegrity robot in simulation. The biologically inspired tensegrity-based robot is comprised of

multiple rigid tetrahedrons connected with a network of adjustable tension members. Locomotion gaits

are produced using oscillatory signals from Central Pattern Generators (CPGs) that are optimized by

an Evolutionary Algorithm (EA). After initial generation of an EA population of random gaits, as

defined by parameters of the CPG, the EA operates on the population in an attempt to find an optimum

gait, as defined by the performance, or fitness, of the evolved locomotion. The results of the EA

optimization show that the fitness of the populations were increased by an average of 32 percent over

10 trials, and 51 percent in the best trial. The approach could be applied to a more complex tetrahedral

tensegrity or other tensegrity structures. Future work will implement this approach on a robotic

prototype.

iv

ACKNOWLEDGEMENTS

 I would like to thank the Idaho Space Grant Consortium for funding my research and for their

support during my education. I would like to thank Dr. Eric Wolbrecht for his guidance throughout my

graduate studies. I would also like to thank Dr. Terry Soule for his support and Dr. Matt Riley for

serving on my master’s committee.

v

TABLE OF CONTENTS

AUTHORIZATION TO SUBMIT THESIS .. ii

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES .. vii

LIST OF TABLES .. ix

Chapter 1. Introduction .. 1

Chapter 2. Methods ... 6

2.1 Dynamic Model .. 7

2.1.1 Normal Force Model ... 7

2.1.2 Friction Force Model ... 10

2.1.3 Tension Member Model .. 12

2.2 Central Pattern Generator ... 14

2.3 Evolutionary Optimization ... 17

2.4 Simulation Implementation .. 25

Chapter 3. Results .. 27

3.1 Initial Gait Generation .. 29

3.2 Gait Optimization ... 31

3.3 Optimization Behavior .. 35

Chapter 4. Conclusion and Discussion .. 38

References .. 40

vi

Appendix A. Evolutionary Algorithm .. 42

Appendix B. Central Pattern Generator .. 50

Appendix C. Simulink and SimMechanics .. 52

vii

LIST OF FIGURES

Figure 1. Tetrahedral vertebrae mast structures (Left: Flemons’, Right: Modified). 1

Figure 2. Tetrahedral tensegrity robot prototype currently at NASA Ames. ... 2

Figure 3. Five-tetrahedron tensegrity robot in SimMechanics with tetrahedra (𝑇1-𝑇5).. 6

Figure 4. Nodes where ground and friction forces are modeled (represented by arrows). 7

Figure 5. Displacement and normal force during ground contact with a single, settling tetrahedron

node. ... 9

Figure 6. Friction force and velocity of a single node during simulated sliding on a rough surface. .. 11

Figure 7. Mutual inhibition network of four NOs. ... 14

Figure 8. Matsuoka's neural oscillator. ... 15

Figure 9. Comparing NO output signals with 𝜏𝐴=0.3 and 𝜏𝐵=0.6 for weights of [1.5 1.5] (top) and [2

2] (bottom).. .. 18

Figure 10. NO output signals with weights [1.5 1.5] and time constant factors of 1.5, 2, and 3. 18

Figure 11. Initial EA population generation flow diagram. ... 19

Figure 12. EA process overview flow diagram. ... 21

Figure 13. Location of 𝑥1, 𝑥2, 𝑥3, and 𝑦1 on the five-tetrahedron tensegrity robot. 24

Figure 14. Time lapse of locomotion. .. 28

Figure 15. Relative distance between tetrahedra during locomotion with reference 𝑇1.. 27

Figure 16. Distance traveled of best and worst individual of each of the 10 trials............................... 29

Figure 17. Distribution of fitness of initial population from a sample trial. ... 30

Figure 18. Distance traveled performance of the best individual from the initial population (left) and

after evolving (right) .. 31

Figure 19. Graph of CPG signal and corresponding tension force in actuated tension members. 32

Figure 20. Friction and ground forces of tetrahedron 𝑇1, 𝑇2, 𝑇3, 𝑇4, and 𝑇5 during locomotion............ 33

file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259773
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259774
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259775
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259776
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259777
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259777
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259778
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259779
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259780
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259781
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259781
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259782
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259783
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259784
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259785
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259786
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259787
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259788
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259789
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259790
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259790
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259791
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259792

viii

Figure 21. Time lapse of one step: motion achieved by shifting weight between tetrahedra; lifting

tetrahedra off the ground before moving them forward. .. 34

Figure 22. Average Fitness Progression of all 10 Trials. ... 35

Figure 23. Average fitness of trials: best, worst, and average of all 10 trials. 37

file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259793
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259793
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259794
file:///C:/Users/Jorge%20villalobos/Dropbox/George%20Research/Korbel%20Thesis%20draft7.docx%23_Toc375259795

ix

LIST OF TABLES

Table 1. Normal force model parameters ... 8

Table 2. Friction parameters ... 11

Table 3. Spring model parameters .. 12

Table 4. CPG parameters .. 15

Table 5. CPG parameter initial bounds .. 19

Table 6. EA parameters .. 22

Table 7. Fitness function constants .. 23

Table 8. Absolute difference of the two best solutions of the optimization. .. 37

1

Chapter 1. Introduction

Tensegrity structures are composed of axially loaded compression elements suspended within

a network of tension elements. The term tensegrity comes from the combination of the words tension

and integrity; it’s the idea that the stability, or integrity, of these structures is due to the tension

network. In such a structure, applied loads are distributed as only tension and compression. As

typically materials are stronger in pure tension and compression, tensegrity structures, including

tensegrity-based robots, can exhibit a high strength to weight ratio.

The field of tensegrity robotics has emerged over the last decade and has potential for large

application, including in space technology and other fields. Tensegrity is a class of structure that first

appeared just over half a century ago [1]. Since its introduction tensegrity has been applied to

multiple areas including engineering, architecture, medicine, biology, and art [2].

Tensegrity robots have the ability to change shape by changing their equilibrium [3]. This can

be achieved by varying the lengths of either the compression or tension elements. Such changes can

be used for a different static function or for locomotion.

The Intelligent Robotics Group at NASA Ames Research Center is currently researching

tensegrity structures for robotic applications. The unique characteristics of tensegrity could enable

these robots to perform in ways not currently possible with traditional robotic design; deformable,

Figure 1. Tetrahedral vertebrae mast structures (Left: Flemons’, Right: Modified).

2

light weight and compactible design are excellent characteristics for space transportation and

exploration in difficult and uncertain terrain.

The specific tensegrity structure of interest is based on Tom Flemons’ tetrahedral vertebrae

mast [4] as seen on the left side of Figure 1. In Flemons’ original design, compression members

extend out from a central node. The external endpoints of the compression members are connection

points for tension members. In Flemons’ model the points of contact change as the lengths of the

tension members are changed, which complicates robotic control of the structure. The work presented

here uses a modified version of Flemons’ tetrahedral vertebrae mast (shown in the right side of Figure

1), refered to herein as a five-tetrahedron tensegrity robot. This modified structure has predictable

points of contact which simplifies the control of the structure. A robotic prototype of the modified

tetrahedral spine, as pictured in Figure 2, was constructed at the University of Idaho and continues to

be investigated by researchers at NASA Ames.

Features of tensegrity robots that are advantageous in one respect are sometimes

disadvantageous in another. Structural complexity is one such trait. As the number of compression

members and connecting tension members is increased, so are the degrees-of-freedom of the

structure. As such, it becomes progressively difficult to determine kinematic and kinetic reltionships

within the structure. Furthermore, tensegrity structures are inherently nonlinear, adding to the

Figure 2. Tetrahedral tensegrity robot

prototype currently at NASA Ames.

3

difficulty of their analysis [5]. These factors make prescribing locomotion gaits for robotic tensegrity

control a significant challenge.

Because of the complexity of tensegrity structures, closed form solutions of equations of

motion may be difficult to determine. Thus, dynamic simulation of tensegrity structures is desired.

Researchers at NASA Ames are developing a robotic tensegrity modeling software called NASA

tensegrity robotics toolkit, or NTRT, that is based in the open source game physics engine Bullet.

This software is capable of simulating soft body dynamics needed to model deformable tensegrity

robots. This software models forces on the compression members as point forces. However, modeling

the forces on compression members using distributed inertia is a more realistic method.

The goal for the work presented in this thesis is to develop an alternative method for dynamic

simulation, gait generation and optimization for tensegrity-based robots, specifically for the UI’s five-

tetrahedron tensegrity robot. SimMechanics, a toolbox for The Mathworks Simulink simulation

environment, is used to model and simulate the dynamics and ground contact forces of the five-

tetrahedron tensegrity robot. SimMechanics provides pre-built functions for modeling forces on rigid

and soft components in a three-dimensional environment. SimMechanics also gives the user the

ability to model solids with distributed inertia, which is an accurate representation of the rigid

compression members in the robot.

This tensegrity structure is biologically inspired, which suggests the use of biologically

inspired methods, such as Central Pattern Generators (CPGs), for determining the locomotion gaits.

In biological systems, CPGs function as non-linear neural connections and oscillators to create

locomotion gaits. In robotics CPGs are used to create oscillatory signals that can be reference

trajectories for joints and/or actuators of a robot. Multiple interacting CPGs can be applied to a

combination of joints to create a locomotion gait [6].

There are a variety of CPG methods used to control different types of robots, including

legged robots, robotic arms, tensegrity robots, and crawling and snake-like robots. A large amount of

4

research is in the field of gait production and control of legged robots. An overview of previous work

on CPG controlled legged robots is provided in [7]. CPGs are versatile such that they can be applied

to a variety of different robotic movements. Generally each degree-of-freedom of a robot is controlled

by one CPG oscillator [8]. This idea is not only applied to robots with the goal of locomotion but is

also applied to robotic arms as in [9], where CPG oscillators are used to learn the dynamics of a

robotic arm in order to more effectively control it. CPGs have also been applied to tensegrity

structures because the rhythmic nature of CPGs exploits the natural resonance of deformable

tensegrity structures [10]. CPGs are used to create gaits for snake-like robots that move in a

serpentine motion. One such robot, named AmphiBot I, was created by Crespi [11]. This robot takes

its inspiration from a lamprey eel or sea-snake and is able to propel itself forward using a lateral

undulatory mode of actuation where a repeating wave travels through it. A similar CPG controlled

snake-like robot was created by Inoue [12].

For the work presented in this thesis, the Matsuoka neural oscillator model with a mutual-

inhibition network, as presented in [13], was selected as the CPG for the five-tetrahedron tensegrity

robot. The Matsuoka CPG uses a set of coupled differential equations to model the oscillating

network of neurons. The Matsuoka CPG has been applied to a variety of types of robots including

bipedal robots [14] and crawling and snake-like robots [6]. Depending on the configuration of the

Matsuoka CPG numerous parameters define the output. Hand tuning such parameters to produce a

desired locomotion gait is difficult and unlikely to produce an optimal result. Thus, a systematic

method is needed to determine the parameters of the CPG that create the desired locomotion gait.

An Evolutionary Algorithm (EA) can be used to improve the performance of CPG walking

gaits [15]. An EA takes a population consisting of a number of individual solutions, and attempts to

improve the performance of that population. EAs search for an optimum by carrying traits of the

strongest performing individuals through to the next generation while traits that create weak

individuals are discarded. The performance of these individuals is called their fitness, and is defined

5

according to the application. The goal of an EA can be to minimize or maximize the fitness of the

population depending how the fitness is evaluated [16]. Common termination criterion for EAs are

elapsed simulation time, number of iterations, or a measure of the population diversity.

 For the work presented in this thesis each set of parameters defining a unique instance of the

Matsuoka CPG is considered a member of the EA population. The fitness of each member is

evaluated via dynamic simulation of the CPG driven five-tetrahedron tensegrity; generally, fitness of

a member depends on the quality of the locomotion gait produced in simulation and larger fitness

values represent better performing individuals. For the work presented in this thesis the fitness

primarily depends on the forward distance the robot travels during dynamic simulation. The EA

operates in steady state, meaning two parents are selected from the population, operated on, and the

resulting offspring replace current members of the population. Selection of parents and replacement

of offspring is accomplished using a tournament method, where multiple candidate parents are

randomly selected from the population and the candidate with the best fitness value becomes a parent.

After parents are selected they are varied by uniform cross-over and mutation. In the uniform cross-

over step each of the corresponding parameters of the two parents have a probability of being

swapped. In the mutation step each of the parameters of the two parents have a probability of a small

change in value.

 The implemented EA is terminated if the diversity of the population falls below a threshold or

if a maximum number of iterations is reached. Similar methods have been used for real time control

of bipedal robots using CPGs [17]. However, the CPG model used in the work presented in this thesis

does not incorporate sensory feedback, rather a generated CPG gait defines open-loop force

trajectories for certain tension members of the five-tetrahedron tensegrity robot. The following

sections discuss the methods used to generate and evolve gaits, the results of those methods, and

conclusions drawn from process.

6

Chapter 2. Methods

The specific structure that is dynamically modeled is a five-tetrahedron tensegrity robot as

seen in Figure 3. The compression members that make up the sides of the five tetrahedron are

modeled as rigid rods. All tension members (cables) are modeled as springs with damping as

described in the tension member model section. The lower, outer tension members are actuated by

applying the CPG output signal as a superimposed force in the tension members. Each pair of the

actuated tension members connecting adjacent tetrahedron are actuated using the same CPG signal.

The following four sections go over the methods used to evolve CPG locomotion gaits for this robot

in a simulation environment. The first section details the dynamic modeling of the robot and ground

interaction forces. The second section describes the implementation of the CPG. The third section

covers the EA optimization procedure. The fourth section describes how these models and algorithms

were implemented in the Matlab, Simulink, and SimMechanics software environments.

Figure 3. Five-tetrahedron tensegrity robot in SimMechanics with tetrahedra (𝑇1-𝑇5).

Non-actuated cables:

Actuated cables:

Signal 1

Signal 2

Signal 3

Signal 4

𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

7

2.1 Dynamic Model

In the dynamic model, the actuated cables (as shown in Figure 3) are actuated by a simulated

CPG as described in section 2.2. Each pair of actuated cables connecting two adjacent tetrahedra is

actuated by one signal of the CPG. The rigid structure of the tetrahedra is modeled with 6 inch long

struts each with a diameter of 0.125 inches. A single modeled tetrahedron was used to test and verify

the contact and fiction models in the simulation environment. The three sections below describe the

models used in the dynamic simulation.

2.1.1 Normal Force Model

The normal force, or ground force, is modeled as a nonlinear spring and damper, as presented

in [18]. When the position of a node is above the ground surface, defined as zero on the vertical axis,

the normal force 𝐹𝑁 is zero. When the position of a node is at or below the ground surface the

equation for normal force, 𝐹𝑁, due to ground contact is

𝐹𝑁 = −𝑘𝑁𝛿𝑛 − 𝜆𝛿𝑛�̇�, Eq. 1

where 𝑘𝑁 is the spring constant, 𝛿 is the deformation (defined as positive when below the ground

surface), 𝜆 is the damping constant and 𝑛 is a constant that accounts for the geometry of the colliding

Figure 4. Nodes where ground and friction forces are

modeled (represented by arrows).

8

objects (𝑛 = 1 for impacting planes and 𝑛 = 1.5 for impacting spheres) [18]. For this work we assume

𝑛 = 1. A method for defining 𝜆 and 𝑛 using the coefficient of restitution (𝑒) and the impact velocity

(𝑣𝑖) is given in [18]. If 𝑣𝑖 is small we can use

𝑒 = 1 − 𝛼𝑣𝑖 and Eq. 2

𝜆 =
3

2
𝛼𝑘𝑁,

where 𝛼 is a velocity correction constant. Simulating the ground model with the single tetrahedron

positioned just above the ground (zero on the vertical axis) showed that the impact velocity was

approximately 0.12 inches per second. A value of 0.9 was used for the coefficient of restitution in

order to allow for elastic collisions. A spring constant of 25 pounds per inch was used as an initial

guess of the stiffness of a fairly rigid carpet material that could be used for future testing of a

prototype. These values gave an estimate of 𝜆 = 31.1 pound second per inch using equation 2 above.

These values were implemented into the model as initial estimates then tuned by visually comparing

dynamic simulation results to a full scale physical model of a single tetrahedron on a representative

ground surface. The values listed in Table 1 define the normal forces between the five-tetrahedron

robot and the ground during dynamic simulation.

Table 1. Normal Force Model Parameters

Coefficient of restitution (𝑒) 0.9

Velocity correction coefficient (𝛼) 0.72
𝑠

𝑖𝑛

Spring constant (𝑘𝑁) 25
𝑙𝑏

𝑖𝑛

Damping constant (𝜆) 27
𝑙𝑏∙𝑠

𝑖𝑛

 In an effort to reduce the simulation time, ground forces are not modeled on the top and front

nodes of each tetrahedron, as these points will never make contact with the ground during expected

locomotion behavior. However, ground forces are modeled on the front most node on the lead

tetrahedron, as it is allowed to contact the ground during locomotion (see Figure 4). Figure 5 shows

9

the simulated contact model behavior of a single node of the tetrahedron as it settles from an initial

position just above the ground (above zero on the vertical axis). Because the parameters defining this

model are determined using a relatively low impact velocity, 𝑣𝑖, the model is valid when the nodes of

the tetrahedron do not contact the ground with a large velocity. During expected locomotion the

impact velocities are low and this model is valid.

Contact Model Behavior

V
er

ti
ca

l
V

el
o

ci
ty

 (
in

/s
)

Figure 5. Displacement and normal force during

ground contact with a single, settling tetrahedron node.

V
er

ti
ca

l
D

is
p

la
ce

m
en

t
(i

n
)

V
er

ti
ca

l
V

el
o
ci

ty
 (

in
/s

)
A

p
p

li
ed

 F
o

rc
e

(l
b
)

Contact Model Behavior

10

2.1.2 Friction Force Model

As with an object moving over land, the five-tetrahedron robot simulated in this research uses

interaction with the ground to achieve forward mobility. Therefore, it is critically important to have

an accurate model of friction. For this application, a reset integrator friction model was used. This

model is a good approximation of the more accurate bristle model but is more computationally

efficient [19]. The bristle model is designed using the concept that friction between surfaces is caused

by small structures, or bristles, that flex as lateral forces are applied and break free at a threshold

force or displacement. This allows for damped deformation to occur during static friction, or stiction.

The reset integrator model mimics this behavior by resetting the initial integration point to zero when

the model breaks free of stiction. The model defines stiction velocity according to

𝑑𝑥

𝑑𝑡
= {

0 𝑖𝑓(𝑣 > 0 𝑎𝑛𝑑 𝑥 ≥ 𝑝𝑜) 𝑜𝑟 (𝑣 < 0 𝑎𝑛𝑑 𝑥 ≤ 𝑝𝑜)
𝑣 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, Eq. 3

where 𝑣 is the velocity of the node, 𝑥 is the relative distance the node has moved while in stiction,

and 𝑝𝑜 is the stiction range, or the range the node is allowed to operate in static friction. Stiction is

activated using the equation

 𝑎(𝑥) = {
𝑎𝑐 𝑖𝑓 |𝑥| < 𝑝𝑜

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, Eq. 4

where 𝑎𝑐 is a constant. Eq. 4 reduces the force due to stiction when the node breaks free by setting

𝑎(𝑥) to zero. These equations combine to define the frictional force, 𝐹𝐹, as

𝐹𝐹 = 𝜎𝑜𝑣(1 + 𝑎(𝑥))𝑥 + 𝜎1
𝑑𝑥

𝑑𝑡
. Eq. 5

The value of the stiction range 𝑝𝑜, damping coefficient during stiction 𝜎1, and stiction coefficients 𝑎

and 𝜎𝑜 were tuned ad hoc via simulation and using a physical model of a single tetrahedron to

resemble friction on a rough surface. The values used in this model are listed in the Table 2. Figure 6

shows the behavior of the reset integrator friction model when one tetrahedron is simulated with

initial velocity. This figure demonstrates that the node breaks free of, and re-enters static friction

11

before coming to a rest. This behavior is desired because intuitively the five-tetrahedron tensegrity

robot uses static friction as a tool to generate locomotion.

Table 2. Friction Parameters

Stiction range (𝑝𝑜) 0.004 𝑖𝑛

Damping under stiction (𝜎1) 0.4
𝑙𝑏∙𝑠

𝑖𝑛

Stiction switching coefficient (𝑎𝑐) 0.7

Proportional stiction coefficient (𝜎𝑜) 0.3
𝑙𝑏∙𝑠

𝑖𝑛2

Figure 6. Friction force and velocity of a single node during

simulated sliding on a rough surface.

A
p
p
li

ed
 F

o
rc

e
(l

b
)

Friction Model Behavior

12

2.1.3 Tension Member Model

The tension members are modeled as a spring force, 𝐹𝑠, with damping included as

𝐹𝑠 = 𝑘𝑠(𝑥𝑜 − 𝑥) + 𝑐(�̇�), Eq. 6

where 𝑘𝑠 is the spring constant, 𝑥𝑜 is the free length of the spring, 𝑐 is the damping constant, �̇� is

relative velocity, and 𝑥 is the relative displacement. The outer cables that connect the base triangles of

one tetrahedron to those of adjacent tetrahedra have one spring constant and the inner cables that

connect the tip of each tetrahedron to its adjacent base tetrahedrons have a different spring constant

(see Figure 3). The damping constants are the same for both inner and outer cables. The free length is

set to an appropriately small number in order to mimic cables that are always in tension. In a physical

version of the five-tetrahedron robot, these cables would never experience compressive forces.

Changing the value of the free length changes the average force in the tension members. This value

was tuned ad hoc along with the spring constants to keep the five-tetrahedron tensegrity robot in an

upright static position during simulation with no actuation. Table 3 shows the parameters used for

both the inner and outer cables.

Table 3. Spring Model Parameters

Outer cable spring constant (𝑘𝑠) 0.2
𝑙𝑏

𝑖𝑛

Inner cable spring constant (𝑘𝑠) 0.3
𝑙𝑏

𝑖𝑛

Damping constant (𝑐) 0.05
𝑙𝑏∙𝑠

𝑖𝑛

Free length (𝑥𝑜) 0.04 𝑖𝑛

The value of the spring constants mimic that of typical, non-stiff, metal extension springs.

The value of the damping constant is kept low to mimic the damping response of a metal extension

spring. The accuracy of the damping constant has not yet been verified. Because it is important to

know how accurately the spring model mimics a real system of spring connections, future

experiments must be conducted using actual hardware from a robot prototype. Increasing this

13

constant takes the model away from the desired similarities to metal extension springs and slows the

response of the tension members. This changes the dynamics of the structure and EA optimization

would likely produce different gaits.

Actuation of the five-tetrahedron tensegrity robot is achieved by changing the length of the

tension members. Three methods were considered to do so. The first method is to change the free

length, 𝑥𝑜, of the spring. The second method is to directly change the length of the spring by

changing the displacement, 𝑥. The third method is to superimpose a force on the tension members.

The third method was chosen because a superimposed force could realistically represent the force

caused by an actuator as the superimposed force performs like an actuator in parallel with a spring.

14

2.2 Central Pattern Generator

The CPG used to generate locomotion gaits for the five-tetrahedron tensegrity robot consists

of a system of Neural Oscillators (NOs) as introduced by Matsuoka [13]. Four such NOs are used to

generate locomotion gaits and are arranged as seen in Figure 7. The NO output is applied as shown in

Figure 3 where NO labeled 1 in Figure 7 corresponds to Signal 1 which actuates the first pair of

cables.

Each NO consists of two mutually inhibiting neurons, the flexor and the extensor. These

neurons interact as seen in Figure 8 to generate an output signal. The equations that govern each

flexor and extensor neuron, denoted with subscripts 𝑓 and 𝑒, respectively, are

𝜏𝐴�̇�𝑖,(𝑓,𝑒) = 𝑢𝑖,(𝑓,𝑒) − ∑ 𝑤𝑖𝑗𝑦𝑗,(𝑓,𝑒) − 𝛽𝑣𝑖,(𝑓,𝑒) + 𝑢𝑜 + 𝑓𝑖
𝑛
𝑗=1 , and Eq. 7

𝜏𝐵�̇�𝑖,(𝑓,𝑒) = −𝑣𝑖,(𝑓,𝑒) + 𝑦𝑖,(𝑓,𝑒),

where 𝑢𝑖 is the inner state of the neuron, 𝑣𝑖 represents the self-inhibition effect of the neuron, 𝑤𝑖𝑗 are

the inhibitory weights between 𝑖𝑡ℎ and 𝑗𝑡ℎ neurons, 𝜏𝐴 is a time constant that effects rising time of the

output signal of an NO, 𝜏𝐵 is a time constant that effects adaptation, 𝑢𝑜 is the external input state

which defines the maximum amplitude of the CPG output signal 𝑆𝑜𝑢𝑡 as defined in Eq. 9, 𝛽 is the

weight of self-inhibition on the inner state, 𝑦𝑖 is the output of a neuron, and 𝑓𝑖 is the feedback term.

1 2

3 4

Figure 7. Mutual inhibition network of four NOs.

15

The output of a neuron 𝑦𝑖 is found with

𝑦𝑖 = max (0, 𝑢𝑖), Eq. 8

which is a positive threshold function for neuron output. A pair of extensor and flexor neurons form a

neural oscillator with

𝑆𝑜𝑢𝑡 = 𝑦𝑒 − 𝑦𝑓, Eq. 9

where 𝑆𝑜𝑢𝑡 is the output signal of a NO, 𝑦𝑒 is the output of an extensor neuron, and 𝑦𝑓 is the output of

a flexor neuron. Table 4 contains the CPG parameters used.

Table 4. CPG Parameters

Weight of self-inhibition (𝛽) 2.5

External input state (𝑢𝑜) 0.5

Initial inner state (flexor and extensor) (𝑢𝑖) 0.3

Initial extensor self-inhibition (𝑣𝑖) 0.1

Initial flexor self-inhibition (𝑣𝑖+1) 0.5

 In the current implementation, the output of each NO (𝑆𝑜𝑢𝑡) is applied as a superimposed

force in the actuated tension members as shown in Figure 3. The external input state, 𝑢𝑜, defines the

maximum output amplitude of the oscillatory output signal 𝑆𝑜𝑢𝑡, meaning its value maps to a

maximum change in the superimposed force in an actuated tension member. The value of the external

input state in Table 4 was used in an attempt to keep the net tensile force low during locomotion as

Extensor Neuron (𝑦𝑒)

Flexor Neuron (𝑦𝑓)
-

+

𝑆𝑜𝑢𝑡

Figure 8. Matsuoka's neural oscillator.

16

each actuation signal has an amplitude of twice the external input state or one pound. This low net

force reduces the likelihood of separate tetrahedron coming in contact with one another during

dynamic simulation, eliminating the need for contact detection between tetrahedron. The value for the

other CPG parameters were tuned ad hoc to drive the output of one NO to resemble a sinusoidal wave

with an initial value of zero.

 In the current implementation there are a total of 32 mutual inhibition network weights, 𝑤𝑖𝑗.

However, eight of these weights are set as constants as described in the Evolutionary Optimization

section, leaving 24 weights and the time constants of the CPG to be changed by the EA to adapt the

oscillatory output.

17

2.3 Evolutionary Optimization

The first step of the EA is to create an initial population. In this case, a member of the

population consists of a unique set of parameters defining the CPG and the population of each trial

contains 50 such members. A population size of 50 was chosen after experimentation with a variety

of population sizes ranging from 10 to 200 individuals with the goal of the diversity of the population

being reduced to a small value after 1000-2000 EA iterations. The procedure for creating the initial

population begins with an analysis of a single neural oscillator. The adopted process was to begin

with a CPG output that closely resembled a sine wave with the desired amplitude and a relatively

slow frequency of approximately 0.7 Hertz. This frequency is a function of the weights and time

constants that define an instance of the CPG. The values chosen were used because they created the

expected gait as viewed in the SimMechanics visualization of the simulated robot.

When one NO is considered, the mutual inhibition weights consist of two weights which

affect the interaction between the neural oscillator’s flexor neuron and extensor neuron. Figure 10

illustrates how changing the weights of the CPG change the shape and frequency of the output. The

upper plot in Figure 10 resembles a sine wave so values of 1.5 are used as the weights between each

neural oscillator’s flexor and extensor neuron. The time constants 𝜏𝐴 and 𝜏𝐵 are related by 𝜏𝐵 = 2𝜏𝐴.

The factor of two relating 𝜏𝐵 to 𝜏𝐴 also helps shape the output to resemble a sine wave. Decreasing

this factor below two causes the NO output to fall to zero and increasing it above two causes the

output to stop resembling a sine wave, as seen in Figure 9. Thus, the values inhibitory weights

between the extensor and flexor neurons of 𝑤 =[1.5 1.5] and the time constants 𝜏𝐵 = 2𝜏𝐴 creates a

CPG output signal from a single NO that resembles a sine wave.

18

Figure 10. Comparing NO output signals with 𝜏𝐴=0.3 and

𝜏𝐵=0.6 for weights of [1.5 1.5] (top) and [2 2] (bottom).

Effect of CPG Weights on NO Output

Time (s)

Figure 9. NO output signals with weights [1.5 1.5] and

time constant factors of 1.5, 2, and 3.

Effect of Time Constant Factor on NO Output

𝜏𝐵 =1.5𝜏𝐴

𝜏𝐵 =2𝜏𝐴

𝜏𝐵 =3𝜏𝐴

19

Inhibitory terms are added as more neural oscillators are added and the additional weights on

those terms reshape the outputs. The four NO arrangement used, as seen in Figure 7, has a total of 32

mutual inhibition weights. Because each NO has two neurons, eight weights are set as constant values

of 1.5, leaving 24 weights to be changed by the EA.

The values of the weights and time constants are bounded to help ensure a usable oscillatory

output signal from the CPG. The bounds for the 24 inhibitory weights were narrowed ad hoc to

ensure the output signals produced were steady state oscillations in the initial populations. Outside of

these bounds the output signals have a tendency to become unstable or fall to zero. Similarly, 𝜏𝐴 is

bounded, and, as stated earlier, 𝜏𝐵 = 2𝜏𝐴 in order to crease a steady state output that resembles a

sinusoidal wave. These bounds are listed in Table 5. Using these bounds the initial population is

filled, or seeded, with 50 randomly generated, fitness evaluated individuals, which is used as the

initial population for the EA iterations. This process is illustrated in Figure 11.

Table 5. CPG Parameter Initial Bounds

Bounds of weights (𝑤𝑖𝑗) 1 - 3.4

Bounds of time constant (𝜏𝐴) 0.2 - 0.5

CPG

Random

Parameters

Fitness

evaluation

Population full?

Dynamic

Simulation

N

Y

Population Seeding

Figure 11. Initial EA population generation flow diagram.

EA

Iterations

20

EAs use two different types of operations to evolve the population of a system. These

operations are selection and variation. Selection consists of collecting and replacing individuals from

and into the population, and variation consists of changing the defining parameters themselves.

Once the initial population is generated, two parents are selected from the population to

create two children which have a chance to replace individuals in the population depending on their

performance. This method is known as steady state and is commonly used because the size of the

population remains constant, meaning the population of each trial always contains 50 individuals.

Each parent consists of the 24 CPG weights (𝜔𝑖𝑗) and the 2 time constants (𝜏𝐴, 𝜏𝐵).

The two parents are selected via tournament selection, where a group of five candidate

parents are randomly selected from the population and the candidate with the highest fitness is chosen

as a parent. Next, the two parents go through the uniform cross-over operation where they are mated,

or have their parameters swapped randomly, producing offspring, or children. In uniform cross-over,

a different probability of swapping is included on each CPG parameter of the parents (values listed in

Table 6). A random number between zero and one is generated and compared against the probability

value listed in the table to determine if the operation will occur. In addition, cross-over between

parents can only occur between corresponding neurons. Each of the parameters of the resulting two

children have a chance of a small amount of mutation, of the value defined in Table 6, before being

used to evaluate a CPG output signal. The mutation is applied as a random value that has an equal

chance of being added to, or subtracted from the existing value.

The output signals from the CPG are applied to the robot in the dynamic simulation. Data is

taken from the simulation and is used to compute the fitness, as defined later in this section, of each

of the resulting children. Each child is then placed into the population, replacing an individual that

has a lower fitness. A method similar to tournament selection, called tournament replacement, is used

for replacement. If the tournament replacement will not improve the fitness of the population the

child instead replaces the individual in the population with the overall lowest fitness, as long as this

21

improves the average fitness of the population. This procedure of attempting tournament replacement

before resorting to directly replacing the worst individual helps to loosen the replacement pressure

which can widen the solution space searched. Figure 12 displays the EA operations for each iteration.

This process is repeated until a termination criterion is met as defined later in this section. This entire

process including initial population generation was repeated for 10 trials. Table 6 details the

parameters used.

Two termination conditions were used for the evolution. The first is based on the diversity of

the population and works by referencing the change in the average fitness of the population over a

range of iterations. This method uses the increase of the average fitness values over the past 100

iterations to determine diversity. If the change in average fitness of the population falls below 0.03

over 100 iterations the simulation is stopped. The values of average fitness change and number of

iterations were determined ad hoc by reviewing initial test trials. The second termination condition is

based solely on the maximum number of iterations as defined in Table 6.

Crossover

Parent selection

Mutation CPG

Population

Dynamic

Simulation

Fitness

Evaluation

Replacement
i+1

EA Iterations

Figure 12. EA process overview flow diagram.

22

Table 6. EA Parameters

Simulation time 15 sec

Population size 50

Tournament size 5

Number of trials 10

Maximum iterations per trial 2000

Crossover type Uniform

Crossover probability 20%

Mutation probability 70%

Mutation range for weights 0 - 0.2

Mutation range for time constant 0 - 0.05

 The 15 second simulation time was chosen to ensure that enough time had passed to provide

a full picture of the motion of any individual gait. A simulation time of 10 seconds was used in initial

trials but was discarded because some gaits were not able to produce multiple steady-state oscillations

in the simulated robot within that amount of time. The number of trials performed was determined by

the elapsed simulation time for each dynamic simulation as each trial took between 5 and 15 hours to

complete with the computer that was used. The crossover type was chosen to ensure that the EA was

swapping corresponding weights between CPG signals. This can limit the solution space searched but

the limiting effect can be managed with a large enough number of trials. The probability of the

crossover and mutation were tuned ad hoc using results from multiple initial trials. The small

probability of crossover and large probability of mutation, and the small mutation value limits the

ability of the optimization to make large parameter jumps between individuals. Instead, the

populations of the trials will converge slowly to optimums.

 The fitness value is calculated via a manually tuned cost-function based on steady state data

from the dynamic simulation. Figure 13 illustrates the locations where performance data is taken from

23

the dynamic simulation of the five-tetrahedron tensegrity robot. To allow for steady state conditions

to be achieved a 3 second delay was added prior to data collection. This time delay removes transients

caused by initial position errors, spring forces, and the CPG signal.

The fitness equation is defined as

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜙1𝑑𝑥1 + 𝜙2|𝑥1 − 𝑥2| + 𝜙3(𝑥3 − 𝑥1) + 𝜙4|𝑦1|,

 Eq. 10

where 𝜙1−4 are constants, 𝑥1, 𝑥1, 𝑥3, and 𝑦1 are distances, as illustrated in Figure 13, recorded at the

end of a dynamic simulation, and 𝑑𝑥1 is the distance 𝑥1 recorded under steady state conditions, or

between 3 seconds and the end of the simulation. Table 7 lists the constants used.

Table 7. Fitness Function Constants

𝜙1 1

𝜙2 -10

𝜙3 0

𝜙4 -1

The main contributor of the fitness value is the distance the robot traveled in the allotted time,

thus, the value of 𝜙1 is unity. This makes the forward distance, 𝑑𝑥1, the basis for the fitness with the

other three factors, 𝜙2,3,4, functioning as penalties. The second term of the fitness function multiplied

by 𝜙2 is a reflection of the twist the robot experiences while moving forward. This constant is much

larger compared to the other constants that define the fitness because the value of |𝑥1 − 𝑥2| is often

small and must be amplified to have an effect on the calculated fitness value. This term is included to

add a penalty on twisting about the vertical axis that may have been caused by unwanted initial

conditions caused by the initial spike in the CPG actuation signal. The third term multiplied by 𝜙3 is

a represents the direction of motion relative to the desired direction. The desired direction of the robot

is always in the positive x direction. The third constant 𝜙3 is set to zero because it is only needed

when the robot is moving with a slithering, lateral undulatory motion which is not currently

24

implemented. The forth term multiplied by 𝜙3 represents the offset perpendicular to the desired

direction of locomotion, or 𝑦 direction.

Figure 13. Location of 𝑥1, 𝑥2, 𝑥3, and 𝑦1on the five-tetrahedron tensegrity robot.

+ 𝑥

+ 𝑦

𝑦1

𝑥1 𝑥3

𝑥2

25

2.4 Simulation Implementation

 The EA (see Appendix A) and CPG (see Appendix B) were implemented using Matlab

scripts and functions. The values and signals produced by the EA and CPG are passed to Simulink

and SimMechanics for dynamic simulation. SimMechanics is a tool within the Matlab simulation

environment Simulink, and is used to model mechanical systems.

 The rigid tetrahedrons are modeled using SimMechanics. Rigid body transformations and

rotations are applied to struts (see Appendix C.1) and SimMechanics blocks called Weld Joints (see

Appendix C.2) fix the struts in their relative position. At each point where rigid struts are connected

are 0.2 inch diameter spheres, also connected using Weld Joints. The points where struts are

connected together are used as connection points for tension members while the spheres are used as

connection points for the ground force models.

The ground force model is implemented using a combination of Simulink and SimMechanics

function blocks (see Appendix C.4). Data is taken from sensor ports of SimMechanics six degree-of-

freedom (DOF) joints. These six-DOF blocks supply Simulink blocks with data on the vertical

position and velocity of the connecting node. The Simulink blocks are arranged to create the ground

force model. The resulting value of force is fed back into actuation ports on the six-DOF

SimMechanics joints.

The friction model is implemented in a similar fashion to the ground force model in that it

uses a combination of the SimMechanics six-DOF joints and Simulink block functions (see Appendix

C.4). The velocity of the node relative to the ground is taken from sensor ports of the six-DOF joints

and is passed through the friction force model that is modeled using Simulink. The resulting force

value is passed back into the six-DOF SimMechanics joints. This friction model is applied in both the

x and y directions, where x is the direction of travel of the robot and y is perpendicular to the

direction of travel.

26

The tension members are also modeled using six-DOF joints from SimMechanics with

Simulink blocks calculating spring forces (see Appendix C.5). The relative distance and velocity

between corresponding connection nodes on the tetrahedron are taken from sensor ports on the six-

DOF joints and the Simulink block functions use that data to compute the force to be applied to each

of the connecting points. This value of calculated spring force is passed into the actuation ports on the

SimMechanics six-DOF joints.

The dynamic simulation presented in this thesis could be applied to any tensegrity structure,

including more complex tensegrity structures and true tensegrity structures (no rigid connections

between compression members). The challenges in doing so would most likely be caused by initial

conditions distance in the SimMechanics six-DOF joints. These initial conditions must be close to the

values that would define a static pose for a tensegrity structure. This adds the issue of over defining

the initial states of the structure which can cause SimMechanics to crash.

One iteration of the EA constitutes two dynamic simulations, one for each of the two

offspring, and takes an average of 22 seconds to complete. The elapsed simulation time is governed

by the dynamic simulation as the CPG and EA Matlab execution takes very little time. The dynamic

simulations 15 seconds long as defined in Section 2.3 meaning that the current dynamic simulation is

actually slower than real time.

27

Figure 14. Relative distance between tetrahedra during

locomotion with reference T1.

Relative Distance Between T1 − T5 with T1 as Reference

28

Chapter 3. Results

The motion achieved by this robot is generally as illustrated in the overhead-view given in

Figure 15, and the in graph of relative distance between tetrahedra as the robot generates forward

motion in Figure 14. The following sections present the results of the CPG gait evolution of the five-

tetrahedron tensegrity robot. The first section shows gaits resulting from the initial gait generation,

where gaits were created using pseudo-random number generator and the Matsuoka CPG. The second

section shows the gaits produced by the evolutionary algorithm and the forces at work in the structure

during locomotion. The third section covers the behavior of the EA optimization during the 10 trials.

0s

0.5s

1.0s

1.5s

2.0s

2.5s

3.0s

3.5s

Figure 15. Time lapse of locomotion.

29

3.1 Initial Gait Generation

 A sampling of the performance of the randomly generated initial gaits, i.e. the initial

population, is presented in Figure 16, which shows the forward distance traveled over a 15 second

simulation, 𝑥1. This figure displays the best and worst of the 50 individuals of the initial populations

from each of the 10 trials performed. Figure 17 shows the performance, in terms of fitness, of the 50

individuals from the initial population of one sample trial. These figures demonstrate the variety of

gaits in the initial populations as nearly half of the individuals travel opposite the desired direction of

travel. This variety helps to ensure that more of the solution space is searched by the EA.

 The final distance reached in the best performing gait from the initial population is

approximately 6.6 inches. The data shows periodic surges in the distance traveled from the origin; this

is because, by the undulatory nature of the locomotion, no one section of this robot has a constant

velocity during locomotion.

Figure 16. Distance traveled of best and worst individual

of each of the 10 trials.

Best and Worst of Each Trial of Initial Populations

30

Figure 17. Distribution of fitness of initial population from a

sample trial.

Histogram of Initial Population Performance of all Individuals of One Trial

N
u

m
b

er
 o

f
In

d
iv

id
u

al

31

3.2 Gait Optimization

 As defined earlier in section 2.3, all ten EA trials had a population size of 50 and used the

main fitness performance metric of maximizing the distance traveled. Minor factors that affect the

fitness value are minimizing the distance traveled perpendicular to the desired direction of travel, and

minimizing the twist about the vertical axis of the robot. The minor factors were small throughout the

trials and were nearly eliminated by the end of all trials.

 Figure 18 is a comparison of the forward distance traveled by the best of each of the initial

and evolved populations. The average performance increase over 10 trials is 32 percent and the best

performing individual from all 10 trials increased the final distance traveled by 51 percent with a

distance traveled of 14.34 inches in the 15 second dynamic simulation.

Figure 18. Distance traveled performance of the best individual from the initial

population (left) and after evolving (right).

32

 Next we look at the CPG signals that were used to generate the gaits and the resulting forces

in the robot. As stated earlier, each pair of tension members between adjacent tetrahedron are actuated

by one CPG signal, thus, the forces in the tension members and in the ground contact of the

tetrahedron are symmetric and only one of each pair is shown in the following figures. Figure 19

shows the CPG signal that was superimposed on the spring force in the actuated tension members,

and the resulting force in those tension members. Comparing the CPG input and tension forces we

can see that the dynamics of the robot introduced a time delay into the controlled tension member’s

force as well as reshaped them.

 Figure 20 shows the frictional and normal forces at work on each of the five tetrahedron in

the robot. This graph demonstrates how the weight of the robot is distributed between the points of

ground contact and how friction is utilized as the robot moves forward.

Figure 19. Graph of CPG signal and corresponding tension

force in actuated tension members.

33

Currently, directional friction is not implemented in the dynamic simulation of this robot.

However, it is noteworthy that adding directional friction to the dynamic simulation of this robot may

improve its performance. Because directional friction is not modeled, the evolved gaits must rely on a

different main mechanism for producing forward motion. This mechanism is seen as lifting a section,

or tetrahedron, of the robot off the ground before moving it forward and the results show that this

structure is able to generate forward motion using this mechanism. This behavior is apparent in

Figure 20 whenever the normal force on a tetrahedron due to the ground is equal to zero. This is made

possible by the mode of actuation where tetrahedron are allowed to twist about their axis. In this

simulation such twisting is achieved by actuating only the bottom outer tension members, however,

actuating all members could potentially achieve the same behavior. Figure 21 illustrates this effect

with traced points overlaid on images of the robot.

Figure 20. Friction and ground forces of tetrahedron 𝑇1, 𝑇2, 𝑇3, 𝑇4, and 𝑇5 during

locomotion.

Ground Interaction Forces During Locomotion

34

Figure 21. Time lapse of one step: motion achieved by shifting weight between

tetrahedra; lifting tetrahedra off the ground before moving them forward.

35

3.3 Optimization Behavior

 Reviewing the data shows the final results of the optimization, but it is also important to

analyze the path the EA took to reach those results. These paths are best represented in this model by

the average fitness of the population.

 Figure 22 shows the progression of the average fitness of the 10 trials performed. During the

trials the EA found multiple local maximum but in most cases was able to break out and continue

increasing performance. It is noteworthy that the performance of the best trial was still increasing

when it met the maximum iteration termination criterion, meaning it may have been capable of

finding a better gait if the maximum number of iterations was increased. As this is an initial approach

the maximum number of iterations was not increased; instead this result can be used in future work to

improve the size of the searched solution space, allowing for the possibility of better performing

populations.

 Figure 23 shows the performance of the best trial when compared to the average of all ten

trials. The dotted line represents the value of the average fitness of all ten trials and the bars represent

Figure 22. Average fitness progression of all 10 Trials.

36

the standard deviation of the fitness of all ten trials. The trend of all solutions was to increase the

fitness as expected and solutions other than the “best” solution had higher values earlier in the trials.

 The results of the EA show that the average fitness of the population was increased in all

trials. The resulting populations in all trials showed that the EA attempted to minimize the time

constants of the CPG 𝜏𝐴 and 𝜏𝐵 to their lower limits. The final values of the weights of the CPG did

not show any discernable patterns between trials, meaning individuals with good performance do not

necessarily have similar CPG weights to other individuals that perform well. This is possibly because

a wide range of gaits can be achieved by this system (i.e. walking, running). This idea is validated in

part by Figure 22, where it is apparent that there not an optimum that the majority of the populations

in the 10 trials agreed upon.

 The results of the two best individual from the best performing trial show that the values of

the inhibitory weights can vary by a large amount and still result in the same fitness value, meaning

that there are many valid solutions to this problem. The fitness value of these two solutions varies by

0.0006 and the time constants have exactly the same value, but, the values of the weights varies

wildly with differences as low as 0 and as high as 0.38. Table 8 demonstrates this with the values of

the absolute difference of the fitness and parameters defining the two best individuals produced in the

best performing trial. Although some of the parameters of these individuals are similar (shown by

small values in the table below), these similarities are not necessarily shared with even the next best

individual in the same population. In addition, the best solutions of all trials show the same wide

variety of inhibition weight values.

37

Table 8. Absolute Difference of the Two Best Solutions of the Optimization.

Fitness 𝑤1−4 𝑤5−8 𝑤9−12 𝑤13−16 𝑤17−20 𝑤21−24 𝜏𝐴, 𝜏𝐵

0.0006

0.0594

0.1063

0.0919

0.0329

0.1184

0

0.11

0.1364

0.0874

0.064

0.1928

0.3157

0.0738

0.2638

0.1313

0

0.0288

0.1233

0.1689

0.3806

0.0125

0.0244

0.0357

0.1322

0

0

Figure 23. Average fitness of trials: best, worst, and

average of all 10 trials.

Fitness Data Comparison: Best, Worst and Average

38

Chapter 4. Conclusion and Discussion

 This thesis presents a method to create locomotion gaits for a modular tetrahedron tensegrity

robot using an Evolutionary Algorithm (EA) to optimize the parameters of a Central Pattern

Generator (CPG). The results from simulation demonstrate the efficacy of the approach with the

performance metric total of distance traveled; however, other goals could be applied using the same

method. For instance the range of optimized parameters could be extended or offset to allow for a

wider solution space or for choosing specific types of gaits. Specifying different ranges of parameters

could produce different characteristics in gaits such as walking or running. It may also be

advantageous to add a factor to the fitness evaluation that promotes smoothness of CPG signals.

 The produced locomotion is limited by the mode of actuation where the same CPG output

signal is applied to both actuated tension members between adjacent tetrahedra to create a caterpillar

or inchworm type locomotion where tetrahedra are lifted and step forward. This structure may also be

capable of generating forward motion using a snake-like undulation motion. This motion could be

achieved by adding individual CPG Neural Oscillators (NOs) to each of the lower outer tension

members, making a total of eight separate NOs.

 The main limitation of this simulation is computational speed. As stated in Section 2.4, the

dynamic simulation is slower than real time. The method presented here is meant to be an initial

attempt to validate the efficacy of the methods used. However, if in the future the simulation speed

were increased, more processing power were added, or the trials were allowed to run for a longer

period of time, more tetrahedron and CPG signals could be simulated for a more interesting structure

and possibly more efficient locomotion.

 This simulation was performed with the goal to apply the findings to a physical prototype.

This would also help validate the CPG used, the effectiveness of the EA optimization, the actuation

methods, and some the parameters used in the ground, friction, and tension member models. The

prototype at NASA Ames could be used but many adjustments would have to be made to the

39

simulation to match the physical prototype. There is currently a new prototype being constructed at

the University of Idaho that fits the design of the robot in simulation. Future work will be performed

to compare the simulation to this prototype.

 The gaits produced by the EA showed that the time constants were minimized. For this

reason the values of these parameters could be set as constants depending on the desired locomotion

cadence. There is a possibility that this would limit the performance of a population, but, current

findings suggest that this possibility is small. The advantage of setting these parameters to constants

could mean fewer iterations of the EA to reach the same outcome. In addition the two time constants

are related by a factor of two, which may limit the variety of gaits produced. Future trials could allow

the time constants to be changed independently within appropriate ranges.

 CPGs are used in the robotics community partly because of their resistance to perturbations

even without feedback. For this reason the simulation could be modified to include environmental

obstacles such as inclines, steps, or objects. This would demonstrate the robustness of the final

optimized gait. In addition feedback pathways could be added to the simulation to aid in obstacle

maneuverability.

40

References

[1] V. G. Jauregui, "Controversial Origins of Tensegrity," in Internatioan Association for Shell and

Spacial Structures Symposium, Valencia, 2009.

[2] D. E. Ingber, "Tensegrity," Scholarpedia, p. 7(2):8344, 2012.

[3] R. E. Skelton and M. C. d. Oliveirra, Tensegrity Systems, La Jolla, CA: Springer, 2009.

[4] T. Flemons, "Intension Designs," [Online]. Available:

http://www.intensiondesigns.com/models.html. [Accessed November 2013].

[5] K. Kebiche, M. Kazi-Aoual and R. Motro, "Geometrical non-linear analysis of tensegrity

systems," Engineering Structures 21, pp. 864-876, 1999.

[6] J. Yu, "A Survey on CPG-Inspired Control Models and System Implememtation," IEEE

Transactions on Neural Networks and Learning Systems, 2013.

[7] Q. D. Wu, C. J. Liu, J. Q. Zhang and Q. J. Chen, "Survey of locomotion control of legged

robots inspired by biological concept," Sci. china Ser., vol. vol. 52, no. 10, pp. 1715-1729,

2009.

[8] Z. Xiuli, "Study on dynamics of Central Pattern Generator Model for a Quadruped Robot,"

Unpublished, Beijing, 2005.

[9] M. M. Williamson, "Neural control of rhythmic arm movements," Neural Networks, vol. 11, no.

Special Isssue, pp. 1379-1394, 1998.

[10] T. K. Bliss, "CPG control of a tensegrity morphing structure for biomimetic applications,"

Advances in Science and Technology, pp. 137-142, 2008.

[11] A. Crespi, "AmphiBot I: an Amphibious snake-like robot," Robotics and Autonomous Systems,

pp. 163-175, 2005.

41

[12] K. Inoue, "Neural oscillator network-based controller for meandering locomotion of snake-like

robots," in IEEE Int. Conf. Robot. Autom., New Orleans, LA, USA, 2004.

[13] K. Matsuoka, "Sustained Oscillations Generated by Mutually Inhibiting Neurons with

Adaptation," Biological Cybernetics, pp. 367-376, 1985.

[14] G. Endo, J. Nakanishi, J. Morimoto and G. Cheng, "Experimental studies of a neural oscillator

for biped locomotion with QRIO," in IEEE International conference on robotics and

automation, Barcelona, Spain, 2005.

[15] C.-S. Park, J.-K. Yoo, Y.-D. Hong, K.-B. Lee, S.-J. Ryu and J.-H. Kim, "Walking Pattern

Generator Using an Evolutionary Central Pattern Generator," in FIRA Robot World Congress,

India, 2010.

[16] A. E. Eiben, Introduction to Evolutionary Computing, Springer, 2007.

[17] T. Reil and P. Husbands, "Evolution of central pattern generators for bipedal walking in a real-

time physics environment," IEEE Transactions on evolutionary computation, vol. Vol. 6, no. 2,

pp. 159-168, 2002.

[18] R. Lafarge, "Contact force modeling between non convex objects using a nonlinear damping

model," in North American ADAMS User Conference, Ann Arbor, MI, 1988.

[19] H. Olsson, "Friction Models and Friction Compensation," European Journal of Control , pp.

176-195, 1998.

42

Appendix A. Evolutionary Algorithm

 The following Matlab code is the Evolutionary Algorithm (EA), and the Central Pattern

Generator (CPG), and included sub functions. A.1 is the initial population generator and was used to

create bounded, fitness evaluated populations of random solutions which are made up of parameters

that define the CPG and fitness that define the performance. A.2 is the initial fitness evaluation and

takes the initial population and computes the fitness of each individual, then stores the results in the

population that is used by EA main. A.3 is the main EA script with sub functions included as A.3.1-5

A.1 Initial population generator

%% George Korbel

% Initial Population generator

% Generates values for CPG and simulates

% This file was created to work specifially with simulink file:

% tetra5tv5

% Notes: --dimensions are ips

% Tetra5tv5: simplified addition of tetrahedron and NOs

% Changed sensing points and method of sensing

% Updated structure of pop

% Tetra5_v4: version adds 3 neural oscillators in Central Pattern Generator (CPG) and population

seeding

% working matrix name dist_max changed to pop

% created by: George Korbel

 %%

clc

 global w tau dtau

 % Number of simulations

stop = 50;

 % Time of simulation

simtnum = 15; % simulation time in number form

simtime = num2str(simtnum);

set_param('tetra5tv5_fas','MaskedZcDiagnostic','none','StopTime',simtime);

% for running one sim at a time

if stop == 1

 pop = 0;

end

%Check if pop exists

ex = exist('pop','var'); % 1 if yes, 0 if no

%start counter on new row of pop matrix

if ex == 1

 [start, na] = size(pop); % current # of rows in pop = start

 if pop(start,1)==0 % if the last entry in the first column is zero

43

 start = start; % start on that row

 else

 start = start+1; % else start on a new row

 end

else

 error('pop is not defined') % if variable pop dne throw error

end

% Set friction params from guessing and watching

% (these values were taken from a random search simulation and adapted by hand to

% help with convergence of the simulations)

s0 = .3; % Sigma 0 = damping during sliding

s1 = .4; % Sigma 1 = damping during sticking

a = .7; % Coefficient multiplied by sigma0 (turns friction on or off with z detection)

p0 = .004; % Distance node can move under static friction

% One way friction ratio

% removed in this version

%f_ratio = 1; % 1 = no one way friction, 0 = complete one way friction

% Random value arrays

N = 2000; %how many values between bounds

wa = 1:(3.4-1)/N:3.4; %value array for weights

taua = 0.2:(.5-.2)/N:.5; %value array for tau

for k = start:stop

 display(num2str(k)) %print iteration #

 % CPG parameters

 % Weights

 wnum = 24;

 for wk = 1:wnum

 w(wk) = wa(randi([1,N]));

 end

 % Time constants

 tau = taua(randi([1,N]));

 dtau = 2*tau;

 tic %start timer

 display('CPG') %print progress

 CPGmain() %run cpg

 display('Simulating') %print progress

 sim('tetra5tv5_fas') %simulate current model

 % Save results in pop

 % First tetrahedron to origin

 dist_x = sx1(end) - sx1(2);

 pop(k,1) = dist_x; %end distance in x of node that starts at origin

 pop(k,2) = abs(sx1(end) - sx2(end)); %end difference in distance of rear two nodes that begin at

origin

 pop(k,3) = 0; %end distance between front tetra tip and node that begins on origin

 pop(k,4) = abs(sy1(end)); %end y distance of node that begins on origin

 % Save CPG parameters

 for ct = 1:wnum

 pop(k,ct+4) = w(ct);

 end

 pop(k,29) = tau;

44

 pop(k,30) = dtau;

 toc %output total time for last run

 display(' '); display(' '); %returns for display in command window

end

uni_pop = unique(pop,'rows'); %deletes any repeating rows (entire row must be the same)

sort_pop = sortrows(pop,[-1]); %sorts in descending order by first column

% plot results

figure;h1=stem3(sort_pop(:,2),sort_pop(:,3),sort_pop(:,1),'filled');

A.2 Initial fitness evaluation

%% Evolutionary Algorithm fitness initial evaluation

% unrated population is named pop

% largest value is best fitness

% load pop

% Weights for EA fitness evaluation

% origin-tetra1

W1 = 1; % total distance traveled % larger the better % needs to be rescaled so that it does not

overshadow bad effects??

W2 = -10; % absolute difference between two nodes that start on x = 0 (in x dir) % this value is

generally worse when its abs is larger

W3 = 0; % difference between two nodes that start on x = 0. non-absolute

W4 = -1; % y distance of origin node

fit_w = [W1 W2 W3 W4];

[L,tmp] = size(pop);

population = zeros(L,27); % initialize population size

% Evaluate fitness and store in population

for k = 1:L

 temp = pop(k,:); % separate out one row of unevaluated population

 % if temp(1,1) < 0 % If it moves backwards give it a small fitness

 % fit = -5;

 % else

 Lfw = length(fit_w);

 for m = 1:Lfw

 fitsum(m) = temp(1,m)*fit_w(m);

 end

 fit = sum(fitsum);

 population(k,:) = [fit, temp(1,5:end)];

end

A.3 Evolutionary Algorithm main

% Evolutionary Algorithm main

% Low probability of swapping

% High probability of mutation

% Low mutation value

% Details:

% - Selects five candidate parents at random

45

% - Takes two best of five selected for actual parents

% - Swaps random weights and time constants

clear tmppop

global w tau dtau Rp

% Number of simulations

stop = 2000;

ex = exist('fit_ave');

%start counter on new row of fit_sum array

if ex == 1

 start = length(fit_ave); % current # of rows

 start = start + 1; % start on that row

else

 error('fit_ave is not defined') % if variable pop dne throw error

end

% Set friction params from guessing and watching

% (these values were taken from a random search simulation and adapted by hand to

% help with convergence of the simulations)

s0 = .3; % Sigma 0 = damping during sliding

s1 = .4; % Sigma 1 = damping during sticking

a = .7; % Coefficient multiplied by sigma0 (turns friction on or off with z detection)

p0 = .004; % Distance node can move under static friction

% One way friction ratio

f_ratio = 1; % 1 = no one way friction, 0 = complete one way friction

% Find size of population

[Rp, Cp] = size(population);

wnum = 24;

for k = start:stop

 display(num2str(k)) %print iteration #

 %% Selection

 % Select five random candidate parents

 [parent1] = EA_select(population);

 [parent2] = EA_select(population);

 %% Crossover

 sw_prob = rand(1,Cp-1); % probability of swapping

 for n = 1:(Cp-1)

 if sw_prob(n) > .8 % if the probability is over threshold swap columns

 swtmp(1,n) = parent1(1,n);

 parent1(1,n) = parent2(1,n);

 parent2(1,n) = swtmp(1,n);

 end

 end

 parent1(1,Cp) = parent1(1,Cp-1)*2; % if tau was changed also change dtau

 parent2(1,Cp) = parent2(1,Cp-1)*2; % if tau was changed also change dtau

 %% Mutation

 % weights

 mut_op = rand(1,wnum+2); % probability of mutation operator (0:.49 subtracts .5:1 adds)

 mut_prob = rand(1,wnum+2); % probability of mutation

 mut_fact_w = rand(1,wnum+2)/5; % factor of mutation for w (between 0 and .2)

 parent1 = EA_mut_w(parent1, mut_op, mut_prob, mut_fact_w); % mutates weights

 parent2 = EA_mut_w(parent2, mut_op, mut_prob, mut_fact_w); % mutates weights

46

 mut_fact_tau = rand/20; % factor of mutation for tau (between 0 and .05)

 parent1 = EA_mut_tau(parent1, mut_op, mut_prob, mut_fact_tau);

 parent2 = EA_mut_tau(parent2, mut_op, mut_prob, mut_fact_tau);

 %% Re-simulate with children

 child = [parent1; parent2];

 for i = 1:2

 %tic;

 w = child(i,1:wnum);

 tau = child(i,wnum+1);

 dtau = 2*tau;

 %% Run Central Pattern Generator

 %display('CPG') %print progress

 CPGmain() %run cpg

 %% Run Simulator

 set_param('tetra5tv5_fas','MaskedZcDiagnostic','none'); % turn off warning for zero crossing

 %display('Simulating') %print progress

 sim('tetra5tv5_fas') %simulate current model

 %% Save results in tmppop

 % First tetrahedron to origin

 dist_x = sx1(end) - sx1(2);

 tmppop(1,1) = dist_x; %end distance in x of node that starts at origin

 tmppop(1,2) = abs(sx1(end) - sx2(end)); %end difference in distance of rear two nodes that

begin at origin

 tmppop(1,3) = 0; %This only needs to be non zero during snake like motion %sx2(L) - sx1(L);

%end distance between front tetra tip and node that begins on origin

 tmppop(1,4) = abs(sy1(end)); %end y distance of node that begins on origin

 % Save CPG parameters

 for ct = 1:wnum

 tmppop(1,ct+4) = w(ct);

 end

 tmppop(1,wnum+5) = tau;

 tmppop(1,wnum+6) = dtau;

 %% Evaluate fitness of new child solution

 fit = EA_fitness(tmppop);

 %% Place child back in population

 pos = EA_replace(population); % worst fitness out of group of 5 random

 minfit = min(population(:,1)); % find worst fitness overall

 [row, col] = ind2sub(size(population),find(population==minfit));

 or_pos = row(1); % row of worst overall

 current_fit = population(pos,1);

 if fit > current_fit

 population(pos,:) = [fit, w, tau, dtau]; %replace worst out of the 5

 elseif fit > minfit

 population(or_pos,:) = [fit, w, tau, dtau]; %or replace worst overall

 end

 %toc

 end

 fit_ave(k) = sum(population(:,1))/Rp; %save the average fitness

 % Print progress by summing fitness column

 %display(num2str(fit_ave(k)))

47

 % Stopping criterion

 if k > 200

 diff_fit_ave = fit_ave(k) - fit_ave(k-100);

 if diff_fit_ave < .03

 for i = 1:1000

 beep;

 pause(1);

 end

 end

 end

 if k == 2000

 for i = 1:10000

 beep;

 pause(1);

 end

 end

 clc

 %display(' '); display(' '); %2 returns for display in command window

end

A.3.1 EA Fitness

 function [fit] = EA_fitness(tmppop)

% Function Evolutionary Algorithm fitness evaluation

% largest value is best fitness

% load pop

% Weights for EA fitness evaluation

% origin-tetra1

W1 = 1; % total distance traveled % larger the better % needs to be rescaled so that it does not

overshadow bad effects??

W2 = -10; % absolute difference between two nodes that start on x = 0 (in x dir) % this value is

generally worse when its abs is larger

W3 = 0; % difference between two nodes that start on x = 0. non-absolute

W4 = -1; % y distance of origin node

fit_w = [W1 W2 W3 W4];

temp = tmppop;

% if temp(1,1) < 0 % If it moves backwards give it a small fitness

% fit = -5;

% else

for m = 1:4

 fit(m) = temp(1,m)*fit_w(m);

end

fit = sum(fit);

48

A.3.2 EA select

function [parent] = EA_select(population)

%Selects parents for next combination and mutation

% Takes five candidtate parents and selects the best two out of the five

global Rp select_pop

can1 = randi([1,Rp]);

can2 = randi([1,Rp]);

can3 = randi([1,Rp]);

can4 = randi([1,Rp]);

can5 = randi([1,Rp]);

can = [can1, can2, can3, can4, can5]';

select_pop = sortrows(population([can1;can2;can3;can4;can5],:),[-1]); % select parents out of

population and sort descending

select_pop = [select_pop, can];

parent = select_pop(1,2:27); % Take best of the five selected (don't take fitness value)

end

A.3.3 EA weight mutation

function [parent] = EA_mut_w(parent2, mut_op, mut_prob, mut_fact_w)

% Mutation function for weights array w

% When called in EA_main randomly mutates values of w

for m = 1:24

 if mut_op(m) > 0.5

 if mut_prob(m) > 0.3 % if the probability is over threshold mutate

 parent(1,m) = parent(1,m) + mut_fact_w(m);

 end

 end

 if mut_op(m) < 0.5

 if mut_prob(m) > 0.3 % if the probability is over threshold mutate

 tmp = parent(1,m) - mut_fact_w(m);

 if tmp > 0 % but only if it will not cause a negative value

 parent(1,m) = parent2(1,m) - mut_fact_w(m);

 end

 end

 end

end

end

A.3.4 EA time constant mutation

function [parent] = EA_mut_tau(parent, mut_op, mut_prob, mut_fact_tau)

% Mutation function for tau

% When called in EA_main randomly mutates values of tau

m = 26; % Only working on tau

if mut_op(m) > 0.5

 if mut_prob(m) > 0.3 % if the probability is over threshold mutate

49

 parent(1,m) = parent(1,m) + mut_fact_tau;

 end

end

if mut_op(m) < 0.5

 if mut_prob(m) > 0.3 % if the probability is over threshold mutate

 tmp = parent(1,m) - mut_fact_tau;

 if tmp > .2 % but only if it will not go below threshhold

 parent(1,m) = parent(1,m) - mut_fact_tau;

 end

 end

end

parent(1,m+1) = 2*parent(1,m); % dtau = 2*tau

end

A.3.5 EA replace

function [pos] = EA_replace(population)

%Selects worst

% Takes five candidtates and selects the worst

[Rp, Cp] = size(population);

can1 = randi([1,Rp]);

can2 = randi([1,Rp]);

can3 = randi([1,Rp]);

can4 = randi([1,Rp]);

can5 = randi([1,Rp]);

can = [can1, can2, can3, can4, can5]';

select_pop = population([can1;can2;can3;can4;can5],:); % select parents out of population and sort

descending

select_pop = [select_pop, can];

select_pop = sortrows(select_pop,[-1]);

replace = select_pop(5,:); % Take worst of the five selected

pos = replace(end);

end

50

Appendix B. Central Pattern Generator

 The following is Matlab code used to model the CPG. B.1 is the main script of the CPG. B.2

is the body of the Matsuoka CPG. B.3 is the positive threshold function.

B.1 CPG main

%% CPG main

% close all;

global u v y tau dtau Ts NeuralN

NeuralN = 8;

Ts = 0.0005;

TestT = 15;

Fs = 1/Ts;

TestS = TestT/Ts;

Time = (0:TestS-1)*Ts;

Dper1 = 1;

Dper2 = 40;

if(Dper1 == 1)

 Dindex1 = 1;

else

 Dindex1 = TestS * Dper1 / 100;

end

Dindex2 = TestS * Dper2 / 100;

u(1) = 0.3;

u(2) = 0.3;

u(3) = 0.3;

u(4) = 0.3;

u(5) = 0.3;

u(6) = 0.3;

u(7) = 0.3;

u(8) = 0.3;

v(1) = 0.1;

v(2) = 0.5;

v(3) = 0.1;

v(4) = 0.5;

v(5) = 0.1;

v(6) = 0.5;

v(7) = 0.1;

v(8) = 0.5;

for i=1:NeuralN

 y(i) = MaxF(u(i));

end

output = zeros(TestS,8);

dout = zeros(TestS,4);

for i=1:TestS

 output(i,:) = Matsuoka_CPG();

 dout(i,1) = output(i,1) - output(i,2);

51

 dout(i,2) = output(i,3) - output(i,4);

 dout(i,3) = output(i,5) - output(i,6);

 dout(i,4) = output(i,7) - output(i,8);

end

dout(1:2500,:) = 0; % remove initial spike in actuation

dout = [Time', dout]; % puts simulation time and output in matrix for simulink to read

B.2 Matsuoka CPG Algorithm function

function CPG = Matsuoka_CPG()

global w u v y tau dtau Ts NeuralN

Uini = .5; % max peak to peak amplitude

beta = 2.5;

%Mutal inhibition network

sum(1) = -1.5 * y(2) - w(1) * y(3) - w(2) * y(5) - w(3) * y(7);

sum(2) = -1.5 * y(1) - w(4) * y(4) - w(5) * y(6) - w(6) * y(8);

sum(3) = -1.5 * y(4) - w(7) * y(1) - w(8) * y(5) - w(9) * y(7);

sum(4) = -1.5 * y(3) - w(10) * y(2) - w(11) * y(6) - w(12) * y(8);

sum(5) = -1.5 * y(6) - w(13) * y(1) - w(14) * y(3) - w(15) * y(7);

sum(6) = -1.5 * y(5) - w(16) * y(2) - w(17) * y(4) - w(18) * y(8);

sum(7) = -1.5 * y(8) - w(19) * y(1) - w(20) * y(3) - w(21) * y(5);

sum(8) = -1.5 * y(7) - w(22) * y(2) - w(23) * y(4) - w(24) * y(6);

for i = 1:NeuralN

 du(i) = (-u(i) + sum(i) + Uini - beta * v(i)) / tau;

 dv(i) = (-v(i) + y(i)) / dtau;

end

for i = 1:NeuralN

 u(i) = u(i) + du(i) * Ts;

 v(i) = v(i) + dv(i) * Ts;

 y(i) = MaxF(u(i));

end

CPG = y;

end

B.3 MaxF function

function num = MaxF(n)

 if(n > 0)

 num = n;

 else

 num = 0;

 end

end

52

Appendix C. Simulink and SimMechanics

 The following sections show the Simulink and SimMechanics blocks used to create the

dynamic simulation.

C.1 Strut and sphere

 Each compression member, or strut, and sphere, is defined using the Simulink subsystem

below. The terminals Conn1 and Conn2 are the connection nodes at either end of the strut, or in the

case of spheres, are the same point at the center of the sphere.

C.1.1 Strut and Sphere detail

 Inside the Simulink subsystem block are the following SimMechanics blocks. Joint 5 and

Joint 2 are SimMechanics “Rigid Transform” blocks and are used in struts to define the connection

nodes. The block labeled link is a SimMechanics “Solid” block that defines the size, shape, inertia,

and graphic properties of the struts. For spheres the Joint blocks are ommitted.

53

54

C.2 Weld Joint

 Struts and spheres are connected using SimMechanics blocks called “Weld Joints.” These

blocks rigidly connect the nodes connected at the terminals in their current orientation.

55

C.3 Six Degree of Freedom Joint

 The SimMechanics block “6-DOF Joint” is used to simulate the ground, friction, and tension

member models.

56

C.4 Ground and friction model

 The following is the ground and friction model implimentation. The model references the

absolute position of the node connected to Conn1 using SimMechanics block “6-DOF Joint” and

connected “World Frame.” Data from the “6-DOF Joint” and defining parameters are passed to the

subsystem block labeled Ground and Friction which contains both the friction and ground force

models. The Ground and Friction subsystem block computes the frictional and ground forces and

feeds them back into the “6-DOF Joint” via force actuation terminals.

57

C.5 Tension member model

 The following is an image of the tension member model implimentation. Conn2 and Conn1

are the nodes between which the tension member is connected. Data is passed into the spring model

subsystem by a “6-DOF Joint,” the defining parameters ksi (an inner tendon denoted by the i in ksi)

and damping constant cs, and the CPG actuation signal as denoted by the terminal labeled act on the

subsystem block. The spring model substystem calculates forces in the x, y, and z directions to be

applied to the joint and passes those values into force actuation terminals on the “6-DOF Joint.

