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Abstract

The goal of this Master project is to develop central pattern generator (CPG) based con-
trols for a Planetary Exploration Tensegrity Robot. Development will occur primarily
in a physics-based tensegrity simulator, and will involve an exploration of various candi-
date tensegrity structures and associated controls to roll the robot over various terrains.
Tensegrity structures are uniquely appropriate for distributed CPG based control due to
their compliant tension network which mirrors the properties of the CPG network. It
is believed that tensegrity robot technology can play a critical role in future planetary
exploration[1].

Artist view of tensegrity robots on the surface of Titan
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1 Introduction
The aim of this work is to create, develop and test an efficient control strategy to allow
a tensegrity robot to smoothly move over various type of complex terrains. The robot
considered in this study is a tensegrity icosahedron made of 6 solid struts, 36 actuated
springs and a central payload. Experiments are performed mainly in a physics simulator
and partly on hardware to validate the simulation data and justify a further investigation.
This study focuses on the feasibility and capabilities of different types of controllers and
how they can be implemented and used together. We consider here mainly two types of
approaches namely reactive controls and Central Pattern Generator based actuation.

Tensegrity robotics and in particular tensegrity control is a fairly new field of research. As
a consequence, it was not considerably explored and a great number of tools and techniques
can potentially be developed in this domain. This work is a humble step in this direction.
Several research institutions such as NASA are interested in this novel area of robotics.
Tensegrity robots possess many advantages that makes them very good candidates for spe-
cific space missions such as planetary landing and exploration, pushing forward the need
for versatile, reliable and energy efficient control strategies.

This thesis starts by a brief introduction to tensegrity structures (section 2) and their
applications in robotics (section 3). The topic of tensegrity control is then addressed and a
review of the main approaches is presented (section 4). In section 5, the physics simulator
used to simulate the physical world and the tensegrity structures is presented in details,
with its specific features relevant to tensegrity and CPG simulation.
Sections 6, 7 and 8 contain the core of this study, namely the description of the various
control strategies, their relative performances and a critical review (section 6), an analysis
of the obtained gait patterns (section 7) and a validation of the physics simulator to assess
the scientific value of the data obtained (section 8).
In section 9, several options are considered for a future work and different improvements
and novel ideas are suggested. Section 10 summarizes and concludes the study.

- 1 -
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2 Introduction to Tensegrity Structures
Tensegrity structures have been widely used in architecture and art but have started only
recently to be studied in the field of robotics[2]. Tensegrity structures were first introduced
in the 1960’s by the american sculptor and photographer Kenneth D. Snelson[3]. Snel-
son was interested in patterns of physical forces and nature in its primary aspect. The
term tensegrity itself was introduced by architect Buckminster Fuller as a combination of
”tension” and ”integrity”[4].

Figure 1: Snelson artwork: ”Early X
piece”, 1948, from [5]

Figure 2: Snelson artwork: ”Forest Devil”,
1975, from [6]

In the field of science and engineering, Robert Skelton and Mauricio C. de Oliveira carried
out a deep and complete study of tensegrity structures[7] with the purpose of improving
and integrating control design with structure design. As part of their work, they developed
a complete mathematical formalism to describe tensegrity structures. This formalism relies
on linear algebra to describe in a very elegant manner the physical properties of tensegrity
systems. They give a proper mathematical definition of a tensegrity configuration and a
tensegrity system (hereafter tensegrity structure):

• In the absence of external forces, let a set of rigid bodies in a specific configuration
have torqueless connections (e.g. via frictionless ball-joints). Then this configuration
forms a tensegrity configuration if the given configuration can be stabilized by some
set of internal tensile members, i.e. connected between the rigid bodies. The config-
uration is not a tensegrity configuration if no tensile members are required and/or
no set of tensile members exist to stabilize the configuration.

• A tensegrity system is composed of any given set of strings connected to a tensegrity
configuration of rigid bodies.

- 2 -
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Furthermore, they define classes of tensegrity structures depending on the number of rigid
body connected to each other. A tensegrity structure that has zero contact points between
its rigid bodies is called a class 1 tensegrity structure (e.g. figure 2). Correspondingly, a
tensegrity structure that has k contact between its rigid bodies is therefore called a (k+ 1)
class tensegrity structure. In this work, we will consider only class 1 tensegrity structures.

Tensegrity structures can very efficiently share any load that is applied to any point of the
structure by distributing the forces throughout its tension network. Furthermore, every
element is either in pure extension or compression and no element creates lever arms that
could magnify the forces. As a result, no bending or shear forces have to be beared by the
elements and a tensegrity structure is therefore much less subject to having a local point
of weakness where all the load of the structure adds up and can be made of very light
weight materials. Moreover, the distribution of the forces through the tension network,
while making the structure very resistant, also makes it tolerant to damages. Indeed, if a
tensile member had to break, the tension network would instantaneously redistribute forces
to counterbalance the change and come back to a new equilibrium point. A tensegrity can
thus easily respond to shocks, external stresses or to any sudden change of orientation. An-
other advantage resides in the large ratio load/weight that tensegrity structures exhibit.
Due to the prestress that can be applied to the tension network, tensegrity structures can
bear large loads without the necessity to add up weight to the structure. A detailed list of
the benefits of tensegrity structures was published by Skelton et al. in[2].

In the light of all these advantageous physical properties, it is no surprise that tensegrity
structures are observed in nature, where billions of years of evolution favored the emer-
gence of the most resistant and effective designs. A recent study by Donald E. Ingber has
shown that the cytoskeleton of cells are constructed as tensegrity structures[8], see figure
3. On another scale, the whole body can also be seen as a tensegrity structure where the
bones are the rigid elements intricated in a tension network created by the fascia tissue[9].
Another example is spider silk fiber which is known to be very resistant to loads and ex-
tension, exhibit also a tensegrity structure on the molecular level[10].

1159Cellular tensegrity I

cell is generated actively by the contractile actomyosin
apparatus. Additional passive contributions to this prestress
come from cell distension through adhesions to the ECM and
other cells, osmotic forces acting on the cell membrane,
and forces exerted by filament polymerization. Intermediate
filaments that interconnect at many points along microtubules,
microfilaments and the nuclear surface provide mechanical
stiffness to the cell through their material properties and their
ability to act as suspensory cables that interconnect and
tensionally stiffen the entire cytoskeleton and nuclear lattice.
In addition, the internal cytoskeleton interconnects at the cell
periphery with a highly elastic, cortical cytoskeletal network
directly beneath the plasma membrane. The efficiency of
mechanical coupling between this submembranous structural
network and the internal cytoskeletal lattice depends on the
type of molecular adhesion complex that forms on the cell
surface. The entire integrated cytoskeleton is then permeated
by a viscous cytosol and enclosed by a differentially permeable
surface membrane.

Do cells use tensegrity architecture? 
Ten years ago, much circumstantial evidence already supported
the idea that cells are prestressed tensegrity structures with
internal molecular struts and cables (Ingber, 1993b). For
example, biophysical studies with isolated microfilaments and
microtubules revealed that the former are better at resisting
tension, whereas the hollow microtubules with their higher
second moment of inertia are much more effective at
withstanding compression (Mizushima-Sugano et al., 1983).
Because of their increased stiffness (persistence length),
microtubules are rigid and straight when in solution and even
push out long membrane extensions when enclosed within
liposomes (Hotani and Miyamoto, 1990), whereas isolated
microfilaments and intermediate filaments are bent or highly
entangled, respectively (Janmey et al., 1991; Mackintosh and
Janmey, 1995). Yet, microtubules often appear to be curved in
living cells (Fig. 3A), whereas microfilaments are almost
always linear (Fig. 3B). This is consistent with the engineering
rule that tension straightens and compression buckles or bends.
Linearization of tangled intermediate filaments also occurs
during cell spreading (Fig. 3C) as a result of outward extension
of the whole network, which depends on the presence of intact
microtubules (Maniotis et al., 1997a); actomyosin-based
tension instead promotes inward retraction of the network (Tint
et al., 1991). In fact, studies of both cultured cells and whole
tissues indicate that cell shape stability depends on a balance
between microtubules and opposing contractile microfilaments

Fig. 2. (A) A high magnification view of a Snelson sculpture with
sample compression and tension elements labeled to visualize the
tensegrity force balance based on local compression and continuous
tension. (B) A schematic diagram of the complementary force balance
between tensed microfilaments (MFs), intermediate filaments (IFs),
compressed microtubules (MTs) and the ECM in a region of a cellular
tensegrity array. Compressive forces borne by microtubules (top) are
transferred to ECM adhesions when microtubules are disrupted
(bottom), thereby increasing substrate traction.

Fig. 3. Microtubules,
microfilaments and
intermediate filaments within
the cytoskeleton of endothelial
cells visualized with GFP-
tubulin, rhodaminated-
phalloidin and antibodies to
vimentin, respectively.
(A) Microtubules (green) span
large regions of the cytoplasm and often appear curved in form. (B) Microfilaments (green-yellow) appear linear in form within long stress
fibers and triangulated actin ‘geodomes’; blue staining indicates nuclei. (C) Intermediate filaments (red) appear within a spread cell as a
reticulated network that extends from the nucleus to the cell periphery. 

Figure 3: Microtubules, microfilaments and intermediate filaments within the cytoskeleton
of endothelial cells reveling the underlying tensegrity structure of these cells (from [8]).

- 3 -
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3 Tensegrity Structures in Robotics
3.1 Advantages
Using tensegrity in the field of robotics is a relatively new idea and is still an active field
of research. In the light of the previous statements, the use of tensegrity structures for
robotics brings a lot of advantages that are critical to robot design. In particular, tensegrity
robots can easily respond to shocks, damage and loads by redistributing the force through-
out their tension network, a feature that is usually not present in classical robots. For
the same reason, they can also carry heavy payloads with respect to their own mass. By
applying pressure on either side of the structure or by contracting a specific set of tensile
elements, they can be packed in small, almost flat shapes that, added to their lightweight,
makes them very easy to transport and easily deployable.

Another great advantage that tensegrity structure possess over classical robots is the in-
trinsic compliance of the structure that literally merges the controls with the structure.
It is indeed the structure of the robot itself that is actuated to make the robot move and
not any external device build on top of the original design. The control architecture is
embedded in the system as it is part of the structure itself.

Another interesting feature that tensegrities possess is the ability to change their struc-
ture’s stiffness. Indeed, changing the length of one or several tensile elements makes the
overall structure stiffer and can therefore considerably change some of its physical proper-
ties such as natural frequency, shape, orientation, equilibrium position, etc.

Tensegrity structure, and as a consequence tensegrity robots, are by definition a network
of interconnected tensile elements and rigid elements. As a result, they are by nature fully
modular. Connecting a tensegrity structure to another creates a new tensegrity structure.
This property can be highly exploited, on one hand for the construction of multicellular
robots that can be assembled together from simple building blocks and on the other hand
for the implementation of fully distributed control strategies.

3.2 Applications to Autonomous Robotics
All these advantages make tensegrity robots very good candidates for a wide variety of ap-
plications. Their ability to be packed in small spaces, absorb large shocks, their lightweight
and great structure to payload mass ratio makes them very suitable as space exploration
probes, as evidenced by NASA’s interest in this domain[1]. As an example, a detailed
study from the 2013 International Planetary Probe Workshop[11] describe the feasibility
of a mission to Saturn’s moon Titan. Figure 4 summarizes the proposed missions scenario
where tensegrity probes are being deployed from a spacecraft and land on the satellite’s
surface. Simulations results from this study demonstrate that the tensegrity probes could
resist a landing on the surface of Titan without any expensive and complicated landing de-
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vice such as retrorockets or parachutes, the energy of the shock at impact being completely
absorbed by the structure.

1 Executive Summary

Small, light-weight and low-cost missions will become increasingly important to NASA’s explo-
ration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed
during launch and would reliably separate and unpack at their destination. Such robots will allow
rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain
knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortu-
nately landing lightweight conventional robots is difficult with current technology. Current robot
designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets
and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead
we are developing a radically different robot based on a “tensegrity” structure and built purely
with tensile and compression elements. Such robots can be both a landing and a mobility platform
allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots
can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against
single-point failures, can recover from different landing orientations and can provide surface mo-
bility. These properties allow for unique mission profiles that can be carried out with low cost and
high reliability (see Figure 1). We believe tensegrity robot technology can play a critical role in
future planetary exploration.

Figure 1: Tensegrity structures are composed of pure compression and tension elements. They
can be lightweight, reliable, deployable, and efficient to manipulate. Mission Scenario - Tightly
packed set of tensegrities, expand, spread out, fall to surface of moon, then safely bounce on
impact. The same tensegrity structure which cushioned the landing is then used for mobility to
explore moons such as Titan and small asteroids.

Our Phase I study explored: 1) Feasibility of applying tensegrities to a low-cost, high science
return mission to Saturn’s moon Titan. 2) Ability to control these structures that exhibit oscillatory
and nonlinear behavior through evolutionary and central pattern generator based algorithms. 3)

5

Figure 4: Mission Scenario - Tightly packed set of tensegrities, expand, spread out, fall
to surface of moon, then safely bounce on impact. The same tensegrity structure which
cushioned the landing is then used for mobility to explore moons such as Titan and small
asteroids (from [1]).

Tensegrity structures being also omnipresent in Nature, biorobotics is field were tensegrity
robotics finds a broad range of applications. As an example, Tietz et al. developed a
modular tensegrity snake robot[12] based a the model of tensegrity spine first introduced
by Tom Flemmons (see figure 5, 6 and 7 below). The robot is made of interconnected
tetrahedron-shaped rigid elements interconnected via six actuated elastic strings driven by
a central pattern generator. The robot is able to crawl on complex terrain and successfully
overcome obstacles in simulation.

Tetraspine: Robust Terrain Handling on a Tensegrity Robot Using
Central Pattern Generators

Brian R. Tietz, Ross W. Carnahan, Richard J. Bachmann, Roger D. Quinn and Vytas SunSpiral

Abstract—In order to produce a new mode of robust robotic
locomotion, we are developing a modular tensegrity robot
inspired by the spine. The robot, called Tetraspine, is composed
of rigid tetrahedron-shaped segments connected by six strings.
Distributed impedance controllers coupled with central pattern
generators (CPGs) generate tunable motion in the structure,
making this the first mobile terrestrial tensegrity robot con-
trolled by CPGs to the authors’ knowledge. By eliminating
rigid joints between segments and increasing compliance in the
structure, Tetraspine is robust to perturbations; it traverses
several types of irregular terrain successfully in simulation.
Experiments in prototype hardware have proven the viability of
the impedance controller and overall structure for locomotion.

I. INTRODUCTION

The complex problem of agile locomotion of a robot can
be greatly simplified if the structure and reactive controls of
the robot provide a high level of locomotion competence.
Due to the inherent uncertainty of operating in unstructured
natural environments, modern robotic locomotion and ma-
nipulation research often focuses on compliant actuation.
Tensegrity structures extend this focus on compliance to the
entire structure of the robot, providing desirable qualities
such as variable stiffness, robustness to perturbations, and
multi-path force distribution. Reactive controls draw inspi-
ration from numerous biological studies showing significant
locomotor computation below the brain (for examples and
reviews see: cockroaches [31], stick insects [8], and cats
[39], [29]), we focus on maximizing the reactive competence
of our robots by exploring the combination of compliant
tensegrity structures with Central Pattern Generator (CPG)
controls [14]. A motivating intuition for pairing tensegrity
robots with CPG networks is that there is a similarity in
the dynamics of how physical forces propagate through
a tensegrity structure with the dynamics of how control
patterns propagate through CPG networks.

Use of tensegrity robots for mobility was initiated in
2004-6 by papers from Masic [20], Aldrich [2], and Paul
[27], [28]. Masic’s paper included an analytical study of
tensegrity based locomotion via periodic waves in a worm
like tensegrity robot and Paul demonstrated mobility both
in a physics based simulator and in a hardware prototype.
As a result of the growing awareness of the prevalence
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Systems Program

B.R. Tietz student member, IEEE, R.W. Carnahan, R.J. Bachmann and
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CA 94035, vytas.sunspiral@nasa.gov
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Fig. 1. Top: A tensegrity spine with eight connections between segments,
courtesy of Tom Flemons. Bottom: our abstracted spine model with
tetrahedron segments, and six connections between segments. The simulated
robot has ascended a wall and is in the process of crawling over it.

of tensegrity structures in nature including cell structure
[16] and anatomy [19], [30], and the challenges of con-
trolling these structures using traditional approaches, the
majority of the works in mobile tensegrity robotics have
shown biological inspiration in their motivations, using evo-
lutionary algorithms [26], [27], [28], [32], [33], [34], [17],
neuroscience inspired CPGs [5], [3], [4], and biomimetic
structures such as manta-ray wings [22], or caterpillars [33],
[25], [23], [24]. (See also [35], [36], [18], [6], [21] for
other works on the locomotion of tensegrity robots) While
some work has continued in the analytical understanding
of the dynamics of motion for tensegrity mobility [12], the
dynamics of contact with the environment are not consid-
ered. Since contact dynamics greatly complicate the already
difficult task of controller design, most work resulting in
simulated or hardware demonstrations of mobility are using
non-analytical approaches. This started with Paul’s [26],
[27], [28] and Rieffel’s [32], [33], [34] work which used
evolutionary algorithms to discover controllers that resulted
in slow crawling and hopping motions. This was followed by
Bliss’s work using CPGs to control the oscillatory motion
of a robotic tensegrity manta ray wing for swimming [5],
[3], [4]. Additionally, CPG-like equations have been used to
control a soft robot moving with peristalsis [7]. Boxerbaum’s
and Bliss’ independent work both confirmed the validity
of our approach to using CPGs to control the mobility
of terrestrial tensegrity robots. Given that in our case the
environmental dynamics are composed of discrete contact

Figure 5: Tensegrity model of the spine
by Tom Flemmons (from [13])

Tetraspine: Robust Terrain Handling on a Tensegrity Robot Using
Central Pattern Generators

Brian R. Tietz, Ross W. Carnahan, Richard J. Bachmann, Roger D. Quinn and Vytas SunSpiral

Abstract—In order to produce a new mode of robust robotic
locomotion, we are developing a modular tensegrity robot
inspired by the spine. The robot, called Tetraspine, is composed
of rigid tetrahedron-shaped segments connected by six strings.
Distributed impedance controllers coupled with central pattern
generators (CPGs) generate tunable motion in the structure,
making this the first mobile terrestrial tensegrity robot con-
trolled by CPGs to the authors’ knowledge. By eliminating
rigid joints between segments and increasing compliance in the
structure, Tetraspine is robust to perturbations; it traverses
several types of irregular terrain successfully in simulation.
Experiments in prototype hardware have proven the viability of
the impedance controller and overall structure for locomotion.

I. INTRODUCTION

The complex problem of agile locomotion of a robot can
be greatly simplified if the structure and reactive controls of
the robot provide a high level of locomotion competence.
Due to the inherent uncertainty of operating in unstructured
natural environments, modern robotic locomotion and ma-
nipulation research often focuses on compliant actuation.
Tensegrity structures extend this focus on compliance to the
entire structure of the robot, providing desirable qualities
such as variable stiffness, robustness to perturbations, and
multi-path force distribution. Reactive controls draw inspi-
ration from numerous biological studies showing significant
locomotor computation below the brain (for examples and
reviews see: cockroaches [31], stick insects [8], and cats
[39], [29]), we focus on maximizing the reactive competence
of our robots by exploring the combination of compliant
tensegrity structures with Central Pattern Generator (CPG)
controls [14]. A motivating intuition for pairing tensegrity
robots with CPG networks is that there is a similarity in
the dynamics of how physical forces propagate through
a tensegrity structure with the dynamics of how control
patterns propagate through CPG networks.

Use of tensegrity robots for mobility was initiated in
2004-6 by papers from Masic [20], Aldrich [2], and Paul
[27], [28]. Masic’s paper included an analytical study of
tensegrity based locomotion via periodic waves in a worm
like tensegrity robot and Paul demonstrated mobility both
in a physics based simulator and in a hardware prototype.
As a result of the growing awareness of the prevalence
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Fig. 1. Top: A tensegrity spine with eight connections between segments,
courtesy of Tom Flemons. Bottom: our abstracted spine model with
tetrahedron segments, and six connections between segments. The simulated
robot has ascended a wall and is in the process of crawling over it.

of tensegrity structures in nature including cell structure
[16] and anatomy [19], [30], and the challenges of con-
trolling these structures using traditional approaches, the
majority of the works in mobile tensegrity robotics have
shown biological inspiration in their motivations, using evo-
lutionary algorithms [26], [27], [28], [32], [33], [34], [17],
neuroscience inspired CPGs [5], [3], [4], and biomimetic
structures such as manta-ray wings [22], or caterpillars [33],
[25], [23], [24]. (See also [35], [36], [18], [6], [21] for
other works on the locomotion of tensegrity robots) While
some work has continued in the analytical understanding
of the dynamics of motion for tensegrity mobility [12], the
dynamics of contact with the environment are not consid-
ered. Since contact dynamics greatly complicate the already
difficult task of controller design, most work resulting in
simulated or hardware demonstrations of mobility are using
non-analytical approaches. This started with Paul’s [26],
[27], [28] and Rieffel’s [32], [33], [34] work which used
evolutionary algorithms to discover controllers that resulted
in slow crawling and hopping motions. This was followed by
Bliss’s work using CPGs to control the oscillatory motion
of a robotic tensegrity manta ray wing for swimming [5],
[3], [4]. Additionally, CPG-like equations have been used to
control a soft robot moving with peristalsis [7]. Boxerbaum’s
and Bliss’ independent work both confirmed the validity
of our approach to using CPGs to control the mobility
of terrestrial tensegrity robots. Given that in our case the
environmental dynamics are composed of discrete contact

Figure 6: Spine robot in simulation (from
[12])
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B. Control Code

The hardware control code is similar to the simulated
controller. The stretch sensors provide an actual tension to
reference. An offset tension, the encoder information and a
sine wave then provide a setpoint, and these are compared
with a P controller, which also normalizes the output. This
output is then translated into a motor speed. We use open
source code provided by Pololu, the motor manufacturer, to
provide a PWM signal to each motor’s H-Bridge.

The major differences with the simulator are that the
velocity reference is not yet used in the local controller,
and a sine wave reference is used instead of a CPG. The
major advantages of a CPG will become most apparent
when more segments are added, until then a sine wave is
a good approximation for two segments. In the prototype
this sine wave is applied to the inside strings in addition to
the outside, with a phase offset of π between them.

C. Results

Fig. 11. Our current Tetraspine hardware with carbon-fiber tetrahedrons,
six DC motors and a microcontroller. Units on the ruler are inches.

The current two segment Tetraspine is capable of mov-
ing the rear segment relative to the front segment in an
oscillatory fashion, as shown in the supplementary video.
As expected with only two segments, the rear segment has
trouble anchoring the front segment, but we anticipate that
the weight of additional segments will solve this issue. The
important insight from this stage of fabrication is that the low
level impedance control functions, and that all the required
sensing and actuation, which was abstracted in the simulator,
can be successfully implemented in hardware.

VIII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

The Tetraspine shows the power of combining a compli-
ant tensegrity structure with a CPG-driven compliant control
system for achieving a high level of reactive locomotion

competence in a robot. This reactive competence enables
robust locomotion in natural terrains by reducing the need
for detailed sensor based modeling and world knowledge
in order to plan and execute actuation decisions. Further,
we expect that this approach will be robust to real world
challenges such as unexpected soil slippages, rocks that roll
or shift when traversed, and hidden terrain features obscured
by grass or other natural soft coverings which limit pre-
planning for locomotion.

While the Tetraspine bears strong resemblance to a snake
robot, our long term goal is legged locomotion. While most
legged robotics research focuses on the design and control
of legs, which are then bolted to a rigid central chassis, we
are starting by understanding spine dynamics and control.
As any athlete, dancer, or martial artist knows, powerful
motion starts at the core (i.e. the spine), and moves out to the
periphery (i.e. limbs). We expect that our compliant spine
design will be an ideal system for reactively integrating the
ground reaction forces experienced by limbs when traversing
complex terrain. Current approaches, which use a large
rigid box for the torso, result in large forces (magnified by
leverage) to be reflected between attachment points of the
limbs. While our work is leading towards more robust and
competent robots, we also hope that it will result in a better
understanding of the human spine and the neuromechanics
of motion which are critical to our wellbeing.

B. Future Work

Our next step is to complete enough hardware segments
to demonstrate locomotion over all the terrains explored
in simulation. Future work on the simulator will include
determining different sets of parameters for the CPGs that
generate different gaits. We also hope to provide additional
sensory information, such as ground contact, so that the
CPG signals can actively adapt to the terrain or select an
appropriate gait. We intend to look into more individual
segment controls, like propagating a discrete deformation
through the body to climb over objects more efficiently. In
addition to being a viable robotic platform on its own, we
also anticipate our findings with Tetraspine could be useful
to future quadruped and biped robots, as rigid torsos could be
replaced with a variably compliant, actuated spinal structure.
Likewise, future ”snake” versions may combine the spinal
designs and controls explored here with a compliant soft
belly for improved traction.
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Figure 7: Tensegrity spine hardware prototype (from [12]).

Tensegrity robots can also play a critical role in areas where lightweight design techniques
do not affect the quality of the robots functionalities and physical capabilities. Typical
areas are search and rescue operations in hazardous environments, military operations,
human assistive function, where the financial costs of transportability and the energetic
costs of mobility are key issues in design[14].

The field of tensegrity robotics overlaps also with other domains of robotics research with
a great potential of applications. As an illustration, the ability of tensegrity robots to
dynamically change their stiffness can allow for shape shifting and behaviors very similar
to soft robots[15]. In the same way, their high modularity can be of great interest for
distributed controls robotics, autonomous modular robotics, etc.

- 6 -



Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

4 Controlling Tensegrity Robots
Due to their unique structure and great compliance, tensegrity robots are highly control-
lable as a force applied at a point of the tensegrity will be transmitted in the whole tension
network. Their response is non-linear and oscillatory and traditional control strategies are
therefore not well adapted for this type of robots and new methods have to be developed.

Several control strategies have been developed in the past taking different approaches to
deal with the inherent non-linearities of the system. We make here the distinction between
quasi-equilibrium control where the robot is brought to a series of stable equilibrium states
until the desired configuration is reached and dynamical control where the tensegrity robot
is put in motion and brought out of its equilibrium position. Note that this is a non
exhaustive list of control strategies, the point being here to emphasize the distinction
between the two types of methods.

4.1 Quasi-equilibrium Control
Anders Wroldsen et al. proposed two control strategies for class 1 tensegrity structures
using a Lyapunov based control method[16]. The idea is, given a target position, to
construct a Lyapunov function for the system that ensures convergence of the structure to
the target position. A demonstration in simulator is carried out using a pinned bar actuated
by three string. Different target position can be reached using the control strategy. Another
possibility is to compute the forces acting on each node of the tensegrity structure and try
to minimize them for a specific target configuration. Such an algorithm has been tested
and implemented by Burt[17].
The main disadvantage of these control strategies is the large amount of computation
required to compute the values of the control parameters and the fact that the structure
has to be close to an equilibrium position. Indeed, if the structure is subject to oscillations,
new forces will apply on the nodes and the algorithm will not be able to converge to the
target position. Similarly, if the structure is rolling on the ground, the contact points will
change and thus the Lyapunov function would need to be recomputed for a different set
of constraints, making it unable to converge to the desired configuration. A new type of
controls is therefore needed to account for dynamic motion of the robot.

4.2 Dynamic Control
Different strategies have been explored to deal with the non-linear dynamics of the tenseg-
rity robots. Koizumi et al. proposed an optimal gait pattern for a 6 struts icosahedron
tensegrity structure where the 24 edges of the robot can be inflated with air using pneu-
matic soft actuators[18] (see figure 8). The authors studied different gait patterns for the
robot depending on the surface in contact with the ground and found an optimal gait for
the tensegrity icosahedron. An example of a stable gait pattern is presented on figure 9.
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Rolling Tensegrity Driven by Pneumatic Soft Actuators

Yuusuke Koizumi, Mizuho Shibata, and Shinichi Hirai

Abstract— In this paper, we describe the rolling of a tenseg-
rity robot driven by a set of pneumatic soft actuators. Tensegrity
is a mechanical structure consisting of a set of rigid elements
connected by elastic tensional elements. Introducing tensegrity
structures, we are able to build soft robots with larger size.
Firstly, we show the prototype of a six-strut tensegrity robot,
which is driven by twenty-four pneumatic McKibben actuators.
Second, we formulate the geometry of the tensegrity robot. We
categorize contact states between a six-strut tensegrity robot
and a flat ground into two; axial symmetric contact and planar
symmetric contact. Finally, we experimentally examine if rolling
can be performed over a flat ground for individual sets of the
actuators and discuss the strategy of rolling.

I. INTRODUCTION

This paper focuses on the rolling of a tensegrity robot
driven by a set of pneumatic soft actuators.

Recently, locomotion of soft material robots has been
studied extensively [1], [2], [3], [4], [5], [6]. Robots made
of soft material may be able to change their shape for rough
terrain locomotion, obstacle avoidance, and narrow passage
locomotion. Robots may be able to utilize elastic energy
stored in soft material for their locomotion and jumping. On
the other hand, it is difficult to build larger robot bodies due
to natural deformation of soft material. We need to introduce
bones into soft robots to build larger ones. Conventionally,
robotics has been applying link mechanisms, where rigid
bodies are linked one another through mechanical joints, to
robot bodies. Link mechanisms can be embedded into soft
material robots, but such link mechanisms may hinder the
deformation of the soft robots; link mechanisms tend to be
heavy weighted, not only due to link weight but also due to
complicated joint mechanisms. To cope with this dilemma,
we proposed to apply tensegrity structures to soft robots [7],
[8].

Tensegrity is a mechanical structure consisting of a set of
rigid elements connected by elastic tensional elements. Rigid
elements, which are referred to as struts, are disconnected
one another. The structure keeps its shape due to the balance
among the tensile and compressive forces applied to the
structure. Tensegrity is an abbreviation of tensile integrity.
Tensegrity structure is firstly proposed in architecture [9],
[10]. Tensegrity structures are lightweight and flexible; they
are applied to architectural designs of bridges and domes. In
architecture, many studies have been conducted to investigate
the properties of tensegrities [11], [12], [13]. The concept

Y. Koizumi and S. Hirai are with the Department of
Robotics, Ritsumeikan University, Kusatsu, Shiga 525–8577, Japan.
hirai@se.ritsumei.ac.jp

M. Shibata is with the Department of Intelligent Mechanical Engineering,
Kinki University, Higashi Hiroshima, Hiroshima 739–2116, Japan.

Fig. 1. Prototype of six-strut tensegrity robot. The prototype consists of
6 rigid struts and 24 pneumatic McKibben actuators. Two rigid balls are
attached to the both ends of each strut. Air pressure to the actuators is
applied externally through hoses.

of tensegrity has been applied not only to architecture but
also other areas including biology and robotics. In biology,
tensegrity structures were applied to the description of living
cells [14]. In robotics, tensegrities are applied to lightweight
robotic arms [15] and locomotion robots [16], [17]. In
addition, Kinematics and statics of a modular tensegrity
mechanism was analyzed [18].

In [7], [8], we have built a tensegrity robot prototype of
almost 150 mm in size. The size is limited due to SMA
actuators applied to the prototype. In this paper, we build
a tensegrity robot prototype of almost 600 mm in size. We
will apply pneumatic soft actuators, which can generate
larger forces than SMA actuators can, into the tensegrity
robot prototype. Also, we will examine if the prototype can
perform successive rolling over the ground. The rest of this
manuscript is organized as follows. Section II introduces
rolling tensegrity robots and their geometric description.
Section III briefly describes the dynamics of tensegrity
robot rolling. Section IV shows experimental results. Finally,
section V provides conclusion and future works.

II. ROLLING TENSEGRITY ROBOT

A. Six-strut Tensegrity Robot

Figure 1 shows a prototype of a six-strut tensegrity robot.
This prototype consists of 6 rigid struts and 24 pneumatic
McKibben actuators. Note that McKibben actuators exhibit

!"#!$%&&&$%'()*'+(,-'+.$/-'0)*)'1)$-'$2-3-(,14$+'5$67(-8+(,-'
2,9)*/)'(*):$;+,'($<+7.:$=,'')4-(+:$>;6
=+?$#@A#B:$!"#!
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Figure 8: Tensegrity icosahedron
controlled by 24 pneumatic
actuators (from [18])

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Successive rolling of a six-strut tensegrity robot. The prototype can
perform a successive rolling over a flat ground by applying air pressure to
a sequence of actuator pairs.

much air pressure is required to perform transitions among
contacts to conclude that transitions in category PP are
suitable for successive rolling of a tensegrity robot.

Future works include

(a) planning of a sequence of driving actuators for a
tensegrity robot to follow a given path,

(b) locomotion of a tensegrity robot over rough terrain,
(c) detection of orientation of a tensegrity robot,
(d) dynamic simulation of the rolling of a six-strut tenseg-

rity robot,
(e) miniaturized pneumatic devices for internally powered

locomotion of a tensegrity robot.

In this paper, we have found possible transitions among
contacts and how much air pressure is needed for each
transition. Based on this result, we will establish a method
to determine a sequence of driving actuators that enables
a tensegrity robot to follow a given path on the ground.
We have focused on the tensegrity robot locomotion over
a flat ground. We will apply the robot to the locomotion
over rough terrain to investigate the performance of the robot
experimentally. It is needed to detect the orientation of a
tensegrity robot and to identify its contacting triangle to
determine pneumatic McKibben actuators to be driven. We
will apply a set of accelerometers to detect the orientation
of a tensegrity robot. Also, we will build simulation of
the rolling of a tensegrity robot so that we can assess the

performance of the robot via simulation. Current prototype
is externally powered; a compressor outside a tensegrity
robot provides air pressure to drive pneumatic actuators. Our
prototype has space enough to install the pneumatic system
inside its body. In addition, we have already developed
miniaturized pneumatic valves [20], which can be installed
inside our tensegrity robot. We will apply this technology
to our prototype so that the pneumatic system including air
sources, control valves, and micro controllers are installed
inside the robot.
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Figure 9: Example of a gait obtained by
manually actuating the edges of the tenseg-
rity robot (from [18])

Atıl Iscen et al. proposed an open loop control policy based on sinusoidal actuators co-
evolved in order to maximize the distance traveled by the tensegrity robot[19]. The actu-
ators act on the rest length ` of the springs as: `(t) = A sin(ωt+ φ) + ¯̀, where A, ω, φ and
¯̀ are evolved within an evolutionary framework embedded in a physics simulator. Results
show that the tensegrity robot is able to learn a rolling gait after about 10’000 generations.
The disadvantage with this method however is that the robot cannot be steered and any
unexpected obstacle or bump on the ground can stop the robot and make it unable to roll
for the entire simulation. Also, any different starting position will amount to a different
set of evolved parameters.
Ken Caluwaerts et al. developed a closed-loop control strategy based on reservoir com-
puting [20]. The idea is to generate a signal using a central pattern generator (CPG) and
evolve parameters of a neural network that is used to tune its oscillatory output. A bias
and non-linearities are added to the resulting signal by computing its hyperbolic tangent.
The output signal is then used to control the robot actuators. In this paper, the authors
used a Matsuoka oscillator to generate the basic oscillatory signal whose output was then
compared to a teaching target signal. This control strategy has the advantage of requir-
ing few computations, as the command signal is previously learned through a teaching
phase and requires only simple matrix multiplications in the running phase. Moreover,
this method uses feedback from the strings tension to estimate the robot’s state, allowing
it to correct the motor commands in order to come back to the target configuration and
can therefore recover from shocks, obstacles and unexpected terrain configurations.
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4.3 Central Pattern Generators Based Control
Central pattern generators (CPGs) are neural networks that can produce rhythmic pat-
terned outputs without rhythmic sensory or central input[21]. Rhythmic neural activity is
observed in both vertebrate and invertebrate animals[22] and in particular in neural net-
works responsible for locomotion[23]. CPGs are well adapted to cope with non-linearities
and the great compliance inherent to animal organisms. As a consequence, CPGs have
been widely studied as controllers in the field of robotics, a review by Auke Ijspeert[24]
gives an overview of the use of central pattern generators for animal and robot locomotion.

ventilatory neuropil and a large diameter (35–50 �m) axon exiting the
ganglion via the levator nerve and running in the branch known to
contain these afferents (Pasztor 1969). The three oval organ afferents
have essentially identical central morphologies and therefore cannot
be individually identified, and the physiological results presented here
are typical of all intracellular recordings from single afferents.

R E S U L T S

In the absence of CPG activity, the resting potential of oval
organ afferents was �55 � 4.2 mV (n � 16). The membrane
potential was stable during pauses in ventilation, and no dis-
crete postsynaptic potentials (PSPs) were observed in the cell
(Fig. 1A) either spontaneously or when levator and depressor
motor nerves were stimulated antidromically. During the ex-
pression of the forward ventilation motor pattern, the mem-
brane potential of the neuron oscillated in phase with the
ventilatory motor output and was hyperpolarized with respect
to the resting membrane potential. The amplitude of the oscil-
lation was 22� 3.5 mV (n � 16). The inhibitory nature of this
oscillation was confirmed by observing the decrease in peak-
to-peak amplitude of the oscillation during the injection of
hyperpolarizing current with a reversal potential of approxi-
mately�78 mV. In addition, the input resistance of the neuron
decreased by �30% during the hyperpolarized phase as deter-
mined by the injection of brief hyperpolarizing (0.5 nA, 30 ms)
current pulses.

When the ventilatory motor output transiently switched from
forward to reverse ventilation, the oscillation in the membrane
potential of the afferent continued in phase with the motor
output and remained coincident with the D1 depressor motor
neuron burst (Fig. 1B). There was a small depolarizing DC
shift in the oscillation of 2–3 mV, and the peak-to-peak am-
plitude of the membrane potential oscillation initially increased
relative to the magnitude of the oscillation observed during
forward ventilation and then steadily decreased to the initial
level during the reverse interval. In some recordings discrete
PSPs could be resolved on the depolarizing phase of the
oscillation during reversed ventilation. The origin of these
PSPs is not known, but they were not correlated with any
motor neuron spikes occurring during the depressor burst and
may arise from the interneuron (RSi) that mediates the switch
from forward to reverse ventilation (DiCaprio 1990).
The ability of input from an oval organ afferent to perturb

the ventilatory rhythm was assessed by compiling a phase
response curve that describes the phase shift in the motor
output pattern caused by the injection of brief current pulses
into the afferent at different phases of the ventilatory cycle
(Fig. 2). Depolarizing or hyperpolarizing pulses at ampli-
tudes of up to 6 nA applied during the portion of the cycle
when the neuron was hyperpolarized (phase range of 0.5–
0.95) had no effect on the timing of the motor pattern.
Depolarizing pulses (open triangles) injected early in the
cycle (beginning of the depressor burst) caused a phase
advance that decreased in magnitude with increasing stim-
ulus phase until an increasing phase delay was evoked at a
stimulus phase greater than 0.25. Hyperpolarizing pulses
(Fig. 2, filled circles) caused a large phase delay when
applied early in the cycle, which abruptly switched to a large

FIG. 2. Resetting of the motor pattern caused by injecting �1-nA,
60-ms current pulses into an oval organ afferent. The start of the ventilatory
cycle (phase � 0) was arbitrarily taken to be the start of the depressor
motor burst. The phase shift in the motor pattern was calculated as, phase
shift (tb � ts)/tb, where tb is the mean duration of the ventilatory cycle
before the stimulus pulse (3 � n � 5) and ts is the duration of the
ventilatory cycle when the stimulus pulse was applied. Positive values of
phase shift denote a phase advance, and negative values denote a phase
delay of the ventilatory motor pattern. Phase shift data were only calculated
when the variation of the mean cycle period before and after the stimulus
pulse was �5%. Open triangles indicate depolarizing pulses, and filled
circles are hyperpolarizing pulses.

FIG. 1. Intracellular recording from an oval organ afferent during forward
and reverse ventilation. A: during a pause in ventilation the resting membrane
potential of the cell is �56 mV. Activity of the ventilatory central pattern
generator is associated with a large amplitude cyclic hyperpolarizing oscilla-
tion in the membrane potential of the afferent in phase with the depressor D1
motor burst. B: when the motor pattern spontaneously switched to reverse
ventilation, the oscillation in the membrane potential of the afferent continued
in phase with the D1 motor activity. During reverse ventilation, the recruitment
order of levator and depressor subgroups is reversed.

951GATING OF AFFERENT INPUT

 at EPFL on July 23, 2013
http://jn.physiology.org/
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Figure 10: Generation of rhythmic patterns by a crab’s central pattern generator and a
mathematical model tuned to reproduce the same type of signal (modified from [25])

Oscillatory output of CPGs can be modeled using dynamical systems[24]. The design of
these dynamical systems is usually not an easy task and require a large amount of parameter
tuning. Nevertheless, they allow for a greater level of abstraction while still reflecting
the main properties of central pattern generators. For instance, non-linear dynamical
systems exhibiting stable limit cycles (e.g. Van der Pol oscillators, Hopf oscillators, etc.)
can be created to simulate rhythmic signal generation as illustrated on figure 10. These
mathematical systems have the desired property to be stable to perturbations, to easily
encode multi-dimensional periodic patterns and, by tuning the right parameters, they can
be easily modulated in frequency and amplitude[26][27] (see figure 11). Furthermore, they
react very smoothly to any disturbance that can perturb the system.
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(b) Evolution of the state variables of the CPG

Fig. 2. Figure 2(a) shows the input signal to learn, Pteach, in the upper graph
and the result of learning Qlearned in the lower graph. It is obvious that the
network correctly learned the input pattern. Figure 2(b) shows the evolution
of the state variables of the generic CPG during learning of an input signal
(Pteach = 0.8 sin(15t) + cos(30t) − 1.4 sin(45t) − 0.5 cos(60t)) and the
evolution of the error of learning. The upper graph is a plot of the error, defined
by error = ‖Pteach − Qlearned‖. The 3 other graphs show the evolution
of the frequencies, ωi, the amplitudes, αi and the phases, φi. The variables
for each oscillator are plotted, variables of oscillator 0 are the plain lines,
variables for oscillator 1 are the dotted-dashed lines, variables for oscillator
2 are the dotted lines and the dashed lines represent oscillator 3. The initial
conditions are αi(0) = φi(0) = 0, xi(0) = 1, yi(0) = 0 ∀i, µ = 1, γ = 8,
ε = 0.9, η = 0.5 and τ = 2. The frequencies ωi(0) are uniformly distributed
from 6 to 70.

(no more input nor feedback loop) and the periodic signal stays
encoded into the network of oscillators. The learning process
is embedded in the equations, there is no need of any external
optimization or learning algorithm. In Section III we will see
how this concept of generic CPG can be extended to learn
multidimensional signals.

B. Properties of the generic CPG

In this section, we present a numerical experiment where the
generic CPG learns a simple signal Pteach = 0.8 sin(15t) +
cos(30t) − 1.4 sin(45t) − 0.5 cos(60t). The network we use
is composed of 4 oscillators. Figure 2 shows the result of
the experiment. An interesting aspect of this generic CPG is
that the frequencies of the oscillators are first adapted, each
oscillator converges to one of the frequency component 15,
30, 45 and 60. Only when an oscillator matches the frequency
of the teaching signal is the corresponding amplitude adapted
and then the corresponding frequency component disappears
from the signal F (t), as can be seen by the sudden decrease in
the error. The phase variables stabilize when the involved os-
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Fig. 3. Figure 3(a) presents the evolution of the output of the generic CPG
when perturbed. At time tp = 1 a perturbation occurs on all the oscillators of
the CPG. We clearly see that the CPG quickly recovers its original behavior,
thus proving the stability properties of the system. Figure 3(b) shows the
behavior of the system when the amplitude (α is changed. At time t = 2, the
amplitude is divided by 2 and at time t = 4.5 the amplitude is multiplied
by 3. Figure 3(c) shows the behavior of the network when the frequency (ω
is changed. At time t = 2 the frequency is divided by 2 and at time t = 5
frequency is multiplied by 3. In both graphs, we can notice the smoothness
of the trajectory when the parameters are changed.

cillators have their frequencies correctly tuned. After learning,
the periodic signal is encoded in the network of oscillators, as
can be seen in Figure 2(a).

If there are not enough oscillators to code for all the
frequency components of the teaching signal, the system will
only learn the frequency components with the more power.
Thus, the learned trajectory will only be an approximation
of the teaching one. However, if there are more oscillators
than frequency components to learn, either some oscillators
will not converge to any frequency and their contribution to
the learned signal will be null (α = 0) or some frequency
components will be coded by several oscillators and the sum
of the corresponding αi will match the amplitude of the
frequency component.

This generic CPG possesses intrinsic properties of stability
that are inherent to the Hopf oscillator, which has a structurally
stable limit cycle. The CPG can thus produce trajectories that
are stable to perturbations. This can be useful when integrating
sensory feedback in the CPG to be sure that the sensory
information will be forgotten as soon as it disappears from
the environment.

Another important aspect of the CPG is that it allows
easy modulation of the amplitude and the frequency of the
trajectory. Since the frequency and amplitude are linearly
related to the vectors "ω and "α, simple modulation of these
vectors can generate an infinite variation of stable trajectories
from the learned input. Because of the properties of coupled
oscillators, modulation of these parameters is always smooth
and thus interesting for trajectory generation in a robot. Some

!"#$

Figure 11: Modulation of a dynamical system output modeling a CPG (from [27]).

Another property that can be embedded in dynamical system is an adaptive frequency
behavior where the system is able to synchronize to any input signal. This property enables
for instance complex signal generation from a series of simple sinusoidal outputs[27] and
allows for learning phases in which a CPG can be trained to accurately adapt to complex
environmental constrains. This last feature has been extensively used in the development
of CPG controllers for tensegrity structures as presented in section 6.6.
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5 Physics Simulator
Physics simulation of tensegrity structures and their interaction with the environment
was simulated using the NASA Tensegrity Robotics Toolkit (NTRT)1. NTRT is built on
top of the open source Bullet physics engine developed mainly for gaming and animation
purposes[28]. It uses an hybrid impulse and constraint-based engine to solve the equations
of motions of the simulated bodies. The main advantages of the Bullet library, that justify
our choice as NTRT’s core physics simulator are a variable time stepping, a library modeling
rigid body - soft body interaction, the possibility to run real time simulations, and the
overall physically accurate performances of the engine (see study by Boing et al.[29] for
a detailed analysis of Bullet’s performances). Relevant experiments assessing the physical
accuracy of the simulator for tensegrity robots are carried out in section 8.

Figure 12: Simple class 1 prism tensegrity structure simulated in the NTRT physics engine.

In this section we will define the different tools that allow us to accurately simulate tenseg-
rity robots in realistic environments, describe the tensegrity robot model used for the
different experiments presented in the later sections and explain how the various libraries
are embedded. A detailed listing of the NTRT physical properties used in this work are
presented in section 12.

1The NASA Tensegrity Robotics Toolkit (NTRT) is soon to be released open source, latest news can
be found on the official project’s website http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity
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5.1 Tensile Components
Bullet provides a library for the modeling of elastic components as a chain of connected
rigid bodies that can be used to model tensile elements of tensegrity structures. However,
this implementation has been discovered to introduce free energy in the system, allowing
the tensegrity to spin on itself in a way that obviously breaks the laws of conservation of
energy. In order to solve this problem, NTRT implements a new class of hookean springs.
This new class models tensile elements (or muscles) as massless and shapeless elements
that are attached to rigid bodies by two anchor points. These muscles have an editable
rest length and can apply a force to their connected bodies when in extension. The force
applied by a muscle i is computed according to the following set of equations:




Fi = ki(`i − li)− η

(l(t)i − l(t−1)
i )

dt
, li > `i

0 , otherwise

Where ki is the spring constant of muscle i, `i and li are its rest length and actual length
respectively, η is a damping coefficient and dt is the simulation time step. With this spring
model, the muscle applies a force to its rigid bodies if and only if it is in extension and
goes slack otherwise. Obviously, with this implementation, two connected rigid bodies
experience an equal and opposite force as expected from Newton’s third law.

Note that the muscles as modeled here cannot experience contact forces or shocks as they do
not have any physical shape. They can be seen as a set of physical parameters: rest length,
length, anchor points and forces. As a consequence, more realistic strings models have to
be implemented to deal with complex interactions with ground objects, entanglements, etc.
However, it is possible to approximate massive springs by adding intermediary masses and,
instead of modeling one full spring, add three distinct springs in-between as illustrated on
figure 13. This type of model has also the advantage of reflecting the design of some
tensegrity robots such as the one used for hardware experiments presented in section 8.
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5.4 Actuators and Controls
Actuation of the muscles is performed by either increasing or decreasing the rest length of
the springs. This choice is justified to keep consistency with other simulation experiments
and results and by the following physical argument:

Imagine the simple undamped planar spring - mass system as represented on figure 16. We
assume that each spring has a rest length given by � and �c and we choose a coordinate
system with the Ox axis pointing to the right and denote by x1 and x2 the horizontal
position of mass m1 and m2 respectively.

m1 m2

k kc k

Figure 16: planar spring - mass system

The forces F1 and F2 applied on each of the masses can be easily computed:

F1 = k(x1 − �) + kc(x2 − x1 − �c)
F2 = k(x2 − �) + kc(x1 − x2 − �c)

and the equations of motion are given by Newton’s second law:

mẍ1 = k(x1 − �) + kc(x2 − x1 − �c) (5.1)
mẍ2 = k(x2 − �) + kc(x1 − x2 − �c) (5.2)

The general solution of these two equations for � = �c = 0 is of the form:

x1(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2)
x2(t) = A cos(ω1t+ φ1) − B cos(ω2t+ φ2)

with A,B,φ1,φ2 ∈ R and ω1,ω2 ∈ R+. Hence, a general solution for (5.1) and (5.2) is of
the form:

x̂1(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2) + α

x̂2(t) = A cos(ω1t+ φ1) − B cos(ω2t+ φ2) + β

with α, β ∈ R. By substitution in (5.1) and (5.2), this gives:

0 = kα + kc(β − α) − k� − kc�c

0 = kβ + kc(α − β) − k� − kc�c
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Figure 11: Schematic view of a 3-segment muscle, allowing to account for springs mass
and accurately simulate real tensegrity tensile components
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Figure 11: Schematic view of a 3-segment muscle, allowing to account for springs mass
and accurately simulate real tensegrity tensile components
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Figure 13: Schematic view of a 3-segment muscle, allowing to account for springs mass
and accurately simulate real tensegrity tensile components.
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5.2 Terrain Configurations
The NTRT simulator allows also the modeling of various terrains that can be used to test
the performances of the robot’s controllers. Figures 14, 15, 16 and 17 present some of
these different basic terrain configurations. Any combination of these terrain can also be
simulated allowing the creation of a wide variety of test platforms.

Figure 14: flat regular terrain Figure 15: 8◦ slope

Figure 16: regular bumps Figure 17: random terrain configuration

These different terrains are used as test beds for our different control algorithms. They
can also be used as a reference benchmark to compare the performances of different control
strategies.
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5.3 The Tensegrity Icosahedron
The tensegrity robot used for the simulations is composed of 6 struts (compressive elements)
connected together by 24 actuated elastic strings (tensile elements). The structure forms
an icosahedron with 8 regular triangular faces and 12 non-regular isosceles triangles. A
central payload is maintained in the center of the robot by 12 actuated elastic springs.
Each strut is made of an homogeneous cylinder ended up by two identical spheres. The
tensile elements are attached to the struts at the junction point between the spheres and
the cylinder. A model of the prototype is presented on figure 18 below.

tensile
elements

compression
elements

payload

Figure 18: The tensegrity icosahedron as modeled in the NTRT simulator. The structure
consists of 6 compression elements (struts), 24 outer and 12 inner elastic springs. A payload
is attached to the center of the structure, each string can be actuated independently.

In order to model a realistic robot, we choose the physical properties of the tensegrity
according to previous work by Atıl İşçen et al. [11] and according to a thorough design
study for a novel tensegrity prototype (see section 8). The main physical parameters are
summarized in the table below:

mass [kg] length [m] k [N/m]
struts 1.0 1.0 ∞

payload 5.0 0.1 ∞
inner strings 0.0 0.45 1000
outer strings 0.0 0.53 1000

Note that we refer to inner strings as the strings connecting the struts to the central payload
and outer strings as the strings connecting the struts together. The length of the payload
is defined as the diameter of the sphere and the length of the strings refers to their initial
rest length. A full detailed listing of the physical properties of rigid and tensile elements
is presented in section 12.
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5.4 Actuators and Controls
Actuation of the muscles is performed by either increasing or decreasing the rest length of
the springs. This choice is justified to keep consistency with previous simulation experi-
ments and results and by the following physical argument:

Imagine the simple undamped planar spring - mass system as represented on figure 19. We
assume that each spring has a rest length given by ` and `c and we choose a coordinate
system with the Ox axis pointing to the right and denote by x1 and x2 the horizontal
position of mass m1 and m2 respectively.

m1 m2

k kc k

Figure 19: planar spring - mass system

The forces F1 and F2 applied on each of the masses can be easily computed:

F1 = k(x1 − `) + kc(x2 − x1 − `c)
F2 = k(x2 − `) + kc(x1 − x2 − `c)

and the equations of motion are given by Newton’s second law:

mẍ1 = k(x1 − `) + kc(x2 − x1 − `c) (5.1)
mẍ2 = k(x2 − `) + kc(x1 − x2 − `c) (5.2)

The general solution of these two equations for ` = `c = 0 is of the form:

x1(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2)
x2(t) = A cos(ω1t+ φ1)−B cos(ω2t+ φ2)

with A,B, φ1, φ2 ∈ R and ω1, ω2 ∈ R+. Hence, a general solution for (5.1) and (5.2) is of
the form:

x̂1(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2) + α

x̂2(t) = A cos(ω1t+ φ1)−B cos(ω2t+ φ2) + β

with α, β ∈ R. By substitution in (5.1) and (5.2), this gives:

0 = kα + kc(β − α)− k`− kc`c
0 = kβ + kc(α− β)− k`− kc`c
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and thus we find α = β = `+ kc/k`c yielding:

x̂1(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2) + `+ kc/k `c

x̂2(t) = A cos(ω1t+ φ1)−B cos(ω2t+ φ2) + `+ kc/k `c

Since A,B, ω1, ω2, φ1, φ2 are independent of ` and `c, we find that the position of the masses
depends linearly on the rest length of the springs. This derivation justifies the choice of
the spring’s rest length as a control parameter. Note that, in higher dimensions, angles
between struts and springs induce non-linearities that break this simple linear control law.

The robot possesses a motor connected to each string acting on the rest length. Each
motor has a limit velocity and a limit acceleration. When the desired rest length is assign
to the controller, the motor rotates until the new rest length is as close as possible to the
assigned length. Observe that stiff strings can be approximated by springs having a very
large spring constant k. In that particular case, the rest length and the actual length of the
spring are indistinguishable and, as a result, a motor displacement of length d corresponds
to the same actual displacement of the physical string. This result is used to accurately
model motors and actuators of real tensegrity robot prototypes, as presented in section 8.

The actuation of the motors is performed via an impedance controller that imposes a
desired dynamic behavior to the interaction between the robot and its environment, pre-
venting it to induce too large forces in the tensile components of the structure. In that
way, the robot can safely deal with uncertain geometric characteristics of the environments
and dynamically adapt to its physical properties (e.g. stiffness, damping, friction, etc.) in
a complementary way [30]. Moreover, Orki et al. used a formulation of impedance control
in a two dimensional caterpillar tensegrity robot [31] and, more recently, Tietz et al. used
the same impedance controller approach to control the Tetraspine robot [12] presented
in section 3.2. A mathematical description of the impedance controller is introduced in
section 6.2.

5.5 Codyn
We use the Codyn library[32] in order to model CPGs/dynamical systems within the
physics simulation. Codyn is an open source software framework that provides objects,
methods and algorithms to mathematically describe and solve the state of a dynamical
system in parallel to the physical simulation. It has also the advantage of being easily
embedded in an evolutionary framework.
Codyn stores the dynamical system as an object called a node that can be coupled to
other nodes and therefore allows the user to create complex networks of coupled oscillators.
Each node contains information on its current state, i.e., the current value of its different
variables and their associated mathematical expression. The state of the network can be
updated using numerical integrators that are part of the framework. In this work, we used
a 4th order Runge-Kutta (RK4) method to obtain sufficient precision and stability on the
dynamical systems outputs.
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Page 1 of 1

temp.xml 29/7/13 3:37 AM

node "oscillator"
    {
        ## x state of Hopf oscillator
        ! = ""_x # ($ - r2) # x - % # y"

        ## y state of Hopf oscillator
        & = ""_y # ($ - r2) # y + % # x"

        # Initial values outside of fixed point
        x = 0
        y = 1

        ## Desired amplitude
        target_amplitude = 1

        ## Desired frequency
        target_frequency = 1

        ## Instantaneous amplitude
        r = "hypot(x, y)"

        ## Desired amplitude'. Controls the Hopf bifurcation.
        $ = "target_amplitude'"

        ## Gain on amplitude
        ""_{x,y}" = """

        ## Angular frequency
        % = "2 # ( # target_frequency"

        ## Amplitude squared
        r2 = "x' + y'"

        ## Output variable
        ) = "x"
    }

Figure 20: Example of a Codyn file describing a simple Hopf oscillator represented math-
ematically by the system of equations (5.3)

Dynamical systems are defined in .cdn files that can be directly loaded in the simulator.
Example of a Hopf oscillator in Codyn syntax is presented in figure 20. The corresponding
mathematical model is described by the system of equations below:




ẋ = γx(µ− r2)x− ωy
ẏ = γy(µ− r2)y + ωx

(5.3)

with r =
√
x2 + y2 and initial conditions x(0) = 0, y(0) = 1.

Once the simulation is running, the dynamical system can receive inputs from the simula-
tion and gives outputs once the new state of the system is computed. Figure 21 gives an
overview of the simulation flow with all main steps of the run.

- 17 -



Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

!"##$%&

'()&
*'+,-./&

012$,3.4$&
'+.%5+##$5&

6+%+5&
'+113.,&

7$.8$95:%-&
;+<+%&

��t

�o,�v,�h, ...

�T , ��

�l

move
feedback

Figure 21: Flow diagram schematizing the operating procedure of the simulator. The
CPG, embedded in the Codyn library, receives feedback data from Bullet (orientation,
speed, heights, etc.) and uses this information to compute the next state of the CPG and
the new resulting output `t. This new target rest length is then given to the impedance
controller that will compute the resulting target tension and determine the actual rest
lengths ` that will be given to the motor command. The motor actuator compares the
current rest length value to the new input and moves a distance l towards the target. The
resulting changes affects the tensegrity robot that will move and interact with the Bullet
environment. The cycle starts again.
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6 Control Algorithms
6.1 Challenges
Control of tensegrity structures represents a challenge in many different ways. The intrinsic
compliance of the structure makes it unsuitable to most control algorithms used in classical
robotics. In fact, their great compliance induces oscillatory motion and non-linearities that
are usually avoided in traditional control design. The unusual structure that tensegrity
robots usually exhibits, where actuators are embedded within the system itself is also an-
other aspect of this complexity that control design has to deal with. And, ultimately, due
to the relative novelty of this field of research, the scientific data addressing locomotion of
tensegrity structures is rather limited. It is known however that tensegrity structures are
present in Nature to a large extend, in both simple unicellular organism to complex ver-
tebrate mammals that are able of very accurate, robust and energy efficient control. The
structures of musculo-skeletal systems itself resemble closely the one of tensegrity systems.
Nature can therefore be seen as an important source of inspiration for control strategies
that can deal with and take advantage of these features novel to robotics. For that same
reason, central pattern generators are the typical approach that can play a critical role in
that direction.

Due to the fairly round shape of the tensegrity icosahedron, the most efficient way to make
it move is obviously to make it tilt and, by pulling on the right strings at the right time,
start storing a sufficient amount of rotational energy to make it roll smoothly. Interestingly,
all known animals of size similar to the tensegrity robot, similar referring here on the scale
at which identical physics phenomena occur, that use rolling as a mean of displacement
achieve it in a passive way[33], for instance, as the wheel spider, by moving its limbs to give
the body a circular shape and use potential energy to roll down a slope. As a result, no
data coming from anatomical or biomechanical studies of rolling animals can be directly
used as a source of inspiration for an active controller design.

We present in this section the different control strategies developed, the results obtained
and, for each approach, we formulate a critical analysis of the performances. We start
first by introducing the control principle used to move the tensegrity icosahedron, we then
describe a reactive control algorithm used to move the robot over various types of terrains.
We then explore different more classical approaches namely, inverse kinematics algorithms
and a gyroscopic based control approach. Later on, we present two different types of CPG
based on frequency adaptive oscillators used to learn a regular rolling gait and reproduce a
locomotion pattern. At last, we explore the possibility of merging several control techniques
to take advantage of the different approaches and improve the locomotion capabilities of
the tensegrity robot.
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6.2 Principle
The tensegrity structure is controlled using the torque created by the displacement of the
center of mass from the ground contact surface as illustrated on figure 22. This is achieved
in 2 different ways: the heading is determined by the displacement of the central payload
relative to its rest position in the center of the structure and speed is determined by the
actuation of the outer shell strings.

contact surface

N

mg

τ≠0

Figure 22: torque τ applied to the whole structure by a displacement of the center of mass

The inner strings were actuated using three different approaches, a reactive approach, an
inverse kinematics approach and a CPG approach (see sections 6.3, 6.4 and 6.6 respec-
tively). The outer strings where controlled in a different way. The goal of their dynamics
is to reduce the contact surface with the ground. This affects the motion in several ways.
First, it allows the creation of greater torques with the same payload displacement. Sec-
ond, it enables a smoother rolling behavior of the whole structure, preventing shocks of
the rods with the ground. As a consequence, playing with the reactivity of the lengths
corrections can affect the global angular speed of the tensegrity structure by reducing or
increasing the magnitude and direction of the ground contact forces.

The height of each string relative to the ground is computed using IR-like distance sensors
located at the end of each rods (see figure 23). The height assigned to each string is
computed as the average of the two end points height. These measurements are performed
continuously during the simulations and the height parameter is constantly updated. If
the tensegrity needs to move on uneven ground surfaces, it is important to know if the
displacement occurs in the desired direction. Typically in the presence of a slope, the
reduction of the ground contact surface can trigger the robot to roll down the slope without
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any control. In order to take this into account, we added a measure of the velocity. The
velocity is computed using the global center of mass displacement between two consecutive
time steps and the heading direction vector v:

velocity = v · p
(n) − p(n−1)

dt
(6.1)

where p(n) is the 3d position of the center of mass at time tn and dt = tn − tn−1 is the
simulation time step. With this method, the velocity is a scalar number and has a sign
depending on the heading of the tensegrity (positive if heading in the desired direction and
negative otherwise). It can thus be used as a feedback to influence the strings command.
The strings rest lengths are computed using the following actuation rule:





˙̀
i = w (`0 + min(h2

i , h0)− `i) , velocity ≥ 0
˙̀
i = w

(¯̀− `i
)

, otherwise
(6.2)

where the velocity is computed according to (6.1), hi is the height of string i as measured
from the distance sensors, `i is its current rest length, `0, h0 and ¯̀ are constant parame-
ters and w ∈ R+ accounts for the time scale at which lengths corrections occur. `0 and
h0 represent the offset rest length of the strings and the maximum height measurement,
respectively. These parameters ensure that the value of `i does not becomes negative or
higher than a certain threshold. The parameter ¯̀ represent the default rest length of the
strings that, if given as a command to all motors, puts the tensegrity in a stable position
on the ground.

IR-sensorIR-sensor

Figure 23: Schematic view of the IR-sensors firing to the ground. Distance sensors are
located at each rods end.
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With this actuation rule, two types of behavior occur, depending on the sign of the velocity
measurement:

• velocity ≥ 0
each string sees its rest length converge to a value between `0 and `0 + h0 depending
on its height with respect to the ground. As a result, the robot will see its upper
strings being relaxed while the lower strings will be more tensed, decreasing the space
between the anchored struts close to the ground thus reducing the global contact
surface of the tensegrity. As a consequence, the robot will be more likely to topple if
a force is applied on its side.

• velocity < 0
each string sees its rest length converge to ¯̀ yielding to an homogeneous distribution
of the forces within the structure. If ¯̀ is chosen large enough, the structure will relax
and augment its contact surface on the ground. As a result, the robot will increase
its stability and become hard to tilt on either side.

Motor commands adjusting the strings rest length are performed through impedance con-
trollers. The use of impedance controllers allows a smooth actuation of the string lengths
and avoids creation of too high tensions within the string network[30][31][12]. The com-
mands are computed using the following actuation rule:

Ti = T0 + k(`i − l) + η(Vi − V0) (6.3)

where Ti is the target tension, T0 is the offset tension, k is the elastic coefficient, `i the
current rest length, l the current length, η a viscosity coefficient and Vi and V0 the actual
and target velocity of the motors, respectively. In our simulation, we kept T0, k, η and V0
constant.
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6.3 Reactive Method
Keep in mind that the only parameter that can be controlled is the rest length of each
string. We denote by `i the rest length of the inner strings, li their actual lengths. The
global heading direction is defined by the unit vector v and the orientation of each string
is represented by the vectors vi. For each inner string we use the dot product di = v · vi
as feedback to control the position of the payload as follows:

˙̀
i = (`0 + diγ − li)w (6.4)
`i(0) = `0 (6.5)

where the weight w determine the reactivity of the system and γ < 0 is a fixed parameter.
Thus, without any external perturbation, the system has a stable equilibrium position at
`0 + diγ. With this implementation, the strings that have their orientation aligned with
the global heading see their rest length reduced and the strings pointing in the opposite
direction are elongated. The global result is a displacement of the payload in the direction
of the heading vector. See figures 24 and 25 below for a graphical representation of the
method.

v

v1

v3

v2
v4

�v · �v1 = −δ1

�v · �v2 = −δ2

�v · �v3 = δ1

�v · �v4 = δ2

F (�v · �v1) = −δ

F (�v · �v2) = −δ

F (�v · �v3) = +δ

F (�v · �v4) = +δ

�
(n)
1 = �

(n−1)
1 − δ

�
(n)
2 = �

(n−1)
2 − δ

�
(n)
3 = �

(n−1)
3 + δ

�
(n)
4 = �

(n−1)
4 + δ

v1

v4

Figure 24: computation of the new
rest lengths according to the strings
individual orientations ~vi (time t(n−1)).
Length corrections δ are computed
according to vectors ~vi.

v
v1’

v3’

v2’
v4’

Figure 25: the resulting effect is a displace-
ment of the central payload in the desired di-
rection ~v (time t(n) = t(n−1) +dt). The string
length modification is indicated by the col-
ored lines, dashed red if reduced and green if
elongated.

Note that the heading direction v can be chosen arbitrarily and can be adjusted dynam-
ically, enabling the steering of the robot. Furthermore, it can be chosen in an absolute
frame of reference or relative to the tensegrity orientation.
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Figure 26: feedback signal for the first
3 inner strings as a function of time.
Positive values of the feedback lead
to a shortening of the strings and vice
versa for negative values.

Figure 27: intensity of the feedback signal
of the second inner string as a function of
the payload position relative to the center of
mass and time

Figures 26 and 27 show the value over time of the feedback signal obtained using the
reactive control method. Several conclusions can be taken from these plots. First of all,
it appears clearly that the feedback signal has a very stable periodicity over time, inde-
pendently of the strings initial positions. This property is especially visible on figure 26.
Furthermore, on figure 27, where we plotted in addition the relative position of the payload
with respect to the center of mass, we can observe that the payload stays at all time within
a certain distance to the center of mass, as desired to create enough torque to flip the
robot. Again, the same repetitive pattern appears on the time axis.

With this implementation, we were able to obtain stable and smooth rolling gaits allowing
the tensegrity to roll up to 1m/s (1 body length per second) over flat terrain. The robot
could also handle slopes up to 8◦, bumpy terrain, obstacles and collisions2.

Possible improvements:
The main disadvantage of the reactive method as presented here is the large amount of
feedback required to actuate the motors. This can be a serious complication when it comes
to designing the real tensegrity hardware. This justifies the research for simpler methods,
based on the same physical principle but requiring less feedback information.

2videos of the controller in action can be found on:
http://biorob.epfl.ch/files/content/users/181078/files/reactive controller.avi

- 24 -

http://biorob.epfl.ch/files/content/users/181078/files/reactive_controller.avi


Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

6.4 Inverse Kinematics Method
6.4.1 First order IK

The inverse kinematic (IK) method presented here can be an alternative to the reactive
method. The idea is to apply the classical transpose Jacobian algorithm used in traditional
robotics to control the 3d position of the central payload. Because of the intrinsic compli-
ance of the tensegrity, the geometry of the robot is changing over time and an important
modification that we have to add to this method is the dynamical computation of the
Jacobian matrix to account for these changes of configuration.

The idea of this method is to define the 3d position of the central payload p = (p1, p2, p3)
as a function of the strings rest lengths ` = (`1, ..., `n). Mathematically, we can write
p = p(`). As a consequence, in first approximation, a small displacement δp of the
payload can be written as:

δpi ≈ pi(`(0)) +
n∑

j=1

∂pi(`(0))
∂`j

δ`j , i = 1, 2, 3

If we define now J the Jacobian matrix as J(p) =
[
∂pi

∂`j

]

ij

, we can rewrite the above as:

δp = p(0) + J
(
p(0)

)
δ`

This equation relates the payload displacement p(0) − δp to the change of rest lengths δ`.
We can therefore determine what should be the change of the rest lengths to have the
payload move in a certain direction. This can be expressed as:

δ` = J−1(p(0))
(
p(0) − δp

)

However, computing the inverse of the Jacobian matrix is a very costly and complicated
operation. Instead, we use the mathematical trick known as transpose Jacobian method
where we replace the inverse of J by its transpose to obtain:

δ` = αJT (p(0))∆p (6.6)

with α ∈ R+ and ∆p =
(
p(0) − δp

)
. This is relation allows us to compute the motor

commands (i.e., the change of rest lengths) to move the payload in any direction we want.
The main issue relies in the computation of the Jacobian matrix. In a static system made
of bars and joints only, this matrix is constant and can be computed very precisely using
appropriate mathematical tools. But in the case of a very compliant tensegrity structure,
the coefficients of the Jacobian matrix are time dependent. The idea is thus to recompute
the matrix coefficients dynamically using a finite difference method:

J(p) ≈

p

(n)
i − p(n−1)

i

`
(n)
j − `(n−1)

j



ij

(6.7)
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Using equation (6.6) and (6.7) we are now able to move the payload in any direction with
a feedback only on the payload position in space and each string’s rest length.
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Figure 28: feedback signal for the first
3 inner strings as a function of time.
Positive values of the feedback lead
to a shortening of the strings and vice
versa for negative values.

Figure 29: intensity of the feedback signal
of the second inner string as a function of
the payload position relative to the center of
mass and time

Similarly to what has been presented in the previous section, figures 28 and 29 above illus-
trate how the feedback signal varies over time and as a function of the payload position.
These plots, when compared to figures 26 and 27 emphasize the more irregular behavior of
the inverse kinematics method with respect to the reactive method. The feedback signal
is indeed much less regular and the distance between the payload and the center of mass
is significantly smaller at any given time.

The results obtained with these methods allow the tensegrity to roll up to 0.57m/s on flat
terrain. However the rolling gait obtained is much more chaotic than with the reactive
method. Moreover, some sudden and large corrections can occur unexpectedly. These
unstable features come form the non-linearities present in the tensegrity structure that
cannot be captured by this too simple first order method3.

3videos of the controller in action can be found on:
http://biorob.epfl.ch/files/content/users/181078/files/inverse kinematics controller.avi
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6.4.2 Second order IK

Again, the main drawback of the previous IK method are numerical inaccuracies due to
the first order approximation to compute the relation between δp and δ`. Since tensegrity
structures are by definition very compliant and oscillatory, higher order terms should be
added in order to account for these non-linear behaviors. A possible improvement consists
of extending the Taylor expansion to higher order terms, yielding (here up to 2nd order
terms):

δpi ≈ pi(`(0)) +
n∑

j=1

∂pi(`(0))
∂`j

δ`j + 1
2

n∑

j=1

n∑

k=1

∂2pi(`(0))
∂`j∂`k

δ`jδ`k , i = 1, 2, 3

or
δpi ≈ pi(`(0)) +

(
J(p(0))δ`

)
i
+ 1

2δ`
TH

(
pi(`(0))

)
δ` , i = 1, 2, 3 (6.8)

where H(pi) =
[
∂2pi

∂`j∂`k

]

jk

is the Hessian matrix associated to pi.

Considering (6.8), we define additionally ∆p = δp− p(`(0)) and f(δ`; ∆p) as

fi(δ`; ∆p) =
(
J(p(0))δ`

)
i
+ 1

2δ`
TH

(
pi(`(0))

)
δ`−∆pi , i = 1, 2, 3

The idea is, given a desired displacement of the payload in the 3d space ∆p, to find the
corresponding lengths change δ` that will lead to this displacement. This correspond to
finding δ` such that f = 0. Note however that this system is overdetermined, non linear
and might not possess a real solution. In order to bypass these difficulties, we can compute
an approximation of the solution using a quasi-newtonian iterative method. The idea is to
start with an arbitrary position, e.g. δ`0 = 0, and compute compute the next iteration as:

δ`k+1 = δ`k − J−1
k f(δ`k; ∆p) (6.9)

until convergence is achieved. J−1 denotes here the Moore-Penrose pseudo inverse of the

Jacobian defined by J =
[
∂fi

∂(δ`j)

]

ij

.

Note that this matrix is not the same as the one appearing in the Taylor expansion of p(`).
The pseudo inverse is computed using a singular value decomposition of the Jacobian ma-
trix J = UΣV ∗ where U is a unitary matrix, Σ is a rectangular diagonal matrix containing
the singular values of J , and V ∗ (the conjugate transpose of V) is a second unitary matrix.
Once the three matrices have been computed, the pseudo inverse can be found by a simple
matrix multiplication J−1 = V Σ−1U∗ with Σ−1 = diag(1/σi , i = 1, ..., n). An example of
the convergence of the numerical method is illustrated on figure 30.

- 27 -



Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

0 10 20 30 40 50 60
−50

−40

−30

−20

−10

0

10

20

30

# steps

 

 

f
1

f
2

f
3

Figure 30: Example of the convergence in ∼50 iterations of the quasi-Newton method for
∆p = (0.1, 0, 0.1), starting from δ`0 = 0 (plot of the 3 coordinates of f = (f1, f2, f3)).

Note that this method can theoretically be extended to any arbitrary order. We can
indeed imagine repeating the procedure and considering a kth order Taylor expansion
of the position and find the values of δ` such that f = 0 using the same quasi-Newton
method. Note however that the higher the k, the more overdetermine becomes the root
finding problem.
In the same idea, we can also define the position as a function of the rest length and its
derivative p = p(`; ˙̀ ) and apply the same method to obtain the values of δ`. Note that in
this case, the variations of the velocities δ ˙̀ are considered as parameters and not variables
since we supposed that only the rest length can be used as a control parameter.
The implementation of the aforementioned methods are however not presented in this work
as we want to keep the focus of this study as broad as possible and not narrow down to
the development of a specific inverse kinematics method.
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Possible improvements:
Of course this system is then much more complicated than the first order approximation and
requires therefore more complex and costly numerical techniques to be solved. Moreover,
convergence cannot be guaranteed as solutions may not exist or numerical instabilities
might drive the system out of the convergence region. Note also that in real hardware
these additional computations may lead to higher energy consumption and would require
a greater computational power in order to solve these equations in real time. Another
major drawback is the fact that the payload position depends only indirectly from the
strings rest lengths. As a result, the inverse kinematics might be ”mistaken” if two or more
antagonist motor commands are executed at the same time. Indeed, in this particular case,
a motor might reduce a given string’s rest length but still measure the payload moving
away from the string’s anchor point due to the other motors actions. This effect leads
to contradictory motor commands once the inverse kinematics algorithm is executed and,
unfortunately, these errors cannot be solved by better numerical accuracy or even higher
order methods.
A possible improvement that might address this issue would be to reduce the number of
strings that can be actuated. This would reduce both the complexity of the problem and
the mistakes happening when antagonist strings are actuated. However these errors would
always remain present at a certain level as they are inherent to the tensegrity physical
properties and to the control and feedback method we adopted.

6.5 Gyroscopic Method
An easy way to tackle the orientation issue is to use the physical properties of gyroscopes to
create torques in any given direction and keep track of a given orientation. The idea of the
method is to construct a gyroscope inside the central payload and change its orientation in
order to create a torque on the whole structure. The torque will tilt the payload, pulling
on the inner strings of the structure and thus creating a force on the ground pulling the
tensegrity forward. See figures 31 and 32 for a schematic explanation.

This method has the advantage of requiring no actuation of the inner muscles, all the forces
resulting from the payload twisting motion. Furthermore, the heading of the tensegrity
can be chosen quite easily as the gyroscope will try to keep its orientation if no external
force is applied. The control of the motion is also simplified as we reduce the problem of
actuating 12 strings to choosing the pitch, roll and yaw of the payload. A detailed physical
analysis of this method can be done on the model of the torsion pendulum.

With this implementation and the current physical shape (no modifications to the payload
size or inner strings tensions), we were able to achieve displacements of more than 53m
over 60 seconds of simulation (0.88m/s) by applying a torque of 35 Nm4. Note however

4videos of the controller in action can be found on:
http://biorob.epfl.ch/files/content/users/181078/files/gyroscopic controller.avi
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that irregular terrain configurations such as bumps and slopes cannot be handle as well
as with the reactive method as the force created by the twisting of the payload is limited
by the payload dimensions and the mass of the gyroscope. Furthermore, gyroscopic effects
are hard to accurately simulate and, to simplify the modelization, we artificially add a
constant force to twist the payload, reproducing the effect of a rotating mass being pulled
or pushed away from its rotation axis. It is also worth remarking that the torque necessary
to move the structure is relatively important thus requiring heavy and large gyroscopes
for a real physical implementation. These issues make the gyroscopic control method less
likely to be a feasible actuation method for the real icosahedron tensegrity robot.

τ = 0

Figure 31: Stable rest situation, no torque
is applied. The tensegrity is schematized
by the circular shape, the central
payload is connected by 4 inner muscles.

τ ≠ 0

F

v

Figure 32: Once a torque is applied, the cen-
tral payload is tilted and pull on the inner
strings. This motion creates a force F on the
ground moving the tensegrity forward.
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Figure 33: Three components of the angular velocity ω of the payload in the first seconds
of simulation. The maximum angular velocity corresponds to a frequency of 6.4Hz.
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Figure 33 highlights an interesting phenomenon that occurs when the torque applied to
the payload exceeds a certain threshold value. In the first few seconds of simulation, the
payload starts to spin around its Ox and Oy axis creating a regular movement swinging
the payload back and forth at a frequency of ca. 6.4Hz. This oscillatory motion greatly
improves the rolling as it enables the creation of short but large forces pulling the strings
and making the whole structure tilt on its side. Nonetheless, while the gyroscope based
control appears to be a potentially good actuation method, it is difficult to prove that the
same type of motion would also appear in a real physical tensegrity robot, due to physical
limitations within the physics simulator. This makes the gyroscope based method also
highly likely to fail as a real controller.

Possible improvements:
Of course the major drawback of tis method is the requirement for relatively heavy and
voluminous gyroscopes that have to be inserted in the payload structure. Also this method
is heavily dependent on the diameter of the payload, the bigger the diameter, the greater
the torque we can apply to the structure. As a result, the size of the payload would have to
be optimized to match both the motion and security requirements. Moreover, the tension
of the inner strings can be tuned to adapt to the magnitude of the force created on the
ground.

6.6 CPG and Adaptive Frequency Oscillators Method
Another approach is the storage of a stable gait obtained in simulation inside a central
pattern generator (CPG). The idea is to use as much feedback as needed in order to get a
smooth motion and then store the resulting periodic commands as a stable limit cycle of
a CPG. Once this process is done, the tensegrity can be driven with the CPG output with
much less feedback than before.

6.6.1 Arbitrary Waveform Oscillator

In order to be able to store and recreate different types of signals, we use a so called
arbitrary waveform oscillator (AWO)[34] which is a form of morphed oscillators developed
by Ajallooeian et al.[35]. The dynamical system driving the CPG is presented below. As
usual, we denote the muscle rest length by `i.

˙̀
i = γ(g(ϕi)− `i) +

dg(ϕi)
dϕi

ϕ̇i (6.10)

ϕ̇i = ωi +
∑

j

sin(ϕj − ϕi − φij) (6.11)

where the function g(ϕ) is a periodic and derivable function, γ ∈ R+ is a parameter ac-
counting for the systems time scale, ωi is the pulsation of the periodic output and φi,j is
the desired shift between signal i and j. Without any external perturbations, the system
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converges to `i,∞ = g(ϕi) where ϕi = ωt and ϕi−ϕj = mod (φij, 2π) ∀(i, j). In our case,
for geometrical reasons and for simplicity we choose g(ϕ) = A sin(ϕ), A ∈ R∗.

Furthermore, in order to synchronize to a periodic input signal fi(t) of pulsation ωin and
mean value f̄i, we add the following equation, inspired by Righetti et al. work on adaptive
frequency Hopf oscillators[26], driving the time evolution of ωi during the learning phase:

ω̇i = ε(fi(t)− f̄i)g(ϕi + π/2) (6.12)

where ε ∈ R+ is a parameter accounting for the time scale. When the learning phase is
completed, the value of ωi is held constant by setting ω̇i = 0 ∀i.

On figures 34 and 35, we can observe the convergence of the CPG pulsation ω to the input
signal pulsation ωin in an ideal case where the input signal is a simple sinusoidal function
f(t) = sin(2t).
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Figure 34: Time plot showing the
convergence of pulsation ω towards
the input signal ωin = 2 during the
learning phase
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Figure 35: Phase plot showing the conver-
gence towards a stable fixed point at ω = 2

On figures 36 and 37, we can see the synchronization of the CPG output (red) to the
learning signal (blue) during the learning phase. The signal here corresponds to the value
of the dot product di when the tensegrity is driven using only the reactive method (see
section 6.3). Each string possesses its own CPG that learns and creates its own output.
The perturbations and irregularities appearing between 0 to 15 seconds are due to a chaotic
motion where the tensegrity has not yet found a stable rolling pattern. After about 20
seconds, one can observe that the input signal becomes much more regular and periodic,
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this correspond to a stable rolling gait that can be well captured by the CPG as a sine
function. Note that the mean of the signal f̄ is dynamically updated in order to account
for signals that are constantly shifted above and below 0.

Once the learning phase is completed, the parameters of the CPG are kept constant and
the CPG output g(ϕi) is then used to command the rest lengths `i. If the CPG is able
to mimic perfectly the previous commands, we would expect to see the tensegrity rolling
with the same gait as with the reactive method but without the need for any orientation
feedbacks. Using the phase shift parameters φij (see equation (6.11)), we can also force
a delay between two (or more) oscillators. In some cases, for instance for diametrically
opposed strings, it is obvious that a phase shift of π would be appropriate (see figure 39 for
a graphical representation of the whole oscillator network). The value of the coefficients
φij can also be extracted by a careful analysis of the signals shift during the learning phase
and then be assigned to the corresponding coefficients.
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Figure 36: dynamic synchronization of CPG signal (string #3)
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Figure 37: dynamic synchronization of CPG signal (string #4).

This method has the advantage of requiring no (or almost no) feedback and thus only a very
small amount of computations. It can therefore be implemented easily on real hardware.
However, it is important to note that the dynamical system runs on a much larger time scale
than the perturbations disturbing the system. A tensegrity driven only by a CPG would
then only, in the best case, have a stable rolling gait on a flat, obstacle free terrain. This
effect is even accentuated by the inherent non-linear response that tensegrity structures
possess. As a result, it is necessary to include also a second control method that can work
on this smaller time scale and give an appropriate response to these external perturbations.

Simulations were performed where the tensegrity was driven during 50 seconds using the
reactive method. This first phase was used to synchronize the CPG output with the input
signal given to the robot (figures 37 and 36). Then, the controls were shifted to be driven
only by the CPG output and the learning phase was stopped. No further feedback was
used to drive the robot’s motion.
Results showed that the tensegrity could continue rolling for a few seconds but quickly
rolled on the side changing completely the orientation and being therefore unable to move
smoothly using the signal learned previously. After some time and random displacements,
the robot can fall back in the right position and keep rolling for some more time but
eventually falls back in an unwanted position. With this type of motion, only much small
travel distances were achieved compared to the reactive and inverse kinematics method.
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Possible improvements:
Two main drawbacks can be pointed out from our experiments. First, the tensegrity can
easily be perturbed and roll on the side without affecting the motor commands in any way
and, second, the synchronization of CPG signals is very sensitive to noise in the input signal,
resulting in non-negligible frequency drift in some strings actuators (see e.g. figure 36 and
its effect on the robot’s trajectory on figure 38). As a result, the tensegrity cannot keep
rolling on a stable gait for more than a few seconds. Even on flat and obstacle free terrain,
an open loop control is not sufficient to drive the robot smoothly. A good improvement
would be to mix the CPG approach with one of the technique discussed above. As stated
previously, the CPG could drive the global rolling motion, occurring on a large time scale,
while the corrections, occurring on a much smaller time scales would be done through an
inverse kinematics algorithm or a reactive control.
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Figure 38: 2D trajectory of the tensegrity (seen from above). The blue curve represents
the trajectory while the robot is driven by the reactive control algorithm and the CPG is in
the learning mode (50 seconds). The motion is very regular and the heading is maintained
throughout the whole period. The red trajectory represent the path traveled once the CPG
controller takes over (40 seconds). Due to the open loop implementation, the heading of
the robot cannot be maintained and the tensegrity ends up rolling in random directions.
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Figure 39: Schematic view of the whole oscillators network. Nodes 0-11 represent the
oscillators associated to the inner strings, nodes 12-35 represent the oscillators associated
to the outer strings. The central node represents the payload, where the orientation and
speed is computed and then shared to the other nodes through their common links (arrows).
(Figure created using the Codyn framework[32]).
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6.6.2 Hopf Oscillator

Due to the ball-like structure of the tensegrity, the signals we want to copy during the
rolling phase can be assumed as sinusoids. Thus, instead of AWOs, we can consider using
Hopf oscillators[36] defined by:

ẋ = γ(µ− (x2 + y2))x− ωy (6.13)
ẏ = γ(µ− (x2 + y2))y + ωx (6.14)

where γ is a time constant, µ is the target frequency and ω the target pulsation of the
signal. This dynamical system can be adapted to synchronize to any periodic input signal
f(t). The resulting adaptive frequency Hopf oscillator is defined by the following set of
equations:

ẋ = γ(µ− (x2 + y2))x− ωy + εf(t) (6.15)
ẏ = γ(µ− (x2 + y2))y + ωx (6.16)

ω̇ = −εf(t) y

x2 + y2 (6.17)

As with the AWO, we can now record the periodic signal during a learning phase and store
it as a stable limit cycle of the Hopf oscillator. This signal can later be used to drive the
tensegrity.
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Figure 40: Adaptive Hopf oscillator synching its output signal (red) to an periodic input
signal (blue). The dynamical system can reproduce a sinusoid with the same frequency
and phase once the learning signal is removed (50-90 sec).
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On figure 40 above, we can notice a coupling between the height signal (green), i.e. the
height of the muscle connecting the payload with the learning signal (red). This coupling
can be enforced by adding a new term to the dynamical system (6.13), (6.14). This
coupling will allow the oscillator to synchronize with the real tensegrity motion and enable
the system to deal with ground contact and unexpected perturbations that may occur
during the rolling. We denote by h(t) the height signal fed back by the IR-sensors, the
resulting dynamical system used for rolling is then given by:

ẋ = γ(µ− (x2 + y2))x− ωy − kh(t) (6.18)
ẏ = γ(µ− (x2 + y2))y + ωx (6.19)

with k ∈ R+ a coefficient. Adding the coupling term improves significantly the distance
that the tensegrity can roll, see figures 41 and 42 for a numerical example.
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Figure 41: 2D trajectory of the tensegrity (seen from above). The blue curve represents
the trajectory while the robot is driven by the reactive control algorithm and the CPG
is in the learning mode (50 seconds). The motion is very regular and the heading is
maintained throughout the whole period. The red trajectory represent the path traveled
once the CPG controller takes over (40 seconds).

The CPG is here driven purely open-loop and the tensegrity travels a total distance of
56.8m.
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Figure 42: 2D trajectory of the tensegrity (seen from above). The blue curve represents
the trajectory while the robot is driven by the reactive control algorithm and the CPG
is in the learning mode (50 seconds). The motion is very regular and the heading is
maintained throughout the whole period. The red trajectory represent the path traveled
once the CPG controller takes over (40 seconds).

The CPG receives here feed back from the payload strings height, the tensegrity
travels a total distance of 74.3m.

Possible improvements:
Hopf oscillators can synchronize very accurately to periodic input signal and are therefore
very well suited for learning motor commands for rolling tensegrities. Moreover, coupling
can be added using feedback signals obtained from data measured by the robot sensors.
This coupling enables the tensegrity to react to unexpected obstacles on the ground and
adapts the output signal of the oscillator to the real robots position. This allows the
tensegrity to roll faster and further.

However, while allowing longer rolling distances, this feedback does not control the robots
heading. As we can see on figures 41 and 42, the red trajectory does not maintain a constant
heading. As a consequence, additional parameters have to be added to the dynamical
system or a hybrid method, such as a mix CPG - inverse kinematics can be used.
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6.7 Hybrid CPG - Inverse Kinematics method
6.7.1 AWO and IK

The aim of this method is to close the loop of the AWO CPG in order to be able to control
the motion of the tensegrity. This approach is inspired by a previous work by Ajallooeian
et al.[37]. For this purpose, we add two terms χi and ξi to the original dynamical system
equations (6.10) and (6.11):

˙̀
i = γ(g(ϕi) + χi − `i) +

dg(ϕi)
dϕi

ϕ̇i + ξi (6.20)

ϕ̇i = ωi +
∑

j

sin(ϕj − ϕi − φij) (6.21)

These feedback terms will account for unpredicted movements of the tensegrity and perturb
the limit cycle of the dynamical system to let the robot come back on the desired trajectory.
Since these corrections have to be momentaneous, we impose a fading memory dynamic:

χ̇i = −λχi
ξ̇i = −µξi

with λ, µ ∈ R+.

To compute the values of χ and ξ, we use the second order kinematics method as presented
in section 6.4.2. The values of the coefficients are directly replaced by the output of the IK
algorithm. χ and ξ are updated if and only if the payload position lies on the opposite side
of the robots center of mass. In this way, the corrections are made only if the tensegrity
can potentially roll in a undesired direction. Note also that in order to use this method,
we need to know the position of the payload and the center of mass.

6.7.2 Hopf oscillators and IK

We can apply the same method to the adaptive frequency oscillator as presented in sec-
tion 6.6.2. We add the corrective term to the output of the oscillator. The resulting
dynamical system reads:

ẋ = γ(µ− (x2 + y2))(x− ξ(t))− ωy − kh(t) (6.22)
ẏ = γ(µ− (x2 + y2))y + ω(x− ξ(t)) (6.23)

where ξ(t) decreases exponentially with time. If the value of ξ(t) is constant over time, the
dynamical system converges asymptotically to x(t) = ξ [38]. Figure 43, when compared to
figures 41 and 42 illustrates the improvement in the robot’s trajectory and steerability5.

5videos of the controller in action can be found on:
http://biorob.epfl.ch/files/content/users/181078/files/CPG controller.avi
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Figure 43: 2D trajectory of the tensegrity (seen from above). The blue curve represents
the trajectory while the robot is driven by the reactive control algorithm and the CPG
is in the learning mode (50 seconds). The motion is very regular and the heading is
maintained throughout the whole period. The red trajectory represent the path traveled
once the CPG controller takes over (40 seconds).

The CPG is now coupled to the height signal and receives inputs from the second
order inverse kinematics algorithm in case it starts rolling in a wrong direction. The
resulting trajectory is a long and relatively straight line extending well the reactive control.

Possible improvements:
This method’s efficiency relies on the quality of the inverse kinematics algorithm used. As a
consequence, if we want to improve the method, we need to look into more accurate inverse
kinematics algorithms. For simple tensegrity structures such as the 6-struts icosahedron
considered in this paper, closed form solutions for the inverse kinematics can also be worth
investigating.
Remember from the discussion of section 6.4 that the IK method has to be relatively
cheap in terms of calculations and precise enough in order to deal with the dynamics of
the tensegrity.
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6.8 Results Summary
Summary of the results obtained with the different control strategies are plotted on figure
44. The distance is defined as the length between the starting point at rest and the position
of the robot after 60 seconds of simulation. Note that the results do not take into account
the trajectory of the path and, as a consequence, even if the distance traveled using the
CPG controller without any trajectory control is larger than with the hybrid control, the
”quality” of the path is not as good.
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Figure 44: Results showing the end to end distance traveled in 60 seconds on regular flat
terrain by the tensegrity icosahedron using the three different control strategies developed
in this section.

With the current implementation, only the reactive controller manages to get the robot
to roll in an efficient way over complex terrain such as the ones presented in section 5.2.
It is also important to emphasize that the hybrid controller’s performances are highly
sensitive to the choice of some parameters appearing in the CPG equations such as the
ones presented in equations (6.22) and (6.23). Typically, a different value of k (weight of
the height feedback) can alter the performance of the controller by a factor up to 5. As a
result, other methods to optimize the feedback data and to compute the corrections have
to be developed to more accurately navigate in complex environments. A simple and easy
way to solve this problem would be to stop the robot as soon as an unwanted displacement
is measured, set the robot back to its desired position and restart the motion. However,
this type of method, while easy to implement, is obviously not very efficient and a need
for advanced algorithms and methods is needed in order to solve that problem. A detailed
analysis of future work in that direction is presented in section 9.
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Figure 45: Examples of successful locomotion over complex terrains such as slopes, bumps
and obstacles.

These control strategies are, to our knowledge, the only implementations of tensegrity robot
controllers demonstrating advanced capabilities such as locomotion over complex terrains
as well as robustness to shocks and obstacles6. An illustration of the robot in challenging
environments as simulated in NTRT is presented on figure 45.

6videos of the controller in action over complex terrain can be found on:
http://biorob.epfl.ch/files/content/users/181078/files/complete controllers demo.avi
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7 Stable Gait Pattern
An interesting observation that can be made form these results has to do with the stable
rolling gait pattern obtained in simulation. Using either the reactive or the CPG controllers,
we observe that the rolling pattern is always the same sequence of movements. The different
steps of a full roll as viewed from the front and the side are presented on figures 46 and
47, respectively. The green arrows represent the direction of locomotion.

Figure 46: Stable gait pattern, front view, 1 full roll

Figure 47: Stable gait pattern, side view, 1 full roll
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At that point, it is interesting to do a parallel with a previous study of energy efficient
rolling for a tensegrity robot carried out by Koizumi et al.[18]. In their paper, they studied
in detail the behavior of a tensegrity icosahedron driven by pneumatic actuators located
on each tensile element of the structure. They distinguish two different stable contact
position where the tensegrity exhibits symmetries denoted by axial (A) and planar (P) as
illustrated on figures 48 and 49.

TABLE III

TRIANGLES AND CORRESPONDING VERTICES

(a) regular triangles (b) isosceles triangles

regular vertices
1 1 2 3
2 1 5 6
3 2 11 7
4 3 8 4
5 4 9 5
6 6 10 11
7 7 12 8
8 9 12 10

isosceles vertices
1 1 6 2
2 2 7 3
3 3 4 1
4 4 8 9
5 5 1 4
6 6 5 10
7 7 11 12
8 8 3 7
9 9 10 5

10 10 12 11
11 11 2 6
12 12 9 8

tensegrity robot is planar symmetric with respect to a plane
perpendicular to the flat ground. Such stable state is referred
to as planar symmetric contact in this paper.

III. DYNAMICS OF ROLLING TENSEGRITY ROBOTS

The configuration of a six-strut tensegrity robot is given
by a set of the position and rotation descriptions of the six
struts. Configuration of each strut consists of 6 independent
generalized coordinates; 3 for position and 3 for rotation
of each strut. Thus, configuration of a six-strut tensegrity
robot has 36 independent generalized coordinates. Contact
between a tensegrity robot and the flat ground through a
triangle imposes geometric constraints into the tensegrity
configuration. The internal energy of the tensegrity robot
reaches to its local minimum under the constraints at the
stable state. In other words, the extended internal energy,
which includes the products between Lagrange multipliers
and geometric constraints, reaches to its minimum with
respect to the tensegrity configuration and the multipliers.
Geometric constraints along the normal of the ground are
unidirectional, implying that the corresponding multipliers,
which represent the normal reaction forces, should be posi-
tive or equal to zero.

Applying air pressure to pneumatic actuators affects the in-
ternal energy, changing multiplier values. When a multiplier
corresponding to any unidirectional constraint exceeds zero,
the unidirectional constraint is lost, implying that the contact
is lost. This causes the transition from one stable state to one
instability, which may lead to another stable state. Transition
from one stable state to another thus includes intermediate
instability and topological change of geometric constraints
imposed on the dynamic equations of motion, which yields
the difficulty in analyzing the transitions among stable states.
Consequently, we will examine the possibility of transitions
through experiment in this paper.

IV. EXPERIMENT ON ROLLING OF TENSEGRITY ROBOT

A. Experimental Setup

We have built up a prototype of a six-strut tensegrity robot
shown in Figure 1. Six struts 570 mm in length are made of
aluminum. Two rigid balls of diameter 45 mm are attached
to the both ends of each strut. We have used McKibben

(a) front (b) side (c) top

Fig. 3. Axial symmetry contact. One of eight regular triangles contacts to
the ground. The natural shape of the tensegrity structure is axial symmetric
with angle of 2π/3.

(a) front (b) side (c) top

Fig. 4. Planar symmetry contact. One of twelve non-regular, isosceles
triangles contacts to the ground. The natural shape of the tensegrity structure
is planar symmetric.

actuators fabricated by Kanda Tsushin Kogyo. The actuators
can generate force of 800 N by applying air pressure of
0.5 MPa. Contraction ratio is almost 34 % without any load
and 20 % under the load of 3 N by applying air pressure of
0.5 MPa. Air pressure to the actuators is applied externally
through air hoses. Height and width of the prototype are
590 mm and 780 mm, respectively, in its natural shape, and
its weight is 3.3 kg.

Recall that applying air pressure to McKibben actuators
of a tensegrity robot and releasing the applied air pressure
can cause the transitions among stable states. Let us exper-
imentally investigate if transitions are possible or not. We
have found that applying air pressure of 0.50 MPa to a single
pneumatic McKibben actuator cannot realize the rolling of
the tensegrity robot. Based on this preliminary experimental
result, we apply air pressure, from 0.05 MPa to 0.50 MPa
at the interval of 0.05 MPa, into two pneumatic McKibben
actuators at the same time to examine if the prototype rolls.
We have recorded the lowest air pressure that can drive the
prototype for each pair of McKibben actuators.

B. Experimental Results

Figure 5 describes the transitions from one axial symmet-
ric contact. Figure 5-(a) shows an axial symmetric contact,
where a regular triangle is in contact with the ground. Let
us expand the icosahedron around the contacting triangle
over the ground, as shown in Figure 5-(b). The blue regular
triangle in the center represents the axial symmetric contact.
We have observed a sequence of transitions caused by the
application of air pressure to McKibben actuators. Through
experiment, we find that a sequence of transitions can be
categorized into two groups as:

AP axial → planar
AA axial → planar → axial

The former represents a single transition from the starting
axial symmetric contact (blue triangle) to its neighboring
planar symmetric contact (one of yellow triangles). The

!""#

Figure 48: Axial symmetry contact position (A) (from [18])
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The configuration of a six-strut tensegrity robot is given
by a set of the position and rotation descriptions of the six
struts. Configuration of each strut consists of 6 independent
generalized coordinates; 3 for position and 3 for rotation
of each strut. Thus, configuration of a six-strut tensegrity
robot has 36 independent generalized coordinates. Contact
between a tensegrity robot and the flat ground through a
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configuration. The internal energy of the tensegrity robot
reaches to its local minimum under the constraints at the
stable state. In other words, the extended internal energy,
which includes the products between Lagrange multipliers
and geometric constraints, reaches to its minimum with
respect to the tensegrity configuration and the multipliers.
Geometric constraints along the normal of the ground are
unidirectional, implying that the corresponding multipliers,
which represent the normal reaction forces, should be posi-
tive or equal to zero.

Applying air pressure to pneumatic actuators affects the in-
ternal energy, changing multiplier values. When a multiplier
corresponding to any unidirectional constraint exceeds zero,
the unidirectional constraint is lost, implying that the contact
is lost. This causes the transition from one stable state to one
instability, which may lead to another stable state. Transition
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the difficulty in analyzing the transitions among stable states.
Consequently, we will examine the possibility of transitions
through experiment in this paper.

IV. EXPERIMENT ON ROLLING OF TENSEGRITY ROBOT

A. Experimental Setup

We have built up a prototype of a six-strut tensegrity robot
shown in Figure 1. Six struts 570 mm in length are made of
aluminum. Two rigid balls of diameter 45 mm are attached
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Fig. 3. Axial symmetry contact. One of eight regular triangles contacts to
the ground. The natural shape of the tensegrity structure is axial symmetric
with angle of 2π/3.
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Fig. 4. Planar symmetry contact. One of twelve non-regular, isosceles
triangles contacts to the ground. The natural shape of the tensegrity structure
is planar symmetric.

actuators fabricated by Kanda Tsushin Kogyo. The actuators
can generate force of 800 N by applying air pressure of
0.5 MPa. Contraction ratio is almost 34 % without any load
and 20 % under the load of 3 N by applying air pressure of
0.5 MPa. Air pressure to the actuators is applied externally
through air hoses. Height and width of the prototype are
590 mm and 780 mm, respectively, in its natural shape, and
its weight is 3.3 kg.

Recall that applying air pressure to McKibben actuators
of a tensegrity robot and releasing the applied air pressure
can cause the transitions among stable states. Let us exper-
imentally investigate if transitions are possible or not. We
have found that applying air pressure of 0.50 MPa to a single
pneumatic McKibben actuator cannot realize the rolling of
the tensegrity robot. Based on this preliminary experimental
result, we apply air pressure, from 0.05 MPa to 0.50 MPa
at the interval of 0.05 MPa, into two pneumatic McKibben
actuators at the same time to examine if the prototype rolls.
We have recorded the lowest air pressure that can drive the
prototype for each pair of McKibben actuators.

B. Experimental Results

Figure 5 describes the transitions from one axial symmet-
ric contact. Figure 5-(a) shows an axial symmetric contact,
where a regular triangle is in contact with the ground. Let
us expand the icosahedron around the contacting triangle
over the ground, as shown in Figure 5-(b). The blue regular
triangle in the center represents the axial symmetric contact.
We have observed a sequence of transitions caused by the
application of air pressure to McKibben actuators. Through
experiment, we find that a sequence of transitions can be
categorized into two groups as:

AP axial → planar
AA axial → planar → axial

The former represents a single transition from the starting
axial symmetric contact (blue triangle) to its neighboring
planar symmetric contact (one of yellow triangles). The

!""#

Figure 49: Planar symmetry contact position (P) (from [18])

Possible transitions between these states are defined as follows:

◦ Starting from an axial contact point

AP Axial → Planar
AA Axial → Planar → Axial

◦ Starting form a planar contact point

PA Planar → Axial
PP Planar → Axial → Planar

Where the first state and the last state of each transition is a stable position, i.e. the robot
stays in that position if no external force is applied. Experimental results show that the
overall most efficient gait is obtained by transitions of type PP and, if the robot ends up
on an axial symmetry A, the desired behavior would be to roll back using a transition AP
and go back to the PP cycle. As quoted from Koisumi et al.:
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”Rolling of a six-strut tensegrity robot should be based on transitions in PP category. In
other words, the robot basically takes planar symmetric contacts alone in its stable state. If
an axial symmetric contact happens due to uncertainties in the robot or the environment,
we can apply any transition in category AP so that the contact between the robot and the
ground returns back to any planar symmetric contact, then we can apply any transition in
category PP again.”

Despite the fact that the tensegrity of Koisumi et al. was controlled by pneumatic actuators
and had no central payload, it is interesting to note that the stable gait obtained by the
different controllers is always of type PP (see figures 46, 47 and 48, 49). This shows that
the control strategies described in the previous section are able to converge to the most
effective rolling gait. This is a crucial statement to assess for the quality of the controllers
and to justify implementation on hardware prototypes.
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8 Validation of the Physics Simulator
An important step of the study is the validation of the NTRT physics simulator that will
on one hand confirm the quality of the results in simulation presented in the previous
sections and, on the other hand, justify a further study of the same controllers in real
hardware. In order to perform the validation, we carried out a series of tests both in the
NTRT simulator and using a tensegrity icosahedron prototype (ReCTeR) developed by K.
Caluwaerts[20][39] with a motion capture setup. Note that another detailed analysis of the
results together with a description of the hardware used for these experiments is presented
in [39]. We refer to this publication for technical information on the tensegrity prototype
hardware details and physical properties.

The general idea of these experiments is to perform some critical sequences of actuation and
movements on the prototype, record the struts position, orientation and motor commands,
then position the robot in the exact same way in the simulator, replicate the same set of
commands and record the positions of the struts. The data collected from both experiments
is then postprocessed and compared to assess for the physical accuracy of the NTRT
simulator.

8.1 Real-time Motion Capture vs Simulation
Figures 50 shows the tensegrity icosahedron prototype (ReCTeR) and figure 51 the repro-
duction of the same robot in the NTRT simulator. To track the state of the robot, we use
an active marker motion capture setup (PhaseSpace Impulse X2 with 11 cameras). Each
passive strut was fitted with 2 markers, while each active strut received 3 markers. This
allows us to track the full state of the robot, except for the rotation of the thin, passive
struts, which is of negligible influence.Fig. 5. RECTER: actuated strut design

Fig. 4. RECTER: an untethered, highly compliant tensegrity robot with
rich sensor integration. The robot has 24 spring force transducers, ground
reaction force sensors and 6 DOF IMUs on each strut. 6 springs are actively
controlled by DC motors integrated into the struts. The mass of this robot
is approx. 1kg with batteries. The robot has one hour of battery life during
locomotion with all sensors enabled and active wireless interface. TODO:
better picture of the current 3 active struts robot.

this risk, the wire spindle tightly fits into a smooth HDPE141

surface, which is only penetrated by 4 metal standoffs.142

The wire spindle passes through a first PCB on which143

the high precision power supplies for the force transducers144

are located. A neodymium magnet is then mounted onto the145

spindle below a magnetic encoder (AMS AS5050) placed146

on a second PCB, which is located 7mm above the first one.147

This PCB additionaly contains a microcontroller to drive the148

DC motor and the force sensor ADC.149

The high axial loading (especially in case of impacts) of150

the spindle is handled by 2 miniature ball bearings. The151

first one is located on the motor axis, just below the wire152

spindle, while the second one is glued in the sloth of the153

first PCB. The measured power loss due to friction in the154

bearings is approx. 0.35W. Combining this with the power155

loss in the transmission, we can estimate an effective motor156

power of approximately 3.5W. A 0.13mm UHMPWE wire157

is attached to the spindle (75N max. spring force), resulting158

in an effective spindle diameter of approx. 4.4mm.159

The first PCB is placed inside a custom aluminium part160

onto which four half bridge strain gages are glued. A half-161

bridge straing gage configuration is used in combination with162

a 24 bit precision ADC (Analog Devices ADNS7192). As163

the strings are not perpendicular to the force transducers, the164

measurements will be a non-linear function of the orientation165

Fig. 6. RECTER: node design

of the string and the tension.166

The diameter of the nodes is 2.4cm, only the force167

transducers extend beyond this diameter. However, the strain168

gages can also be mounted vertically adjacent to the wire169

spindle by fixing them in the slots provided in the PCBs.170

As this increases the probability of unwanted knots during171

experimenting and we have used the more open design for172

our experiments.173

The central module contains the power supply, wire-174

less communication and a 3D accelerometer (Freescale175

MMA8452Q) and 3D gyroscope (ST L3G4200D). The main176

battery (Panasonic NCR18650A) is mounted in the center of177

the strut to minimize the moment inertia of the strut around178

its longitudinal axis. When external power is provided, the179

robot charges the main battery and the backup battery. At180

any time the backup battery can be charged from the main181

battery.182

The robot has two low power modes for extended exper-183

iments. In the first mode, the motor power is disabled, but184

all sensors (e.g. force transducers and motor encoders) and185

the wireless interface remain active. The backup battery can186

provide power for several hours in this mode. An additional187

storage mode turns off the wireless interface and all sensors188

except for the motor encoders. The robot can be stored for189

several days in this mode.190

A low-power 2.4GHz module (Nordic nRF24L01+) is used191

for wireless communication. The center module of each strut192

relays the sensor values wirelessly to an external controller193

at up to 100Hz. As the natural frequency of the structure is194

on the order of a few Hz, we found that a 40Hz controller195

frequency is sufficient for smooth operation. For all results196

presented in this paper, position control of the spring lengths197

was used.198

Figure 50: Prototype tensegrity
icosahedron robot (ReCTeR) used
for the motion capture experiments

Figure 51: Clone version of the prototype
robot in the NTRT physics simulator
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In order to model massive springs, we use a 3 segments muscle design with intermediate
masses as introduced in section 5.1. A full tensile element consists therefore of 2 massive
spheres, containing each half of the spring’s total mass, one inextensible massless string
that can be actuated, one middle spring and is terminated by an inextensible small string.
A schematic view of a 3 segment muscle is illustrated on figure 52. ReCTeR is made of
6 solid struts and 12 passive tensile components connecting each end cap to its 4 closest
neighbors. 6 supplementary tensile elements are located on half of the end caps, these
tensile element can be independently actuated to make the robot perform complex move-
ments. The actuation in the real robot is performed by winding a string around an axial
motor. In the simulator, this correspond to changing the actuated string’s rest length since
for these string l = ` if k is large enough.

Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

5.1 Tensile Components
Bullet provides a library for the modeling of elastic components as a chain of connected rigid
bodies that can be used to model the tensile elements of tensegrity structures. However,
this implementation has been discovered to introduce free energy in the system, allowing
the tensegrity to spin on itself in a way that obviously breaks the laws of conservation of
energy. In order to solve this problem, NTRT implements a new class of hookean springs.
This new class models tensile elements (or muscles) as massless and shapeless elements
that are attached to rigid bodies by two anchor points. These muscles have an editable
rest length and can apply a force to the connected bodies when in extension. The force
applied by a muscle i is computed according to the following set of equations:




Fi = ki(�i − li) − η

(l(t)i − l
(t−1)
i )

dt
, li > �i

0 , otherwise

Where ki is the spring constant of muscle i, �i and li are its rest length and actual length
respectively, η is a damping coefficient and dt is the simulation time step. With this spring
model, the muscle applies a force to its rigid bodies if it is in extension and goes slack
otherwise. Obviously, with this implementation, two connected rigid bodies experience an
equal and opposite force as expected from Newton’s third law.

Note that the muscles as modeled here cannot experience contact forces or shocks as they do
not have any physical shape. They can be seen as a set of physical parameters: rest length,
length, anchor points and forces. As a consequence, more realistic strings models have to
be implemented to deal with complex interactions with ground objects, entanglements, etc.
However, a
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5.4 Actuators and Controls
Actuation of the muscles is performed by either increasing or decreasing the rest length of
the springs. This choice is justified to keep consistency with other simulation experiments
and results and by the following physical argument:

Imagine the simple undamped planar spring - mass system as represented on figure 16. We
assume that each spring has a rest length given by � and �c and we choose a coordinate
system with the Ox axis pointing to the right and denote by x1 and x2 the horizontal
position of mass m1 and m2 respectively.

m1 m2

k kc k

Figure 16: planar spring - mass system

The forces F1 and F2 applied on each of the masses can be easily computed:

F1 = k(x1 − �) + kc(x2 − x1 − �c)
F2 = k(x2 − �) + kc(x1 − x2 − �c)

and the equations of motion are given by Newton’s second law:

mẍ1 = k(x1 − �) + kc(x2 − x1 − �c) (5.1)
mẍ2 = k(x2 − �) + kc(x1 − x2 − �c) (5.2)

The general solution of these two equations for � = �c = 0 is of the form:

x1(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2)
x2(t) = A cos(ω1t+ φ1) − B cos(ω2t+ φ2)

with A,B,φ1,φ2 ∈ R and ω1,ω2 ∈ R+. Hence, a general solution for (5.1) and (5.2) is of
the form:

x̂1(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2) + α

x̂2(t) = A cos(ω1t+ φ1) − B cos(ω2t+ φ2) + β

with α, β ∈ R. By substitution in (5.1) and (5.2), this gives:

0 = kα + kc(β − α) − k� − kc�c

0 = kβ + kc(α − β) − k� − kc�c
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Figure 11: Schematic view of a 3-segment muscle, allowing to account for springs mass
and accurately simulate real tensegrity tensile components
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not have any physical shape. They can be seen as a set of physical parameters: rest length,
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Figure 11: Schematic view of a 3-segment muscle, allowing to account for springs mass
and accurately simulate real tensegrity tensile components
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Figure 52: ReCTeR’s muscle segments scheme. The real spring mass is distributed equally
among 2 intermediate masses (black spheres). The first segment is an actuated inextensible
string, the second is a spring having the same spring constant than the real robot, the third
and last element is a short inextensible string.

8.1.1 Quasi-static Analysis

We start fist by investigating the static equilibrium position of the robot’s end nodes in
both the simulator and the motion capture. For this series of tests, we compare the equi-
librium position of the nodes as a function of two actuators positions. The robot is set
in an equilibrium position on the ground and the two actuators positions are updated at
regular time intervals to span a wide range of values. Once the actuator has moved to
a new position, the robot is remained at rest for a few second to let the system reach
its equilibrium position. A schematic view of the experimental setup is represented on
figure 53.

On figures 54 and 55 are plotted the vertical displacement of the node indicated by the
large black dot in figure 53 as a function of the two actuated string lengths. The node of
which we trace displacement is not directly actuated and its motion results from the forces
distributions within the tensegrity structure. The nodal displacement as a function of the
actuator position is non-linear, even for modest displacements. Note that the leftmost point
(0.05, 0.05, 0) is the reference point, as the displacements are relative to this initial state.
The manifold represents the interpolated average position as a function of the actuators
positions.
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Figure 7: Kinematic comparison of the Euler-Lagrange and NASA Tensegrity Robot Toolkit simulators and ReCTeR motion
capture data. The top left plot shows the experimental setup. Two actuated springs (dashed lines) track a range of string lenghts.
The full range of motion of the tracked node during the experiment is shown in light yellow (convex hull). The nodes indicated
by small black squares are on the ground. The 3 other plots show the vertical displacement of the node indicated by the large
black dot in the top left plot as a function of the two actuated string lengths. The node of which we trace displacement is not
directly actuated and is floating. The nodal displacement as a function of the actuator position is non-linear, even for modest
displacements. Note that the leftmost point (0.05, 0.05, 0) is the reference point, as the displacements are relative to this initial
state.

10

Figure 53: Schematic view of the experimental setup. Two actuated springs (dashed lines)
track a range of string lengths. The full range of motion of the tracked node during the
experiment is shown in light yellow (convex hull). The nodes indicated by small black
squares are on the ground.

Figure 54: Black node vertical
displacement as computed from
motion capture

Figure 55: Black node vertical displacement
as computed from NTRT

We observe that the manifolds are qualitatively very similar, indicating a good match
and an equivalent behavior between the simulator and real physical experiments. Quan-
titatively, we find that the average difference on the node position is of 1.5cm which is
absolutely acceptable given the order of magnitude of the robot’s diameter (1.2m).
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8.1.2 Dynamic Motion Analysis

To validate the dynamic behavior of the tensegrity in simulation, on which all the results
presented previously in this work rely, we analyze and compare a flopping of the robot in
motion capture and in simulation. For this experiment, we compress a spring and at a
given time release it from 32cm to 53.5cm at 0.6m/s, causing the robot to topple on its
side. Results are presented on figures 56, 57 and 58 below.
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Figure 56: Nodes 0-5 vertical position during a flop of the robot. The motion capture and
NTRT simulation data are represented in blue and red, respectively.
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Figure 57: Nodes 6-11 vertical position during a flop of the robot. The motion capture
and NTRT simulation data are represented in blue and red, respectively.
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On figures 56 and 57, are represented the 12 nodes vertical position at each time step both
for the motion capture and the simulation. We observe that the timing of the flop is very
accurately reproduced in the simulator and that the general behavior is very similar in the
two experiments. We can notice that the initial position is slightly offset from the motion
capture, this is mainly due to the mass distribution of the rods that are in reality less
regular than assumed in NTRT and the friction on the ground that is not perfectly repro-
duced within the simulator. This also explains the offset once the robot has toppled on its
side. Other experiments on different types of ground surfaces have shown that friction can
indeed significantly affect the end position of the nodes.

ro
bo
t

N
T
R
T

Figure 58: Comparing robot and NTRT dynamics. The tensioned spring indicated by the
dashed blue line is released (32cm to 53.5cm at 0.6m/s), causing the robot to topple. Two
other actuated springs running through the center of the icosahedron are also tensioned.
The other three actuated springs are at their initial lengths, resulting in two slack springs.
The robot sometimes fails to roll on slippery terrains, which we also observed when reducing
the NTRT friction parameters (not shown).

On figure 58, we plot the actual position of the robot in the motion capture and in NTRT for
different times during a toppling motion. The top two rows show a simplified representation
of the robot’s state, the red segments indicate the struts positions while the dashed blue line
indicate the location of the actuated spring. During the experiment, two of the remaining
5 strings are stretched to increase the structure’s stiffness and facilitate the roll. Finally,
the last row of the figure shows the actual robot performing the same motion7. We find
that the error on the struts vertical position averaged over time is of maximum 5% of the
robot’s diameter.

7a video presenting simultaneously the real and simulated behavior can be found on:
http://biorob.epfl.ch/files/content/users/181078/files/flopping simulation vs reality.avi
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8.1.3 Results Analysis

Results of section 8.1.1 and 8.1.2 prove that the NTRT simulator is accurate enough to
successfully replicate different static equilibrium positions of the robot as a function of the
motor positions as well as reproduce its dynamic behavior when the tensegrity structure
is not in an equilibrium/minimum of energy state. Dynamic experiments highlighted also
the importance of mass repartition along the struts as well as ground contact friction and
forces modeling. The end position of the robot is indeed greatly influenced by ground
interaction and the whole toppling motion can be modified or even prevented by changing
the struts moment of inertia. This leads us to the conclusion that similar tensegrity robots
using rolling as a mean of locomotion should as far as possible try to increase their moment
of inertia along the struts, enabling it to increase the amplitude of its movements. Note
however that increasing the moment of inertia also increases the amplitude of the oscillation
appearing inside the structure and these larger oscillations will have to be compatible with
the control design of the robot.
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9 Future Work
9.1 Neural Networks and Reservoir Computing
9.1.1 Principle

Some physical quantities or robot states can sometimes not be computed with a good
accuracy or are sometimes not directly available by the sensors data. This problem becomes
even of greater importance in tensegrity structures where the sensors might be subject to
large noise to signal ratios as the high compliance of the structure introduces unexpected
oscillatory responses. In real hardware, the same complications arise with the limited
number of sensory information and the inherent errors associated to their measurements.
A solution to this issue is the preprocessing of the sensory information before its use. This
can be achieved in different ways and we will focus here on the use of neural networks and
reservoir computing. The new data flow is schematized on figure 59. A successful example
of a similar implementation can be seen in a study by Gay et al.[40] where a neural network
weights the sensory information from a gyroscope or a camera used as a feedback for a
CPG controller.

Bullet	
  
feedback	
  

Neural	
  
Network	
   CPG	
   Motor	
  

command	
  

Figure 59: New implementation where the sensor data is preprocessed by a neural network
before being fed back to the CPG controller. The neural network can simulate artificial
sensors, remove noise, cut frequencies or approximate certain physical parameters such as
center of mass, speed, etc.

This new preprocessing step can be used to remove noise of the sensor data, for instance by
remove high frequency components of a signal, or to simulate an artificial sensor. Indeed,
some physical quantities such as speed, orientation, etc. can sometimes be deduced with
a relatively good accuracy from other sensor information (pressure, force, etc.). Theoret-
ically, if there exists a mathematical relationship linking a group of sensor measurements
to a physical quantity, then it is possible to artificially simulate a sensor measuring this
quantity.
This mathematical relationship can be a simple linear function in which case a linear re-
gression on a series of measurements is well adapted. However, the relation is usually
more complex and a non-linear system such as the ones provided by reservoir computing
methods need to be train to best approximate the desired signal.
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In the case of tensegrity structures, this approach is justified as some physical parame-
ters are not well defined. Imagine for example the measurement of the orientation of a
tensegrity robot. For a rigid structure, any vector connecting two points can be used to
deduce the global orientation of the robot itself. For a tensegrity however, the position
of two distinct points (e.g. the two ends of a rod) can correspond to an infinite number
of different orientations. Preprocessing the sensory information can in this case resolve
the problem by computing a new global orientation that is a combination of the different
elements orientation and possibly some past data.
This method possesses the advantage of being computationally very efficient, as no com-
plex mathematical systems have to be solved to compute the new data, making it very
easy to embed in a physics simulator or on real hardware. Note however that a training
set has to be available to correctly tune the weights of the neural network, requiring an a
priori knowledge of the signal we want to learn. A detailed example is presented below to
better illustrate how these techniques can be used to control a tensegrity robot.

9.1.2 Example - Center of mass speed estimation from tension sensors

As an example, we compute an estimation of the center of mass speed from the tensions
in the 36 springs of the tensegrity icosahedron. We compare two different approaches: a
simple linear regression and a reservoir computing approach. In both of these methods, we
apply a regression on a data set from a recording of 90 seconds where the center of mass
speed is recorded from the physics simulator.

Linear regression:
For the training set of size n, we denote by ~y = (y1, y2, ..., yn)T the scalar speed of the
center of mass and X the matrix defined as:

X =




T
(1)
1 T

(1)
2 ... T

(1)
36 1

T
(2)
1 T

(2)
2 ... T

(2)
36 1

... ... . . . ... ...
T

(n)
1 T

(n)
2 ... T

(n)
36 1



∈ Rn×37

where T (k)
i ∈ [0, 1] is the tension of spring i at time tk divided by the maximal tension. We

want to find ~w = (w1, w2, ..., w37)T the set of weights minimizing the euclidian distance:

d1 = ‖X ~w − ~y‖2 (9.1)

The optimal set of weights ~wopt satisfying ‖X ~wopt − ~y‖2 ≤ ‖X ~wopt − ~y‖2 ∀~w ∈ R37 can be
obtained easily by an optimization algorithm from Eigen3[41] or NumPy[42] linear algebra
libraries. If the mathematical relationship between the spring’s tensions and the center of
mass speed is indeed linear, the speed is then simply given by:

speedlin reg =
36∑

i=1
Tiwopti

+ wopt37 , ∀ Ti ∈ R (9.2)
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Reservoir computing:
The reservoir computing or echo state network (ESN) approach is a more elaborate su-
pervised learning method that can approximate a large variety of signals[43]. Examples of
a successful application of reservoir computing to robotics are numerous in the literature,
see e.g. [44] and [45]. The idea of the method is to use a so-called reservoir that consist
of a neural network with a random connectivity matrix and to train this network with a
data set. The output of the network is then computed and weighted to best fit the target
set. A schematic representation of the training flow is depicted on figure 60.
Following this procedure, we start first by creating a random squared matrix W ∈ Rm×m

representing the random connectivity weights of a neural network of m neurons. W is
constructed such that maxλ {λ ∈ |(Spec(W ))|} = r < 1 where r is spectral radius of W .
This condition enforces the fading memory property of the neural network. We then define
the entering connections to the network. Again, we construct a random matrix Win such
that 90% of its entries are zeros (i.e., 10% of the neurons receive the input signal). We
then define a series of m states ~sj ∈ Rn with ~s0 being a random vector with entries in the
interval [-1,+1] and ~sk+1 being computed recursively by the rule:

~sk+1 = tanh(W~sk +Win~xk) , k = 1, ..., n (9.3)

where ~xk = (T (k)
1 , T

(k)
2 , ..., T

(k)
36 )T .

Win

W

�xk

tanh(·)

�sk

Figure 60: Schematic representation of the recursive neural network: the input signal ~xk is
fed to the neural network through the connexion matrix Win, the neural connexion weights
are stored in the matrix W , the state of the network at time tk is represented by the vector
~sk, non-linearities are added by an hyperbolic tangent function acting on the system output
at each time step.
The neural network is constructed such that Win and W are random matrices with
wi,j, wini,j

∈ [0, 1], maxλ {λ ∈ |Spec(W )|} < 1 (ensuring the fading memory property)
and Win sparse.
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We then construct the states matrix S as:

S =
[
~s1 ~s2 . . . ~sn 1

]

and, using a linear regression algorithm, compute the optimal set of weights ~wr minimizing
the Euclidian distance:

d2 = ‖S ~w − ~y‖2 (9.4)
The final signal estimation is then given by:

speedres =
36∑

i=1
Tiwri

+ wr37 , ∀ Ti ∈ R (9.5)

As a mean of comparison, results obtained by the linear regression method and the reservoir
computing are plotted on figure 61. The target signal representing the center of mass
velocity (green) is approximated by a linear regression method on the data set XW (red)
and using a reservoir computing method (blue). The approximation errors obtained by the
two methods with respect to the train data set are plotted on figure 62.
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Figure 61: Estimation of the tensegrity’s center of mass velocity from tensions values in
the 36 muscles, learning over a period of 90 seconds. The exact value (from NTRT) is
plotted as Y (green), the estimation using linear regression XV (red) and the estimation
using reservoir computing (reservoir, in blue).
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Figure 62: Error on the speed estimation from sensor data. Error 1 represents the error
computed by linear regression (RMS value of 0.2889 m/s) and Error 2 represents the error
for the reservoir computing method (RMS value of 0.2085 m/s).

We observe that the center of mass speed can indeed be deduced with a reasonable precision
from the string’s tension data, using simple linear regression or reservoir computing, with
a relatively better performance from the reservoir computing method. It is important to
note that if this method were to be used to compute a given physical quantity later used in
simulation or on a real platform, it would need further tests to validate the quality of the
measurements, as there is always a risk of over fitting on training data sets. This example
has to be seen here as a proof-of-concept towards such an implementation.

9.2 Evolutionary Optimization
Evolutionary algorithms (EAs) are meta-heuristics search and optimization algorithms that
are based on natural evolutionary principles (survival of the fittest). EAs can be used to
discover complex tensegrity control strategies for example by evolving sinusoidal control
parameters and optimize the traveled distance[19] and also to fine tune CPG parameters.
In the NTRT physics simulator, coevolution and centralized evolution optimization tools
were build and can be used to improve target performances of any CPG controller. The
principle of the algorithm used in our simulator is to create a population of tensegrity
robots having each their version of a reference CPG controller. Evolved parameters can be
specified and have a fixed range of possible values. Each robot is then simulated during
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a fixed amount of time and its fitness function is computed. The fitness function can
typically be the start to end distance, the total length of the path traveled, etc. Once
the simulations are over, the best individuals, i.e. the individuals with the largest fitness
function, are kept for the following generation. Random mutations and crossovers are
used to generate the full new population. A scheme of the general flow of an evolutionary
algorithm is presented on figure 63

Figure 1-1: Algorithmic flow of a basic genetic algorithm.

1.1 Evolutionary Computation
Evolutionary computation [Back et al., 1997, Foster, 2001] began as a biologically-inspired
technique for numerical optimization [Bremermann, 1962], as well as for optimization of
engineered systems. Three main techniques appeared roughly contemporaneously: evolu-
tionary programming [Fogel et al., 1966], genetic algorithms [Holland, 1975], and evolu-
tion strategies [Rechenberg, 1994]. Since that time, evolutionary computation has matured
into a field of study in its own right [Goldberg, 1989, Koza, 1992].

It is important to note that evolutionary computation is, in most cases, an engineering
tool, rather than an attempt to model evolutionary dynamics. This distinction will arise
often in this thesis: all of the experiments reported here are attempts to model aspects of
biology in order to automate the design of robots, not to model aspects of biology in order
to prove or refute biological hypotheses. In its simplest and most general form, all three
branches of evolutionary computation act as follows: they rely on populations of solutions
for a given problem; fitness is a quantitative measure used to judge the relative performance
of one solution over another; and selection relies on deletion of poor solutions, and modified
copying of better solutions. Starting with a random population of solutions and iteratively
applying fitness evaluation followed by selection, eventually increasingly better solutions
appear in the population, and the algorithm terminates when some user-defined criterion is
met, such as a fixed number of solution evaluations, or a desired level of solution quality.

In this thesis all of the experiments are based on the genetic algorithm (GA) [Holland, 1975,
Goldberg, 1989]. The basic algorithmic flow of a generational GA is given in Figure 1-1.
The primary characteristic of GAs is that the genotype (the genetic information) is encoded

Figure 63: Schematic representation of an evolutionary algorithm (from [46])

The use of EAs can be brought even further to a higher level of abstraction. Instead of
tuning parameters of a dynamical system, we can create sequences of instructions or sets
of oscillators that can be combined according to a well defined set of mathematical rules.
Imagine for example a controller that generate motor signals as a combination of mathe-
matical functions chosen from a reference set (see figure 64). The reference set contains
typically simple mathematical functions that have desirable mathematical properties, e.g.
symmetry, periodicity, discontinuities, etc. The set of functions that are chosen by each
controller can be use as its genotype and evolved in a series of simulations. In the end,
complex motor commands can be sent to the different robot’s controllers allowing for a
broad range of sophisticated motions.
Similarly, Ijspeert et al. presented a study in which neural networks are evolved to control
the swimming of a lamprey[47]. In this study, the neural network is produced according
to a set of construction rules. This set of rule is then evolved using a genetic algorithm as
showed on figure 65. Once the evolutionary process is over, the lamprey is able to swim
and turn efficiently.
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be provided as inputs to the graph. The next level of nodes can be thought of as
descriptions of the first stages of development, such as establishing bilateral
symmetry. Higher level nodes then establish increasingly refined coordinate frames.
The final outputs are thus informed by each transformation that takes place before
them. In this way, the entire graph is like a diagram of the sequence of steps that
happen over a developmental chronology.

Providing the initial coordinate axes as inputs to the graph is what allows local
interaction to be eliminated: In physical space there are no intrinsic coordinates that an
individual cell can access to determine its location (and hence its identity). Therefore,
local interaction becomes a way of asking, ‘‘where am I?’’ That is, through the
collective negotiation of adjacent cells that interact with each other, it is possible to
derive a coordinate frame.However, by composing functions that take as arguments an
absolute frame of reference, the need for such negotiation is eliminated and all
identities and relative locations can be determined completely independently.

Interestingly, a graph of such compositions is very similar to an artificial neural
network with arbitrary topology. The only difference between the two is that
artificial neural networks generally use sigmoid functions (and sometimes Gaussian
functions) as activation functions in each node, whereas the function composition
graph may use any of a variety of canonical functions at each node.

The analogy between a function composition graph and an artificial neural
network (ANN) is so strong, in fact, that it is tempting to equate the two. However,
while from an external objective standpoint they are clearly related, using the term
artificial neural network would be misleading in the context of this discussion
because artificial neural networks were so named in order to establish a metaphor
with a different biological phenomenon, i.e. the brain. The terminology should avoid
making the implication that biological, thinking brains are in effect the same as
developing embryos. Therefore, this paper uses the term Compositional Pattern

Fig. 4 Composition of functions as a graph. The graph determines which functions connect to which.
The connections are weighted such that the output of a function is multiplied by the weight of its outgoing
connection. If multiple connections feed into the same function, it means that the downstream function
takes the sum of their weighted outputs. Note that the topology is unconstrained and can represent any
possible relationships. This representation is similar to the formalism of artificial neural networks with
arbitrary activation functions and topologies. Because the absolute coordinate frame (x,y) is input to the
network, local interaction can be eliminated from the representation

Genet Program Evolvable Mach (2007) 8:131–162 141

123

Figure 64: Illustration of a complex
function generation by composition of
simple mathematical function chosen
from a reference set (from [48])

A. J. Ijspeert and J. Kodjabachian Evolution of a CPG for Lamprey Swimming
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Figure 4. The evolutionary algorithm.

2. A two-tournament selection scheme is applied, in which the best of two programs

randomly selected from the neighborhood of P is kept (more details can be found

in [27]).

3. The selected program is allowed to reproduce and three genetic operators possibly

modify it. The first operator, the recombination operator, is applied with probabil-

ity pc . It exchanges two compatible subtrees, that is, subtrees that can be derived

from the same grammatical rule, between the program to be modified and another

program selected from the neighborhood of P . Two types of mutation are used.

The first mutation operator is applied with probability pm. It changes a randomly

selected subtree into another compatible, randomly generated one. The second

mutation operator is applied with probability 1. It modifies the values of a random

number of parameters, implementing a constant perturbation strategy [39]. The

number of parameters to be modified is drawn from a binomial distribution B(n, p).

4. The fitness of the new program is assessed by collecting statistics while the

swimming of the lamprey mechanical model, controlled by the corresponding

artificial neural network, is simulated over a given period of time (see below).

5. A two-tournament anti-selection scheme, in which the worse of two randomly

chosen programs is selected, is used to decide which individual (in the

neighborhood of P ) will be replaced by the modified program.

In all the experiments reported here pc = 0.6, pm = 0.2, n = 6, and p = 0.5.

5 Fitness Function

A developmental program is given a fitness value that depends on the capacity of its

corresponding network to control swimming efficiently. Our aim is to develop con-

trollers that can produce patterns of oscillations necessary for swimming when receiving

tonic (i.e., nonoscillating) input, and that can modulate the speed and the direction of

swimming when the amplitude of the left and right control signals are varied.
1

1 For reasons of simplicity, a measure of muscle effort is not taken into account in this fitness function. In future work, it would be
interesting not only to optimize the controllability of the swimming gait, but also to minimize its energy consumption.

254 Artificial Life Volume 5, Number 3

Figure 65: Sketch of the evolutionary algo-
rithm used to create a robust neural network
from a set of construction rules to control a
lamprey in simulation (from [47])

Similar evolutionary algorithms could be used to evolve tensegrity controllers, together
with their CPG implementation. The great advantage offered by this technique is that
no a priori knowledge of the controller or the neural network is required, the physical
constraints fixed by the user being the only limits to the search space.

9.3 Exploring new Geometries and Soft-Robotics
The current NTRT physics simulator supports a feature that allows the use of .spr files
used in the Java/VRML tensegrity simulator Springie[49]. These files are part of a database
of tensegrity models, some of them having a large number of components (see e.g. figure 66).
As a result, these complex geometries can be loaded, simulated and actuated using the same
principle as described for the tensegrity icosahedron. This brings the search for control
strategies to a larger extend and enable a deeper study of shape matching and soft robotics
control strategies for tensegrity.

Figure 66: Example of a complex tensegrity structure modeled using Springie[49]

- 59 -



Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

To illustrate how the study can be expanded, we make here a parallel with a study made by
Sugiyama et al.[50]. In this study, a controller strategy was developed to make a spherical
deformable wheel shaped robot crawl and jump over complex terrains. The wheel was
made of a rubber material and was actuated using shape memory alloys connected to the
wheel and tied together in its center. When heated by an electric current, the material
retracts, pulling on the attached wheel segment. The principle used to make the wheel
spin was to change the shape of the whole robot to bring it in an unstable state, forcing it
to tilt in one direction. To make it jump, potential energy was stored in the structure as
the robot was deforming. See figure 67 for illustrations.

Sugiyama and Hirai / Crawling and Jumping by a Deformable Robot 605

(a) stable shape (b) unstable shape before rolling

(c) stable shape after rolling (d) stable shape with high potential energy

Fig. 1. Principle of crawling and jumping.
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Fig. 2. Circular soft robot.
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Fig. 3. Voltage patterns applied to SMA coils.

 at EPFL Scientific information and libraries on May 6, 2013ijr.sagepub.comDownloaded from 

Figure 67: Illustration of the possible ways to control a compliant robot’s shape to enable
rolling or to store potential energy within the structure (from [50])

This type of structural deformations could be used in the same way for tensegrity structures
having enough components to simulate a flexible material. We could for example imagine
a controller generating undulations in the robot depending on the height of each of the
actuator, using for instance the IR-distance sensors described in section 6.2. If the spring
length is set according to the height measurement (e.g. `(t) = | sin(h+ϕ(t))|+ε , where ε is
an offset value and ϕ(t) is a linear function of the time), the whole tensegrity will oscillate
above the ground. This type of behavior could potentially be exploited for locomotion,
jellyfishes for example use similar types of body deformation to move their body in the
water[51] that could be reproduced by oscillators[52].
Going even closer towards to the field of soft robotics, Umedachi et al.[53] developed a
decentralized control strategy for soft-bodies that could potentially be imitated by large
scale tensegrity structures.
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10 Conclusion
Tensegrity structures and their control for robotics application is still a novel topic and
only a few studies have been carried out in this direction. The main difficulty, consisting
of dealing with non-linearities and the high compliance of the physical system, is usually
avoided in classical robotics control. In this work, we showed that CPG controllers could
be a suitable and realistic way to deal with these features inseparable form tensegrity struc-
tures. The first step of the study was to find a way to move the tensegrity over simple
terrain. A reactive controller was developed to this end. This controller has demonstrated
very good performances in simulation environment, both over simple and complex terrains.
However, due to the large sensing information required, real hardware implementation for
this kind of controller is quite unrealistic. On the other hand, we have been able to show
that adaptive frequency oscillators were be able to learn and reproduce the same gaits
while requiring much less sensory information. Furthermore, it has been showed that the
gait obtained is the most energy efficient. We then proposed and tested several improve-
ments in order to enable the new CPG controller to deal with more complex terrains. For
this purpose, first and second order inverse kinematics methods were implemented. These
methods have been able, when combined with a simple CPG, to provide enough feedback
to control the motion of the robot on simple flat terrain. In order to justify the results
obtained in simulation, we assessed the correctness and accuracy of the physics simulator
using a motion capture setup and a prototype tensegrity robot. Finally, we proposed sev-
eral new ideas and further thoughts on a future development of these control strategies.

While contributing to tensegrity robotics, this work participates also to central pattern
generator research, assessing their suitability to control highly compliant structures and
demonstrating notably the usefulness of adaptive frequency oscillators.

August 18, 2013
Moffett Field, United States

Jérémie Despraz
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11 Glossary
Tensegrity Structure

Tensegrity structures are composed of axially loaded compression elements encom-
passed within a network of tensional elements, and thus each element experiences
either pure linear compression or pure tension.

Reactive controls
Reactive controls are a type of controller that computes actuators commands accord-
ing only to the sensor information fed back to the robot. In that sense, the controller
reacts directly to the environment through the sensory feedback and does not require
any other type of stimulation. Obviously, this type of implementation requires lots
of measurements in order to perceive the robot’s environment accurately.

Central Pattern Generator (CPG)
Central pattern generators are neural circuits found in both invertebrate and ver-
tebrate animals that can produce rhythmic patterns of neural activity without re-
ceiving rhythmic inputs. CPGs have been studied from a biological perspective and
have been used extensively in robotics especially for walking and other locomotion
research.

Inverse Kinematics (IK)
Inverse kinematics refers to the use of the kinematics equations of a robot to deter-
mine the motor commands that provide a desired position of the robot or some of
its elements.

NASA Tensegrity Robotics Toolkit (NTRT)
NTRT is a set of tools built over the open source physics engine Bullet. This toolkit
allow a physically accurate modeling of tensegrity structures.

Reservoir Computing (RC)
Reservoir Computing is an approach to design, train, and analyze recurrent neural
networks. More specifically, RC offers methods for designing and training artificial
neural networks, and yields computational and sometimes analytical models for bio-
logical neural networks.

Evolutionary Algorithms (EAs)
The evolutionary framework or evolutionary algorithm (EA) is a family of search
meta-heuristic and optimization algorithms that mimics the process of natural evo-
lution (survival of the fittest) using technics inspired by biological evolution such as
reproduction, mutation, recombination and selection. They operate on a population
of candidate solutions which performances within the framework are measured by a
fitness function.
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12 Annexes
• Physical parameters of the simulation:

Property Value Units
Scaling factor 10 -
Speed factor 0.4 -

Gravity -10 m/s2

Ground friction coeff. 2.7 -
Ground restitution coeff. 0.2 -

Time step (fixed) 1/60 s

• Physical parameter of rigid bodies (solid struts):

Property Value Units
Total mass 1 kg

Cylinder length 1 m
Cylinder radius 0.3 m
End-caps radius 0.3 m

Linear velocity damping 0 -
Angular velocity damping 0 -

Inertia along symmetry axis 1/12ml2 m·kg2

• Physical parameter of rigid bodies (payload):

Property Value Units
Total mass 5 kg

Radius 0.5 m
Linear velocity damping 0 -

Angular velocity damping 0 -
Inertia along symmetry axis 2/5mr2 m·kg2

• Physical parameter of tensile elements (strings/springs):

Property Value Units
Spring constant 1’000 N/m

Velocity damping coeff. 1 -
Mass 0 kg

- 63 -



Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

References
[1] Adrian Agogino, Vytas SunSpiral, and David Atkinson. Niac phase i final report.

NASA Innovative Advanced Concepts Program, 2013.

[2] Robert E Skelton, R Adhikari, J-P Pinaud, Waileung Chan, and JW Helton. An
introduction to the mechanics of tensegrity structures. In Decision and Control, 2001.
Proceedings of the 40th IEEE Conference on, volume 5, pages 4254–4259. IEEE, 2001.

[3] Kenneth D Snelson. Continuous tension, February 16 1965. US Patent 3,169,611.

[4] D. E. Ingber and M. Landau. Tensegrity. 7(2):8344, 2012.

[5] http://mondo-blogo.blogspot.ch/2012/01/genius-of-kenneth-snelson.html.

[6] http://www.marlboroughgallery.com/galleries/chelsea/artists/
kenneth-snelson.

[7] Robert E Skelton and Mauricio C Oliveira. Tensegrity systems. Springer, 2009.

[8] Donald E Ingber. Tensegrity i. cell structure and hierarchical systems biology. Journal
of Cell Science, 116(7):1157–1173, 2003.

[9] Donald E Ingber. Tensegrity and mechanotransduction. Journal of bodywork and
movement therapies, 12(3):198–200, 2008.

[10] Yves Termonia. Molecular modeling of spider silk elasticity. Macromolecules,
27(25):7378–7381, 1994.

[11] Vytas SunSpiral, George Gorospe, Jonathan Bruce, Atil Iscen, George Korbel, Sophie
Milam, Adrian Agogino, and David Atkinson. Tensegrity based probes for planetary
exploration: Entry, descent and landing (edl) and surface mobility analysis. To appear
in. International Journal of Planetary Probes, July 2013.

[12] Brian R Tietz, Ross W Carnahan, Richard J Bachmann, Roger D Quinn, and Vytas
Sunspiral. Tetraspine : Robust Terrain Handling on a Tensegrity Robot Using Central
Pattern Generators. In 2013 IEEE/ASME Advanced Intelligent Mechatronics, pages
261–267. IEEE, July 2013.

[13] Tom Flemmons. The bones of tensegrity. http://www.intensiondesigns.com/
bonesoftensegrity.html, 2012.

[14] Chandana Paul, John William Roberts, Hod Lipson, and FJ Valero Cuevas. Gait
production in a tensegrity based robot. In Advanced Robotics, 2005. ICAR’05. Pro-
ceedings., 12th International Conference on, pages 216–222. IEEE, 2005.

[15] John Rieffel, Barry Trimmer, and Hod Lipson. Mechanism as mind-what tensegrities
and caterpillars can teach us about soft robotics. In ALIFE, pages 506–512, 2008.

- 64 -

http://mondo-blogo.blogspot.ch/2012/01/genius-of-kenneth-snelson.html
http://www.marlboroughgallery.com/galleries/chelsea/artists/kenneth-snelson
http://www.marlboroughgallery.com/galleries/chelsea/artists/kenneth-snelson
http://www.intensiondesigns.com/bones of tensegrity.html
http://www.intensiondesigns.com/bones of tensegrity.html


Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

[16] Anders S Wroldsen, Maurıcio C de Oliveira, and Robert E Skelton. A discussion on
control of tensegrity systems. In Decision and Control, 2006 45th IEEE Conference
on, pages 2307–2313. IEEE, 2006.

[17] Steven James Burt. Kinematics algorithms for tensegrity structures. 2013.

[18] Yuusuke Koizumi, Mizuho Shibata, and Shinichi Hirai. Rolling tensegrity driven by
pneumatic soft actuators. In Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, pages 1988–1993. IEEE, 2012.

[19] Atil Iscen, Adrian Agogino, Vytas SunSpiral, and Kagan Tumer. Controlling tensegrity
robots through evolution. 2013.

[20] Ken Caluwaerts, Michiel D’Haene, David Verstraeten, and Benjamin Schrauwen. Lo-
comotion without a brain: Physical reservoir computing in tensegrity structures. Ar-
tificial life, 19(1):35–66, 2013.

[21] SL Hooper. Central pattern generators. encyclopedia of life sciences, 2001.

[22] Fred Delcomyn. Neural basis of rhythmic behavior in animals. Science, 210(4469):492–
498, 1980.

[23] Sten Grillner and Peter Wallen. Central pattern generators for locomotion, with
special reference to vertebrates. Annual review of neuroscience, 8(1):233–261, 1985.

[24] Auke Jan Ijspeert. Central pattern generators for locomotion control in animals and
robots: a review. Neural Networks, 21(4):642–653, 2008.

[25] Ralph A DiCaprio. Gating of afferent input by a central pattern generator. Journal
of neurophysiology, 81(2):950–953, 1999.

[26] L. Righetti, J. Buchli, and A.J. Ijspeert. From dynamic hebbian learning for oscillators
to adaptive central pattern generators. In Proceedings of 3rd International Symposium
on Adaptive Motion in Animals and Machines – AMAM 2005. Verlag ISLE, Ilmenau,
2005. Full paper on CD.

[27] L. Righetti and Ijspeert A.J. Programmable central pattern generators: an application
to biped locomotion control. In Proceedings of the 2006 IEEE International Conference
on Robotics and Automation, 2006.

[28] Erwin Coumans. Bullet physics engine, 2005.

[29] Adrian Boeing and Thomas Bräunl. Evaluation of real-time physics simulation sys-
tems. In Proceedings of the 5th international conference on Computer graphics and
interactive techniques in Australia and Southeast Asia, pages 281–288. ACM, 2007.

[30] Neville Hogan. Impedance control: An approach to manipulation. In American Con-
trol Conference, 1984, pages 304–313. IEEE, 1984.

- 65 -



Super Ball Bot - Structures for Planetary Landing and Exploration Jérémie Despraz

[31] Omer Orki. A Model of Caterpillar Locomotion Based on Assur Tensegrity Structres.
PhD thesis, TEL AVIV UNIVERSITY, 2012.

[32] Jesse van den Kieboom. http://www.codyn.net/.

[33] Rhodri H Armour and Julian FV Vincent. Rolling in nature and robotics: A review.
Journal of Bionic Engineering, 3(4):195–208, 2006.

[34] Jesse Van Den Kieboom. Arbitrary wave-form oscillator. Biorob Laboratory, EPFL.

[35] Mostafa Ajallooeian, Albert Mukovskiy, Jesse van den Kieboom, Martin Giese, Auke
Ijspeert, et al. A general family of morphed nonlinear phase oscillators with arbitrary
limit cycle shape. Technical report, 2013.

[36] Ludovic Righetti, Jonas Buchli, and Auke Jan Ijspeert. From dynamic hebbian learn-
ing for oscillators to adaptive central pattern generators. In Proceedings of 3rd In-
ternational Symposium on Adaptive Motion in Animals and Machines–AMAM 2005,
page 45, 2005.
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