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Abstract

Design, Building, Testing, And Control Of SUPERball: A Tensegrity Robot To

Enable New Forms Of Planetary Exploration

by

Jonathan Bruce

Presented in this work are the concepts to build, sense and control a completely

untethered tensegrity robotic system called SUPERball (Spherical Underactuated

Planetary Exploration Robot), which is a compliant icosahedron tensegrity robot

designed to enable research into tensegrity robots for planetary landing and ex-

ploration as part of a NASA funded program. Tensegrity robots are structurally

compliant machines, uniquely able to absorb forces and interact with unstructured

environments through the use of multiple rigid bodies stabilized by a network of ca-

bles. However, instead of engineering a single new robot, a fundamentally reusable

component for tensegrity robots was developed by creating a modular tensegrity

robotic strut which contains an integrated system of power, sensing, actuation,

and communications. SUPERball utilizes six of these modular struts, making

the SUPERball system analogous to a swarm of 6 individual robots, mutually

constrained by a cable network.

Since SUPERball is intended for use on planetary surfaces without the support

of GPS, state estimation and control policies only utilize the sensors on board the

robotic system. When external sensors are used, they must be able to account for

imprecise placement and automatic calibration. Also, dynamic tensegrity systems

do not exhibit continuous dynamics due to nonlinear cable conditions and inter-

actions with the environment, thus non-traditional control development methods

are implemented. In this work, control polices are developed using Monte Carlo,

xv



evolutionary algorithms, and advanced supervised learning through Guided Policy

Search. Each system is evaluated in simulation, while state estimation and the

Guided Policy Search method are additionally evaluated on the physical SUPER-

ball robotic system.
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Chapter 1

Introduction

With the advent of NASA Mars rovers, e.g. Spirit and Opportunity [8] and

MSL [9], exploration through semi-autonomous robots has been shown to be an

effective way to conduct meaningful science on extraterrestrial bodies. However

in order to go further into our solar system and onto other extraterrestrial bodies

with more hostile or unmapped surfaces than Mars, completely new types of

robotic rovers need to be developed. One such innovative system which may

enable exploration on these planetary surfaces is the development of tensegrity

robotics. The basics of a tensegrity structure is quickly outlined in figure 1.2

and is explained more in detail in chapter 2. Motivated by this idea, the work

presented is the first step into realizing this goal.

1.1 Motivation

Tensegrity robots can facilitate an intriguing low-cost planetary exploration

mission profile (see Figure 1.1) comprised of the following stages: 1) A set of

tensegrity robots can be squeezed into a small launch platform; 2) After initial

atmospheric entry and ejection of the heat shield, they can automatically spring

1
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Figure 1.1: Tensegrity structures are composed of pure compression and tension
elements. They can be lightweight, reliable, deployable, and efficient to manip-
ulate. Mission Scenario - Tightly packed set of tensegrities, expand, spread
out, fall to surface of moon, then safely bounce on impact. The same tensegrity
structure which cushioned the landing is then used for mobility to explore moons
such as Titan and small asteroids.

away from each other when released at their destination. 3) They bounce on

impact reducing the need for final descent equipment, such as airbags; and 4)

They can reorient themselves from landed position without additional reorien-

tation hardware and efficiently move from scattered initial positions to perform

sensor measurements; 5) They can survive significant falls and impacts, simplify-

ing route planning and allowing for more aggressive exploration.

Once on the surface, tensegrity robots can perform an array of scientific anal-

ysis including soil and atmospheric composition, surface imagery and microscopic

analysis. To further reduce complexity, sensors can be suspended on the inte-

rior of the tensegrity on cables attached to the nodes, or when appropriate even

to the nodes themselves so that the sensors can be moved with movements of

the structure itself, eliminating the need for separate sensor arms. In addition,

environmental analysis can be performed in-situ at the landing site, at different

local locations, or even at distant locations given a tensegrity robot’s potential for
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efficient locomotion. The biggest advantages of this mission profile are:

1. The structure of the robot itself provides capability for deployment, Entry-

Descent-Landing (EDL) scenarios, and mobility, reducing complexity, risk, and

mass compared to using three separate systems.

2. Tensegrity robots are light-weight and can be packed tightly, reducing cost.

3. Tensegrity robots can scale to multiple tightly packed robots to increase scien-

tific coverage and reduce risk.

4. Flexibility and modularity of the robot design allows design reuse, reducing

mission project risk.

Vytas SunSpiral 2014

Figure 1.2: Tensegrities are composed of pure tension and pure compression
elements (e.g. cables and rods) as seen in this picture of a tensegrity robot from
our physics based tensegrity simulator. They are light-weight, energy-efficient and
robust to failures.

1.2 Scope of Dissertation

Below is an outline of the goals achieved in this work to evaluate and develop

tensegrity robotic system.
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1. Build a rolling tensegrity robot

A physical hardware prototype of an untethered tensegrity robot to explore

locomotion. The robot will not only need to perform the basics for rolling,

but will need to enable the next two goal items. To achieve this, the robot

will need significant mechanical power, distributed computation, and wireless

communication. This robot is presented in section 4.

2. GPS-less State Estimation

In order to enable further research into path planning and system evaluations,

a GPS-less state estimator will be developed. This method will track the full

state of our system through sensors on board the robot as well as randomly

placed ranging sensors. These randomly placed sensors could be automatically

used to build a world frame relative to each other. To achieve this, research

into sensor fusion and automatic calibration is needed. This work is presented

in section 5.

3. Open loop locomotion control

Once the hardware prototype is built, an open loop control scheme will be

developed. The open loop algorithm will not change the control inputs to

the system based on sensing outside of the robot. This will demonstrate the

system’s ability to coordinate motion between it’s distributed computation and

collect data. This work is presented in sections 6.2 and 6.3.2.

4. Closed loop "gait" control

Once the system has proven the ability to locomote open loop, a closed loop

algorithm will be developed. The closed loop control will change the "gait", or

locomotion pattern, of the robot to cope with sensed variations in terrain, e.g.

changes in terrain grade or climbing over an obstacles. To achieve this, research
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into the how much of the robot state is needed as well as various techniques to

model and predict the environment by using the on board sensors. This work

is presented in section 6.3.3.

5



Chapter 2

Literature Review

2.1 Tensegrity Structures

It is possible to design free-standing structures with axially loaded compression

elements in a well crafted network of tensional elements. Such an arrangement

is called a tensegrity structure (tensile integrity). Each element of the structure

experiences either pure axial compression or pure tension [10][11]. The absence

of bending or shear forces allows for highly efficient use of materials, resulting in

lightweight, yet robust systems.

Because the struts are not directly connected, tensegrities have the unique

property that externally applied forces distribute through the structure via mul-

tiple load paths. This creates a soft structure, for a soft robot, out of inherently

rigid materials. Since there are no rigid connections within the structure, there

are also no lever arms to magnify forces. The result is a global level of robustness

and tolerance to forces applied from any direction.

This makes tensegrity robots inherently compliant and extremely well suited

for physical interactions with complex and poorly modeled natural environments.

Active motion in tensegrity robots can be performed by changing cable lengths in
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parallel, enabling the use of many small actuators that work together, rather than

individual heavy actuators which work in series. There are also many indications

that tensegrity properties are prevalent throughout biological systems, and the

morphology of the SUPERball that we are studying, especially when carrying a

payload, ends up bearing a striking resemblance to the nucleated tensegrity model

of cell structure [12][13].

2.2 Prior Work in Tensegrity Robotics Design

An important advantage of tensegrity structures with respect to general pin-

jointed structures is their increased mass-efficiency due to a high fraction of tensile

members. Tensile members are generally more mass-efficient as they do not need

to resist buckling. A further advantage from a robotics perspective is that forces

diffuse in a tensegrity. There are no lever arms and torques do not accumulate

at the joints as in a classic serial manipulator. Forces distribute through multiple

load paths, thus increasing robustness and tolerance to mechanical failure.

The static properties of tensegrities have been thoroughly studied and some

basic analysis is discussed in section 3. On the other hand, few examples are

known of truly dynamic motion of these structures. Early examples of kinematic

motion include the work at EPFL’s IMAC laboratory [14]. Skelton and Sultan

introduced algorithms for the positioning of tensegrity based telescopes and the

dynamic control of a tensegrity flight simulator platform [15]. Although there

were some early efforts at MIT’s CSAIL lab, it wasn’t until the work of Paul

and Lipson at Cornell University that the concept of tensegrity robotics became

widespread [16]. Paul and Lipson were the first to study the properties of dynamic

tensegrity structures in hardware and simulation. A few years later Fivat and Lip-

son designed the IcoTens, a small actuated tensegrity icosahedron robot, but did
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not publish results. In recent years, the BIER lab at the University of Virginia has

been studying Central Pattern Generator based control for tensegrity based fish

tails, which is closely related to the control architectures proposed for SUPER-

ball [17, 18]. Mirats-Tur has presented design and controls work on various other

tensegrity morphologies that have been tethered or fixed to the ground [19, 20]. At

Union College, Rieffel and colleagues are following an interesting line of work by

considering vibration based actuation for small tensegrities [21]. Related work was

presented by Böhm and Zimmermann, who demonstrated controlled locomotion

of vibration driven tensegrity robots with a single actuator [22]. Finally, Shibata,

Hirai and colleagues have developed pneumatically actuated rolling tensegrity

structures [23].

Building upon these works, the SUPERball project seeks to push forward

the tensegrity robotics field and develop truly untethered, highly dynamic and

compliant robots exploiting the aforementioned advantages.

2.3 Tensegrity Robotics for Space Exploration

The high strength-to-weight ratio of tensegrity structures is very attractive

due to the impact of mass on mission launch costs. Large tensegrity structures

have been shown to be deployable from small compact configurations which enable

them to fit into space constrained launch fairings. While the above qualities have

inspired studies of deployable antennae and other large space structures [24], it is

in the realm of planetary exploration that we see the most significant role for many

of the unique force distribution qualities of tensegrity robots. The project formally

funded by the NASA Innovative Advanced Concepts (NIAC) program [1] and

currently NASA’s Ground Changing Development (GCD) is funding this research

to specifically study landing and surface mobility of tensegrities, exploiting the
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controllable compliance and force distribution properties which make for reliable

and robust environmental interactions.

The main goal is to develop tensegrity probes with an actively controllable

tensile network to enable compact stowage for launch, followed by deployment in

preparation for landing. Due to their natural compliance and structural force dis-

tribution properties, tensegrity probes can safely absorb significant impact forces,

enabling high speed Entry, Descent, and Landing (EDL) scenarios where the probe

itself acts much like an airbag. However, unlike an airbag which must be discarded

after a single use, the tensegrity probe can actively control its shape to provide

compliant rolling mobility while still maintaining the ability to safely absorb im-

pact shocks that might occur during exploration. This combination of functions

from a single structure enables compact and lightweight planetary exploration

missions with the capabilities of traditional wheeled rovers, but with a mass and

cost similar or less than a stationary probe.

Therefore, a large fraction of the overall weight (as measured at atmospheric

entry) of a tensegrity mission can be used for the scientific payload due to the

dual use of the structure as a lander and a rover. This allows for cheaper missions

and enables new forms of surface exploration that utilize the natural tolerance to

impacts of tensegrities [2].

2.4 Tensegrities as Soft Robots with Morpho-

logical Computation Capabilities

Tensegrities share many of the design, fabrication, modeling, sensing, and

control challenges of the broader category of soft robots [25, 26, 27], which are

made out of intrinsically soft and/or extensible materials.
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2.4.1 Opportunities in Morphological Computation

Both tensegrity and soft robots closely relate to the notion of embodied in-

telligence, where morphology and materials can take over some of the functions

normally attributed to control to achieve a system that is overall simpler, more

robust and adaptive than those based on the classical control paradigm. This

principle is known as morphological computation [25, 28]. Many approaches to

morphological computation [29, 28] seek to reduce the complexity of control sys-

tems through intelligent mechanism designs, which effectively exhibit complex

behaviors while reducing the use of explicit control systems. An example would

be a compliant, soft hand that naturally grasps a wide range of object shapes

while executing the same simple control law in all cases [30]. These systems may

reduce the amount of sensing, actuation, or explicit modeling and decision making

associated with traditional approaches to the task.

Tensegrity robots show this quality when they passively conform to the en-

vironment and re-balance forces throughout their structure [31]. This is a very

desirable property, which enables the design of robots capable of a wide range of

tasks and activities. Such platforms are generally more versatile and robust in

the face of noise and the unpredictability of operating in messy real-world envi-

ronments.

2.4.2 Methods for Controlling Soft Robots

Soft materials can bend, twist, stretch, compress, buckle, wrinkle and so on.

Such motions may involve an infinite number of Degrees of Freedom (DoF) indi-

cating that the control if soft robots requires new approaches [32, 33]. While some

progress can be made with more traditional control approaches, such as Model

Predictive Control (MPC), these efforts typically require accurate models of the
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Figure 2.1: Overview of research topics discussed. An arrow indicates a topic
that can contribute to the development of another.

robot and environment, which can be difficult to acquire given the complex phys-

ical properties of soft robots. Thus, many efforts focus specifically on biomimetic

systems [26], which aim to reproduce the control behaviors of their biological

counterparts and often provide a new understanding of soft organisms [34].

To better understand the challenges in controlling soft and tensegrity based

robots, new static, kinematic and dynamic models have been developed to capture

the ability of bending and flexing [35, 36]. For many years, a popular abstraction

for soft robots has been that of piece-wise constant curvature (PCC) [37], which

does not capture all aspects of real mechanisms. Recently some non-constant

curvature models have been proposed to better model soft mechanisms. [38]. The

need for expressive models has also led to the development of simulation tools

targeted to soft robots [39]. This is also an important development in tensegrity

robotics [17], in which open source physics based simulation tools have recently

become available [40]. Table 2.1 gives pointers to simulation tools and analytical

models for tensegrity structures.

There have been both model-based and model-free approaches for the low-

level control of soft robots [41]. On the model-based side, a recent effort utilizes

finite elements [42], while a recent data-driven, model-free approaches utilizes

graph-theory [43]. There is no consensus, however, yet regarding the appropri-
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ate methodology for control, and especially planning, for soft robots given their

highly continuous, complex and intrinsically compliant deformation [32]. This

has motivated efforts in proposing behavior-based control architectures for soft

robots that may be applicable to tensegrities as well [44]. A critical challenge in

achieving deliberative control and planning, shared between tensegrity structures

and soft robots, is the difficulty of solving the inverse kinematics problem. There

are solutions in certain setups, such as for semi-soft manipulators [45].

2.4.3 Planning for Tensegrities

Similar to soft robots, the very properties that make tensegrities ideal for

physical interaction with the environment, such as compliance, and multi-path

load distribution, present some significant challenges to traditional planning ap-

proaches and lead to uncertainty during motion execution.

For instance, compliance allows tensegrity robots to adapt their shape to

workspaces of unknown or uncertain geometry. But when a force is applied, the

robot can deform in a non-linear manner and will often excite oscillatory behav-

iors [46]. The results of contacts are therefore very hard to predict to the level of

accuracy required for traditional trajectory and route planning techniques. These

issues have limited investigation of planning algorithms and focused most existing

efforts on controllers for the generation of local gaits [16] and quasi-static paths

[47]. Yet, they have also inspired the development of approaches that go beyond

the traditional control toolkit and allow adaptation to multiple different terrain

types [48, 49]. Similar developments in soft robotics technologies are taking place,

which address the complications of self-loading and non-linear compliance [32].

Recently, planning methods have been introduced which begin to address these

needs for soft robots [50, 51].

12



To move this field forward for both tensegrity and soft robots, both high-level

approaches of model-based and model-free planning should be investigated as

highlighted in Fig. 2.1. Model-based planning approaches should be able to reason

over more complex dynamical models of tensegrity systems and provide robust

trajectories over probabilistic state representations that capture the diversity of

possible executions given the inherent uncertainty. Another direction is to study

feedback-based motion planners that provide a robust composition of controllers

with performance guarantees. In the model-free domain, methods should capture

the dynamics of low-level controllers and then plan over the resulting dynamics.

The low-level controllers should manage the details of environmental interaction

while successfully driving the system to the next waypoint.

2.5 Low-level Control for Tensegrity Robots

Early tensegrity research was mostly focused on modeling the statics [58,

60, 71] and dynamics of a structure, so as to provide effective equations of mo-

tion [72, 73, 36]. In specific cases, such as state estimation, modeling tensegrities

as constrained mass-spring nets allows for highly efficient and sufficiently accu-

rate implementations [6]. The mass-spring approach has also proven valuable in

more theoretical studies of morphological computation [28]. Nevertheless, there

resource references
dynamics models [36, 52, 53, 54, 55]

kinematics & statics [56, 57, 36, 58, 59, 60, 61]
simulation [40, 48, 36, 17, 62]

hardware design [63, 22, 14, 23, 17, 20, 64, 31, 65]
[66, 16, 67, 68, 5, 3, 69]

state estimation [70]

Table 2.1: Resources for tensegrity control.
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is a trade off between computational efficiency and high dynamic model fidelity

during environment interaction modeling. Table 2.1 summarizes many of these

contributions that can impact tensegrity control.

Many of the tensegrity hardware robots are tendon-driven or use pneumatic

actuators, which are typically a burden to accurately model analytically. A learned

model might increase the computational efficiency when trying to represent real-

world hardware in changing environments. Section 6.3 discusses the option of

using learned models as a proxy to simulation or involved analytical models.

Given a dynamic model, it is possible to control a tensegrity structure along

static equilibrium manifolds [74]. Alternatively, feedback linearization control

laws [75] or Lyapunov-based controllers for 3D dynamic models [55] have also

been developed. Frequently, these approaches do not account for self-collisions

or environmental contact dynamics, limiting their real-world applicability. Plan-

ning processes for a real-world tensegrity structure need to utilize modeling and

simulation tools that take collisions into account.

Many efforts focus on generating efficient gaits, defined as rhythmic motions,

which lead to nonzero movement of the center of mass [76]. Given the high-

dimensional nature of the search space, genetic algorithms are frequently applied

to achieve forward locomotion gaits [16]. Evolutionary algorithms have been

used for generating irregular locomotion and civil engineering structures [77, 69].

Recently, evolutionary methods have been proposed that utilize a multi-agent

learning approach [78]. Other biologically-inspired approaches based on Cen-

tral Pattern Generators (CPGs) have also been applied to tensegrity-based sys-

tems [63, 48, 17]. A recent overview of low-level tensegrity control approaches is

available in the related literature [17, Table 2]. In this work, Monte Carlo [79] and

evolutionary techniques [80] are used to learn open loop policies for locomotion.
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While an Artificial Neural Network (ANN) is trained as a closed loop locomotion

controller. Section 2.6.1 gives a basic overview of ANNs.

The availability of simulation tools has offered researchers the possibility to

develop a wide range of controllers. Nevertheless, additional hardware validation

results are needed to better support the claims regarding the efficacy of the de-

veloped solutions [68, 17]. It is crucial to determine the feasibility of each method

in terms of sensing and state estimation, their aptitude for distributed implemen-

tations and the minimum number of actuators required.

Furthermore, hardware experiments have not typically utilized fundamental

analytical control approaches (e.g. [54]), since they frequently depend on accurate

state information, which is non-trivial to acquire. Nevertheless, there has been re-

cent progress on actuation, sensing, and state-estimation methods that are robust

to noisy sensors and environments. Thus, it may be time to revisit some of the

earlier analytical control techniques. This will allow a thorough comparison with

more modern methods that have reduced sensing and actuation requirements in

simulation and hardware.

2.6 High Level Control for Tensegrity Robots

2.6.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a theoretical group of mathematical

models loosely based on neural networks found in biology that can estimate usually

unknown functions which map multiple inputs to a set of outputs. An ANN is

comprised of a large set of simple functions grouped into different layers that define

a mapping function f : X → Y where X is the input set and Y is the output

set. In practice, layers are grouped into three main layers defined as 1) the Input
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layer, 2) the Hidden layer, and 3) the Output layer. The Input and Output

layers transfer data to and from the Hidden layer, respectively. The Hidden

layer can be comprised of one ore more sub-layers and is where the input data is

converted to the output data. Each sub-layer of the Hidden layer is comprised

of a defined number of simple functions Hi for i ∈ n, where n is total number

of functions in a sub-layer. Changing how each function h ∈ H is connected to

other functions, by the use of weights, allows for the ANN to map its inputs to

a desired output [81]. For our application, machine learning is used to estimate

the connection weights through the use of a cost function. The cost function is an

equation which measures the success of the learning process against a user defined

parameter or set of parameters.

ANN for Locomotion

Robotic learning methods have previously produced successful policies for

tasks such as locomotion for walking robots and quadrupeds [82, 83, 84, 85, 86].

These methods, however, typically require hand-engineered policy classes, such as

a linear function approximator using a set of hand-designed features as input [82].

For many tensegrity systems, it is difficult to design suitable policy classes, since

the structure of a successful locomotion strategy might be highly complex.

Some more recent methods learn deep neural network policies that are success-

ful for tasks such as grasping with robotic arms and bipedal locomotion [87, 88],

and such policies are more expressive and require less hand-engineering compared

to policy classes used in previous methods. One such method, which is used

in this work in section 6.3.3, is mirror descent guided policy search (MDGPS),

an algorithm that frames the guided policy search (GPS) alternating optimiza-

tion framework as approximate mirror descent [89]. MDGPS is was chosen for
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this work because it allows for deep neural network policies to be learned while

maintaining sample efficiency, and it presents a natural extension to periodic lo-

comotion tasks.

A key problem for locomotion tasks is the difficulty of establishing stable pe-

riodic gaits, and this is exacerbated for tensegrity robots due to their complex

dynamics and unusual control mechanisms. Near-stable behavior with even small

inaccuracies can lead to compounding errors over time, and will not be successful

in producing a continuous periodic gait. Previous algorithms have dealt with

this problem by establishing periodicity directly through the choice of policy

class [83, 90, 91], utilizing a large number of samples [87], or initializing from

demonstrations [92, 93]. Instead, this challenge is handled by sequentially train-

ing several simple policies that demonstrate good behavior from a wide range of

states, and then learning a policy that reproduces the gait of all of the sequential

policies for a successful periodic behavior. The resulting algorithm learns policies

from scratch for robotic tasks that exhibit periodicity over long time horizons.

Section 6.3.3 demonstrates through experimentation that a single learned policy

for a tensegrity robot is capable of efficient, continuous locomotion in a range of

different conditions by learning appropriate feedbacks from the robot’s onboard

sensors.

2.6.2 Path Planning Through a Sampling-Based Motion

Planner

Recently, Littlefield et al. [94] implemented a high level sampling-based mo-

tion planner on a simulated SUPERball robot in the NASA Tensegrity Robotics

Toolkit (NTRT), explained in chapter 3. This method, based on a kinodynamic

planner published by Yanbo et al. [95], is able to converge to an asymptotically
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optimal solution on dynamic systems using only forward propagation and uses a

novel parallel implementation to make the forward propagation step more com-

putationally feasible. The whole process is done within the NTRT simulation

environment, where each parallel process is a NTRT simulation of SUPERball.

Figure 2.2 shows a visual representation of two forward propagation steps with

their respective uncertainty shown as overlaid transparent robots.

Figure 2.2: An example of a trajectory with two forward progagations and their
uncertainty. Possible future configurations are shown as transparent versions of
SUPERball. (figure courtesy of Zakary Littlefield).

The main control method for this process has been a random sample of in-

dividual low level motor commands to produce the desired motion. It has been

shown with full actuation on the simulated SUPERball that path following over

various terrains and obstacles are achievable with this method. However, this pro-

cess only learns a set of open loop actions based on the simulation environment

and requires 20+ processing cores to have reasonable computation times.
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Chapter 3

Modeling and Model Validation

Figure 3.1: SUPERball, fully assembled, in the NASA Ames Research Center
Roverscape.

As part of our research for the NASA Innovative Advanced Concepts (NIAC)

program, we are developing the SUPERball (Spherical Underactuated Planetary

Exploration Robot), which is a compliant icosahedron tensegrity robot designed
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for planetary landing and exploration, seen in figure 3.1. Tensegrity robots are

soft machines which are uniquely able to compliantly absorb forces and inter-

act with unstructured environments. However, instead of engineering a single

new robot, we have chosen to develop a fundamentally reusable component for

tensegrity robots by creating a modular robotic tensegrity strut which contains

an integrated system of power, sensing, actuation, and communications. The pur-

pose is to enable the exploration of the wide range of possible tensegrity robotic

morphologies by simply combining the robotic struts into new systems.

Though there is much prior work in a variety of theoretical areas for tensegri-

ties, engineering knowledge of constructing practical tensegrity robots is limited.

Since a staggering variety of different tensegrity structures can be constructed

from collections of simple sticks and strings, we have made it a priority to develop

self-contained robotic tensegrity struts which can be used to explore and build

a wide range of tensegrity robots simply by combining them into novel struc-

tures. Our designs are driven by experimental results obtained from a previous

prototype, ReCTeR (Reservoir Compliant Tensegrity Robot) in combination with

simulation results of our validated tensegrity simulator NTRT (NASA Tensegrity

Robotics Toolkit) [96][17].

In order to develop SUPERball from ReCTeR’s design limitations as well as

our lab’s need for rapid experimentation of various tensegrity configurations and

morphologies, we came up with a modular tensegrity platform to research large

scale robotic tasks; e.g. a tensegrity planetary probe to explore Saturn’s moon

Titan. Our lab obtained design requirements through an iterative approach with

validated our NTRT simulator by experimental comparison with ReCTeR [17].

We now can quickly evaluate various tensegrity configurations in simulation to

find optimal mechanical design goals. In conjunction with the NTRT solver, we
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also incorporated results obtained with our (open source) Euler Lagrange solver

based on Skelton’s work [97] and measurements on ReCTeR. The initial design

requirements obtained from the NTRT simulations, refined designs after a first

prototype build, and how these compare to other tensegrity robotic systems are

given in Table 3.1.

Table 3.1: SUPERball and Related Robots Design Overview.

lstrut ∆lact kpassive tethered? control fact #act. mass sensors actuators ref.
Pneumatic 0.57m - - Y open loop 800N 24 3.3 kg none McKibben [66]
ReCTeR 1m 0.3m 28.4Nm−1 N closed loop 12N 6 1.1 kg F, L, IMU DC [17]
Rapid Proto Kit 0.69m 0.005m 1193Nm−1 N open loop <45N 24 2.7 kg none linear DC [98]
SUPERball 2014 1.5m 0.2m 613Nm−1 N closed loop 140N 12 12 kg F, L, τ , IMU BLDC
SUPERball 2015 1.7m 0.42m 998Nm−1 N closed loop 250N 12 21 kg R, L, IMU BLDC

The variable lstrut indicates the length of a strut, ∆lact is the nominal spring-cable retraction
length in tension, kpassive is the linear stiffness coefficient of a passive spring-cable (or active
spring-cable if fully actuated), tethered indicates if the robot is powered externally or by internal
systems, control indicates whether sensor feedback is used, fact is the nominal actuated spring-
cable tension and #act. is the number of actuators. In the sensors column, F represents a linear
force sensor (for cables), L is cable length sensor (in the form of motor encoders), τ represents
a torque sensor for motors, R represents ranging sensors for rod end cap positions, and IMU
represents an accelerometer/gyroscope inertial motion sensing unit. Actuators are specified as
DC motors or brushless DC (BLDC) motors. The SUPERball 2014 values are revised original
design requirements based on NTRT simulations, and changed to the 2015 values after additional
detail design.

Presented here is work verifying our in house tensegrity simulators. In order

to achieve this, a SUPERball like structure with a center payload was used. This

is believed to be closer to the proposed build profile of a real tensegrity probe,

where the main science modules will be contained within the payload. Protecting

this science payload is the main goal for and EDL scenario. Figure 3.2 shows a

3-D representation of SUPERball with a payload generated within NTRT.

3.1 Euler-Lagrange Model

In order to verify the simulation results produced by our NTRT simulator, we

decided to compare the behavior of the NTRT to a published analytic model for
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tensegrity systems. We choose to use Skelton’s dynamic equations because it is a

well accepted and used model. It may be found in his Tensegrity Systems book

[36] which is based on his work in [99]. In order to solve the dynamic equations

with interactions with the environment, an Euler-Lagrange approach is used as

well as Skelton’s constrained class one structure. The lagrange equation for a

constrained rod is given by

L = T − V − c (3.1)

where

b = l−1(nj − ni) (3.2)

c = Jξ
2 (bTb− 1) (3.3)

Equation (3.2) is the normalized vector of a rod with ni,j the nodal positions in R3,

and equation (3.3) contains the lagrange multiplier ξ to keep (3.2) constrained. J is

also defined as the inertia matrix for a one dimensional rod in three dimensional

space. In order to define the system of k rods we need to define a combined

Lagrangian as

L =
k∑
i=1

Li (3.4)

where Li is the Lagrange function for each rod. Using the approach outlined

in Skelton’s book for deriving the equations of motion, we can then derive the

configuration matrix

Q =
[
R B

]
(3.5)
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where R and B are matrices containing the translational and rotational vectors,

respectively. They have the form

R =
[
r1 · · · rk

]
(3.6)

B =
[
b1 · · · bk

]
(3.7)

Also using the procedure to derive generalized forces within Skelton’s book, the

systems’s generalized force equations are computed as

FQ =
[
FR FB

]
(3.8)

with

FR =
[
fr1 · · · frk

]
(3.9)

FB =
[
fb1 · · · fbk

]
(3.10)

Finally, we can define the resulting equations of motion in a compact form as

(Q̈ + QΞ)M = FQ (3.11)

where

Ξ = diag
[
0, · · · , 0, ξ1, · · · , ξk

]
(3.12)

M = diag
[
m1, · · · ,mk, J1, · · · , Jk

]
(3.13)

This approach was then implemented in Python utilizing a 4th order Runge-

Kutta formula for solving the system of ordinary differential equations. In order
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to implement a gravitational field, a force distribution function is applied along

the length of each rod and calculated as a nodal force depending on the given

density of the rod. This external force is then applied to the nodes during each

time step, simulating a gravitational field.

3.2 NASA Tensegrity Robotic Toolkit Model

The NASA Tensegrity Robotic Toolkit (NTRT) is a software suit which enables

the easy modeling and control of tensegrity robotic structures in a real-time sim-

ulation environment. NTRT utilizes the Bullet physics engine to simulate ridged

body interactions, which is a Cartesian space open source numerical solver [100].

The toolkit also integrates builder tools, to simplify and standardize the construc-

tion of tensegrity structures, and a custom cable model, which more accurately

simulates cable contact dynamics. Figure 3.2 shows a model of SUPERball built

in NTRT and using GLUT/FreeGLUT [101] as the graphical output.

As of writing this document, there is a software bug in GLUT/FreeGLUT

which affects NTRT and does not allow for the user to simultaneously display a

graphical output and manually control the time step. This is not a limiting factor

if the user is running thousands of Monte Carlo simulations and does not need to

see each individual trial, as is the case for Mirletz and Iscen’s papers [102, 103].

However for the machine learning utlizied on SUPERball, learning is quite rapid

and observing the progress as the learning algorithm is working helps determine if

a usable controller is being learned. To enable this, NTRT is run in non-graphical

mode and a modified class was implemented that took the bar positions at each

time step and displays them in the open source 3D rendering program OpenScene-

Graph [104]. It was decided not to render the robot’s cables in OpenSceneGraph

due to the large amount of effort required to code and debug for marginal returns.
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Figure 3.2: SUPERball with a payload modeled within NTRT.

Figure 3.3 shows an example of SUPERball in OpenSceneGraph.

3.3 Detailed Impact Simulations and Cross Val-

idation Using Two Simulators

The NTRT simulator is the most general purpose tensegrity simulator avail-

able, allowing users to explore control algorithms and complex environmental

interactions, but it is an iterative discrete solver that has the potential of provid-

ing inaccurate answers. The Euler-Lagrange (E-L) solver, on the other hand, has

a much stronger analytical basis and should provide very accurate answers, but is

limited because some of the nodes (rod ends) must be constrained and locked into

place. This is unrealistic for the deformation caused during landing, and makes
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Figure 3.3: SUPERball simulated in Open Scene Graph. Note that this graph-
ical display of NTRT does not support cable visualization.

it an inappropriate choice for mobility and controls research.

In this section, a comparison is shown between the NTRT simulator and E-L

solver at the moment of impact with the ground. The simulations are compared

at this moment because our implementation of the analytic E-L solver requires

select nodes to be constrained. The structure is setup so that time is equal to

zero at the instantaneous moment it comes into contact with the ground. In both

simulations, we add an initial velocity equal to the terminal velocity of Titan, and

compared each vertical trajectory, vertical velocity, and vertical acceleration of the

payload. Since the structure’s horizontal speed is zero at the beginning and the

structure is symmetrical, the payload’s horizontal components of position, velocity

and acceleration are zero. As it can be seen in the Figures 3.4 and 3.5, both

simulators closely match and generate the same results for position and velocity

with the error margin close to zero. Comparing the accelerations generated by
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two simulators (Figure 3.6), it can be seen that there is a bigger difference. The

reason behind this difference is the fact that NTRT uses Bullet, which is a discrete

time simulator and accelerations are calculated using two point estimations from

velocities at the timestep before. Yet, even with these differences in accelerations,

the conclusion at the end of the comparison is that both simulators showed the

same basic dynamics and their results were close enough that it is conceivable

to use the more general purpose NTRT Simulator for our controls, mobility, and

landing experiments.
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Figure 3.4: NTRT vs EL: Vertical Position

3.4 Simulated Drop Tests and Payload Protec-

tion

Finally, extensive analysis were performed on various drop tests and the pro-

tection provided to a payload. As one might expect, varying the rod lengths which
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Figure 3.5: NTRT vs EL Vertical Velocity

impacts the stroke distance for the payload to decelerate, it is possible to control

the maximum deceleration experienced by the payload while ensuring that it did

not collide with the ground or structure. For example, with rods of 1.5 meters in

length, the payload experienced a max deceleration of 21.4G when landing at 15

m/s. Figure 3.7 shows the results of a series of drop tests with different rod lengths

and shows the resulting maximum deceleration and forces experienced in the ten-

sion members. As can be seen from these graphs, even for reasonable rod lengths,

the maximum G’s are acceptable for most instruments, and the maximum forces

experienced by the cables are easily within ranges that can be engineered for. In

all tests, the total system mass is kept constant at 100kg (which is 70kg for the

payload and 5kg per rod) in order to highlight the impact of structural geometry

and rod length. For the tension members, spring constants of 44 kN/m were used

for the cables around the perimeter and 10 kN/m for the cables attached to the

payload. Also, the results in Figure 3.7 were found using the landing orientation

of 35 degrees around X axis and 45 degrees around Z axis, which were selected
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Figure 3.6: NTRT vs EL Vertical Acceleration

from the orientation studies discussed below.

A very interesting point to consider is that the mass of a SUPERball like

system will grow in a linear fashion with the length in the rods, while providing

increasing payload protection. On the other hand, the mass of airbags increases

with the square of the radius, which is one of the reasons that the MSL rover, with

its increased size and mass, had to switch from the airbag approach to the more

complex Sky Crane approach. While this study has focused on small light-weight

mission concepts, there could be compelling advantages for scaling up to handle

larger payloads.

3.5 Landing Orientation Studies

In order to study how landing orientation affects payload decelerations and

impact events, a systematic study of landing orientations was conducted. In order

to get meaningful data, even for bad orientations, a larger tensegrity structure
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Figure 3.7: Landing Forces Study. This shows how rod length impacts maxi-
mum deceleration of the payload and the maximum forces experienced by the ten-
sion cables. All tests were conducted with a landing velocity of 15 m/s onto a hard
surface.

with 4 meter rods was used so the data wouldn’t saturate. The success criteria

for this study was that the decelerations had to stay under an upper limit of 25G

deceleration of the payload, and the payload had to avoid collision with the ground

or parts of the tensegrity structure. Figure 3.8 shows the orientations that landed

safely within these criteria (black) or failed one or both of the criteria (colored).

By using a simple trailing streamer during descent it would be possible to control

landing at an optimal orientation and enable the use of smaller structures with

shorter rods because the orientation control would maximize the available stroke

for the payload to decelerate within the structure. Conversely, these studies could

be used to know what the worst possible landing scenario will be and choose a

structure size which will allow safe landing at any orientation.

3.6 Conclusions from Simulation Experiments

Using the scenario of free fall impacts, two different simulation methods were

developed and cross-validated which enables the exploration into the capabilities
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Figure 3.8: Heat map of the maximum acceleration that the payload encounters
for all possible landing orientations. Black areas are safe, colored areas are where
the payload does not meet one or both success criteria.

of a tensegrity structure to absorb the forces of landing and to simultaneously

protect a delicate payload. This analysis confirmed that indeed it is possible to

do so using a 6-bar tensegrity probe while maintaining maximum decelerations

experienced by the instrument-containing payload to forces less than 25G, despite

the structure landing at 15 m/s. Comparing this to the Huygens probe’s landing

acceleration of 32G [105], the tensegrtiy probe will have a 43% reduction in G

forces experienced by the scientific payload, despite the Huygens probe’s use of

parachutes to land at 1/3 of the speed of our tensegrity probe.
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3.7 Validation of NTRT and Real Hardware Pro-

totypes

The NASA Tesnsegrity Robotic Toolkit has also been shown to mimic real

world robotic prototypes in regards to kinematics and dynamics as well as learn-

ing close loop force controls. Caluwaerts et al. demonstrated a maximum 1.3%

position error when comparing rod end positions from motion capture data and

NTRT [106]. For dynamics, it was shown that less than 5% time averaged error

of each rod end’s vertical position in relation of the robot’s diameter. To further

validate NTRT, Mirletz et al. used the simulator to tune Central Pattern Gener-

ator (CPG) coupled impedance controllers through Monte Carlo trials [107]. It

was demonstrated that there was a maximum error of 1.6% between the forces

seen on their robot vs the forces calculated in the simulator.
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Chapter 4

SUPERball v1 Design

An ideal tensegrity system, either robotic or static, is a collection of rigid com-

pressible elements suspended within a network of tensioned cables where none of

the compressible elements are in direct contact with one another. For robotic

tensegrities without a payload, the actuation and supporting electronics would be

logically designed into the compressible elements. For the inception of SUPER-

ball, this compressible element called a struct was further dissected into three

parts: two identical ends called Modular Tensegrity Robots (MTR) and a section

of tube stock connecting the MTRs. Connecting six of these struts into an icosa-

hedron geometric pattern will create SUPERball. Modular Tensegrity Robot is a

loose label given to the self-contained robotic element which when connected with

multiple MTRs may make up a tensegrity robot. The current version of a MTR

can be seen in figure 4.1 and the following subsections will explain the mechanical

and electrical make up of an MTR.
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(a) MTR front side. (b) MTR back side.

Figure 4.1: Fully assembled Modular Tensegrity Robot images on SUPERball,
except for the ground contact caps which will mount to the every end of each rod.

4.1 Mechanical

The main structural elements of the MTRs were kept simple to enable each

MTR to be self contained so that the MTR may be removed from the connecting

rod as one whole unit. The MTRs are held onto the connecting rods by a simple

tube collar for easy removal. There are 5 sections to MTR: a spring holder, battery

holder, motor and electronics, cable actuation and routing, and a ground contact.

Design parameters are shown in table 3.1 in section 3. The supporting metallic

structural elements are made from 6061-T6 aluminum and machined plastic el-

ements are Polyoxymethylene (commercially known as Delrin) unless otherwise

noted.
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4.1.1 Spring Holder

A lesson learned from other tensegrity robots and the designer of ReCTeR [17]

was that externally exposed springs are not ideal for a robotic system that would

be interacting with a dynamic and unknown enviroment. The exposed springs

get caught on objects and the assumption of near mass-less cables can no longer

be applied. On the MTR, an enclosed compression spring system was developed

to alleviate these issues. Compression springs were chosen so that during any

unknown impact, the springs would not plastically deform before another element

in the system would break. For SUPERball, a spring with a spring constant of

998Nm is attached to a passive cable element and a 2850Nm spring is attached to

an actuated cable. A passive spring was chosen with a total throw of 23cm to allow

for pretension to be instated into the passive springs as well as to allow a wide

dynamic compliant range. Since the actuated cables will be able to dynamically

control pretension, a smaller throw spring was chosen to conserve space. Figure

4.2 shows a closeup of how the spring holder functions. How cables are attached

to the springs inside the spring holder is explained in section 4.1.4.

4.1.2 Battery Holder

From the inception of SUPERball, enabling a self-contained power source

which was easily accessible per MTR was a driving design parameter. During

the initial design and build of the SUPERball, it was known that the batteries

would probably be 24 volt lithium polymer but optimal size and shape of the bat-

tery was unknown due to a changing power profile. Therefore, a battery holder

with a simple securing mechanism which can handle a wide range of battery sizes

was utilized. Two hook and loop straps were used with simple slot cutouts to

enable cinching around a generic lithium polymer battery. The holder was also
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Figure 4.2: Time lapsed stills of spring compression in the MTR spring holder.
Note that these stills are from a previous version of the MTR.

made large enough to hold the Power Board PCB opposite of the battery. As

shown in section 4.2.3, the Power Board was designed to have a low profile in

order to allow for a large battery within the holder.

4.1.3 Motor and Electronics

This section of the MTR used on SUPERball was mechanically designed

around the Maxon EC-22 100 watt BLDC motor used for actuation. Each Maxon

motor is 22mm in diameter and 108mm long with gearbox and encoder. The

output shaft is a 6mm diameter D shaft of length 10.2mm. A size requirement

for how large the cross sectional diameter of the MTR could be was a limiting

factor in designing the motor and electronic section. The maximum diameter for

any section used in the MTR was maximally limited to double the diameter of the

connecting rod. The idea for such a limitation was to keep the effective moment
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arm out from the center axis of any rod to a minimum. Due to the spring size

and the need for a spring holder tube, the minimum diameter for the connecting

rod was 35mm giving a maximum MTR diameter of 70mm.

The main component in the motor and electronic section of the MTR is the

cable routing support bracket. This bracket plays three roles in the mechanical

design: static support for the motor, support for the supporting material, and

main exit support for the internal cable routing. Figure 4.3 shows the cable

routing support bracket above the pulley. The actual motor mount was designed

to be mechanically floating to enable torque sensing directly on the motor mount.

Thus, the cable routing support bracket sinks the reaction torque induced by the

motor. There are two electronic boards, the Sensor and Motor boards, which are

mounted to brackets that straddle the motor. Due to space limitations, these

brackets are also load bearing components for the torsional forces induced by the

motor.

4.1.4 Cable Actuation and Routing

A simple spool design was implemented to directly actuate the cable. The

spool directly couples to the motor shaft by sliding onto the D shaft. A radial

bearing supports the top of the spool and since the force vector applied to the

spool by the actuated cable will never be just perpendicular to the spool, a thrust

bearing was embedded into the bottom of the spool. The thrust bearing sinks

the trust force into the motor mount and each spool has the ability to slide along

the shaft’s main axis. Since this thrust force is perpendicular to the torque of the

motor, this force is not induced into the torque sensor built into the motor mount.

There are three other cables that connect to a MTR on SUPERball, though

the device may support more with slight additions not explained here. The cables
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used externally from the MTR are composed of Vectran braided cable and the

cables used within the MTR are braided steel cabling. Two cables are routed

through the MTR to the spring housing section and the other is terminated on

the outside of the MTR. Both routed cables enter the MTR through the cable

routing support bracket mentioned in 4.1.3. The cables are immediately routed

around a rolling guide bearing to induce an approximate 90 degree bend to guide

the cables towards the spring tube holder section, seen in figure 4.3. After the

rolling guide bearing, the cables enter a PTFE tube to create a bowden cable

to help route the cables around components within the MTR. Once the cables

reach their respective spring within the spring tube holder, the PTFE tube is

terminated and the cable is routed through the spring and terminated using a

copper compression sleeve.

Figure 4.3: Cable routing roller guide within an MTR.
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4.1.5 Ground Contact

To protect the MTR during locomotion, a 3D printed cap was manufactured

to cover the end. This part is designed with a diameter of 80mm so that it is the

only part of the MTR that contacts the ground during normal locomotion. To

decrease the impact shocks as the rod contacts a surface, compliant foam sheets

are place between the 3D printed cap and the MTR.

4.2 Electrical

SUPERball’s electronics where developed with a focus on reliability, safety,

and enabling distributed controls. Another parameter was the ability to drive the

100W BLDC Maxon motors. These main design criteria gave way to implement

separate electronic boards based on their main function. Each MTR has three

custom Microchip dspic33e enabled PCB boards and the ability to house one

ARM based computer called a Beagle Bone Black. Each custom PCB is designed

for very different purposes: A board to condition sensor data and run real-time

control loops, a board to condition and distribute a 5.5V electronic power rail and

a 24V motor power rail, and a board to control the 100W BLDC motor. The

only requirements for each custom board is full CAN bus communication support

and power conditioning for the 5.5V power rail. The boards are simply named

by their main purpose, thus Sensor, Power, and Motor respectively. Though each

MTR can house a Beagle Bone Black, SUPERball only has one per strut for cost

saving and initial implementation simplicity.
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4.2.1 Motor Board

An initial driving parameter used during the design of SUPERball was the

BLDC motor. During the design review for SUPERball, a lightweight motor with

high power and efficiency was desired. Thus, a Maxon brushless motor was a

logical choice. Table 4.1 shows the electrical properties of this motor. In order

to effectively drive this motor, a dedicated motor board was used on each MTR.

The main development of this board was engineered by Pavlo Manovi, and certain

aspects of the board where tailored for our needs [108]. The main components on

the Motor board are the Microchip’s 16-bit dsPIC33ep256mu506 micro-controller

and the Texas Instruments DRV8303 three phase pre-driver. Figure 4.4a shows

the current version of the motor board.

Table 4.1: 100W Maxon BLDC Motor Parameters
Motor without Gearbox

Nominal Voltage (V) No Load Speed (rpm) No Load Current (mA) Stall Torque Max Efficiency (%)
24 26,500 16.8 691 92

Gearbox
Reduction Number of Stages Max Continuous Torque (Nm) Max Peak Torque (Nm) Max Efficiency (%)

109:1 3 3 3.5 59

4.2.2 Sensor Board and Beagle Bone Black

The sensor board was originally designed as the main processing unit on a

MTR. However, the design and building process has lead to the coupling of the

sensor board with a Beagle Bone Black. For a detailed explanation of why the

Beagle Bone Black was integrated into the system, please refer to 4.3.

The current version of the sensor board was developed as a daughter board

for the Beagle Bone Black. The board mates to the Beagle Bone Black through

two double row 46 pin headers and provides power and CAN communication to

the ARM board. The main processing unit on the sensor board is Microchip’s
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16-bit dsPIC33ep128gp506 micro-controller. Environmental sensing is enabled by

a 9DOF inertial measurement unit (IMU) and a 24-bit analog to digital converter

(ADC) configured in a half Wheatstone bridge configuration. The IMU is com-

prised of Invensense’s MPU6000 mastered to Freescale’s MAG3110 magnetometer,

and the ADC is Analog Device’s AD7193.

The Beagle Bone Black is an open-source hardware single-board computer

inspired by the Beagle Board, the larger predecessor developed by Texas Instru-

ments as an educational tool. The main processor on the board is a Sitara ARM

Cortex-A8 processor running at 1Ghz and capable of running a full ARM based

operating system (OS). The processor is also able to interface directly with low

level communication protocols such as CAN, UART, SPI, and I2C. To meet our

memory and speed requirements, a custom kernel was built with only the modules

needed by our system. On top of this kernel, the Beagle Bone Black is running a

ROS (Robot Operating System, see section 4.3 for more detials) enabled Ubuntu

ARM 14.04.1 LTS OS.

A new feature developed is the integration of DecaWave’s DWM1000 module

for relative distance measurements. Legacy components no longer utilized on

the sensor board for mounting an XBee device are being used with a custom

DWM1000 breakout board. The small breakout was designed to integrate the

DWM1000 module into where the XBee device was originally mounted. Figure

4.4b shows a sensor board mounted on SUPERball.

4.2.3 Power Board

The power board was designed to enable safety, both for a person working

near SUPERball and for the electronics, as well as conditioning input power to

both a 5.5V and a 24V rail. The board was also designed with a minimal height
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profile allowing for larger batteries to be placed near the board. See section 4.1.2,

to view the section which houses the power board. The main idea of safety is

focused around operating the 100W BLDC motors, thus a two battery system

was implemented. A small battery is used for starting the micro-controller boards

but not capable of producing 24V needed by the motor, and a large battery is used

during main operation of the MTR. The two batteries are a 160 milli-amp-hour

1-cell and a 3 amp-hour 6-cell lithium polymer batteries, named the back-up and

the main receptively.

To enable the 24V power, multiple input conditions should be met and fed into

an analog and-gate equivalent circuit. The input conditions are: a physical switch

located on the MTR, a digital logic pin from the power board’s micro-controller,

power being applied by the back-up battery, and a signal coming from a dedicated

8-bit micro-controller monitoring a pulsed wireless 2.4Ghz signal. If any one of

these conditions go false, the entire 24V rail is disabled. There are also fuses on

both the 24V and 5.5V line to protect all the micro-controller circuits from shorts.

Figure 4.5 shows a basic connection diagram for the power lines.

The main processing unit on the power board is Microchip’s 16-bit mirco-

controller, dsPIC33ep128mc506. The wireless "kill switch" monitoring mirco-

controller is Mircochip’s 8-bit PIC12(L)F1571/2 mirco-controller. This chip mon-

itors a known pulse width being communicated by a Nordic Semiconductor board

nRF24L01 with antenna. The pulsed signal is sent by a hand held unit off the

robot. When a shut off command is sent or the PIC12’s watchdog timer is trig-

gered from a loss in wireless signal, the logic signal sent from the PIC12 is turned

to false disabling the 24V power rail. 5.5V power is either supplied by the back-

up battery or the main battery using a custom boost or buck switching circuit,

receptively. The 24V rail is supplied directly from the main 6-cell battery when
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all input logic is enabled. Figure 4.4c shows the power board.

(a) (b) (c)

Figure 4.4: Pictures of each of the main micro-controller boards on an MTR.
(a) Motor Board, (b) Sensor Board with DWM module, (c) Power Board without
nRF24l01 wireless chip.

4.3 Communication

Communication on SUPERball was designed around a desire to have each rod

of the tensegrity system unteathered from any other part of the system. Two

wireless protocols as well as a wired Controller Area Network, or CAN, bus were

implemented. The two main wireless protocols are WiFi for main data commu-

nication and a 2.4GHz channel for wireless enabling/disabling of motor power for

safety. Figure 4.5 shows how power and communication are connected for a single

MTR and figure 4.6 shows the connections for SUPERball’s wireless communica-

tions.

4.3.1 CAN Bus

A communication design was desired that would be robust, extensible, and

work over long distances. A CAN bus fits these main requirements and was im-

plemented to be the main communication between all controllers on a single rod.

Since the CAN bus is a physical layer standard, a communication protocol is
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Figure 4.5: This is a connection diagram for power and communication for a
MTR on SUPERball.

usually required to get a robust and extensible network. A widely accepted pro-

tocol that has been well tested and understood, is the CANOpen protocol [109].

CANOpen defines the addressing scheme, several small communication protocols

and an application layer defined by a device profile. Some of the smaller com-

munication protocols supported by CANOpen are device monitoring and commu-

nication between nodes, network management, and a simple transport layer for

message processing. This open source protocol is freely distributed and has many

open and closed source implementations. The CANOpen implementation used for

SUPERball is the CANFestival project which focuses on implementing the basic

protocol while maintaining a small code base and low computational load for em-

bedded systems. Each mirco-controller and Bealge Bone Black are able to run the

entire CANFestival project code in less than 150µs under worst case scenarios.

The physical layer CAN bus is running at 1Mbit/s.

4.3.2 WiFi and the Robot Operating System

The Robot Operating System, or ROS, is a collection of software to provide

operating system functionality on a network linked computer cluster. Message-
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passing and packet management works agnostic to the network layer, allowing

information to be passed from one ROS enabled node to any other ROS enabled

node on a network. Figure 4.6 shows a basic representation of how this message-

passing works on the SUPERball ROS network.

As explained in section 4.2.2, enabling each rod as a ROS node was the driving

reason to have at least one ARM based chip on every rod. Since the Beagle Bone

Black is also on the CAN bus, it’s main function is to sniff the CAN network and

send new information out to the ROS network. This enables for near real time

data analysis and for time stamped data logging on SUPERball.

Figure 4.6: A simplified representation of how messages are passed within the
SUPERball ROS network.

4.4 First Step

Using a basic step input to a single motor, SUPERball can perform a simple

transition from one face of the icosahedron to another. Figure 6.2 shows a test

where a motor retracts a cable, inciting a flop. The idea of this type of simple

transition is to deform the base equilateral triangle such that the center of mass
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Figure 4.7: SUPERball performing a single face-change movement, from one
equilateral triangular face to another. The robot begins with all MTRs of the red
triangle touching the ground. Then, SUPERball retracts the yellow-highlighted
cable on the red triangle, inducing movement. Frame 2 shows SUPERball halfway
through the movement with only two points of contact on the ground. Finally,
frame 3 shows SUPERball at the end, with all 3 points of the blue triangle in
ground contact.

"moves" over the triangle’s edge. The robot becomes unstable and gravity pulls

the system over. The momentum of the system then rolls the robot through

the adjacent isosceles triangle to the next equilateral triangle. In this test, the

motor retraction was preset and experimentally derived earlier. A more in depth

explanation of basic locomotion on SUPERball can be found in section 6.1.
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Chapter 5

State Estimation

5.1 Ranging Setup and Calibration

This section introduces the hardware and software setup for a set of wireless

ranging modules to enable position tracking of the robot both as an as internal

distance measurements (end cap to end cap) an in an external (world) reference

frame.

All MTRs of SUPERball are equipped with a DWM1000 ranging module from

DecaWave Ltd. By employing ultra wideband technology, the low-cost DWM1000

modules provide wireless data transfer and highly accurate timestamps of trans-

mitted and received packets. This allows the distance between two DWM1000

modules to be estimated by computing the time-of-flight of exchanged messages

without the need for synchronized clocks. Using DWM1000 modules external to

SUPERball as "fixed anchors" and placing them around the testing area, a world

reference frame for ground truth and generation of a reward signal for the ma-

chine learning algorithms used for learning locomotion is obtained. It is intended

that the final deployed version of the robot and controller will not require fixed

anchors, and they are primarily used during algorithm development.
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5.1.1 Sensor Operation

Bidirectional Ranging

The DWM1000 modules are operated in the so-called symmetric double-sided

two-way ranging mode. In this mode, the modules exchange 3 packets to estimate

the time-of-flight between each other. While the time-of-flight of unsynchronized

modules can be estimated with the exchange of only 2 packets, the employed mode

can significantly reduce measurement noise [110].

The basic ranging packet exchange is shown in Fig. 5.1. Module 1 sends out a

poll message containing an emission timestamp (tSP ) using its local clock. Module

2 receives this message and timestamps the time of arrival using its local clock

(tRP ). Then, module 2 sends out a response packet at time tSR (module 2’s clock).

Module 1 receives this packet at time tRR (module 1’s clock). Module 1 now sends

out a final message containing tRR and the emission time of the final message (tSF ,

clock of module 1). Module 2 receives this information and timestamps it (tRF ).

poll (tSP)

final (tRR, tSF)

response

tSP

tSR

tSF

tRP

tRR

tRF

TOF

TOF'

TOF''

a
b

c
d

module 1 module 2

Figure 5.1: Basic symmetric double-side two-way ranging packet exchange.
Modules 1 and 2 exchange 3 packets (poll, response, and final). Module 2 then
estimates the distance between the modules based on the local timestamps.

Module 2 can now estimate the time-of-flight and the distance between itself

and module 1 based on the 6 timestamps. The basic equations to estimate the
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distance between module i and module j (module i initiates the ranging and

module j computes the distance) are given by:

ai = tiSF − tiSP (5.1)

bj,i = tj,iRF − t
j,i
RP (5.2)

cj,i = tj,iRF − t
j
SR (5.3)

di,j = tiSF − t
i,j
RR (5.4)

TOF j,i ≈
1
2

(
cj,i − di,j

bj,i
ai

)
− δj,i (5.5)

‖Nj −Ni‖ ≈
1

2C

(
cj,i − di,j

bj,i
ai

)
− oj,i (5.6)

.= mj,i − oj,i. (5.7)

The variables a, b, c, and d are also visualized in Fig. 5.1. The time-of-flight

calculation between two modules i and j (TOFj,i = TOFi,j) is hindered by a fixed

measurement offset (δj,i = δi,j). This offset is due to antenna delays and other

discrepancies between the timestamps and actual packet reception or emission.

Whereas this offset is expected to be unique to each module, it was found that

it is necessary to estimate this offset pairwise for closely located modules. The

hypothesis is that the proximity of the robot’s motors and the sensor’s position

near the end cap’s metal structure influences the antenna characteristics between

pairs of modules.

Eq. 5.6 estimates the distances between the modules based on the time-of-flight

calculation (C is the speed of light). Rewriting the time offset δj,i as a distance

offset oj,i (with oj,i = oi,j). Here Ni and Nj refer to the positions of nodes i

and j respectively (see Section 5.2). The variables mj,i represent the uncorrected
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distance estimates.

The DWM1000 requires careful configuration for optimal performance. The

main configuration settings are provided in Table 5.1. The ranging modules tend

to measure non line-of-sight paths near reflective surfaces (e.g. floor, computer

monitors), which may cause filter instability. Using the DWM1000’s built-in signal

power estimator, such suspicious packets are rejected. In practice, between 30%

and 70% of packets are rejected.

Table 5.1: DWM1000 configuration

bitrate channel preamble PRF preamble code
6.8Mbit s−1 7 256 64MHz 17

Broadcast Ranging

Due to the large number of exchanged packets (3 per pair) bidirectional ranging

between pairs of modules quickly becomes inefficient when the number of modules

grows. An alternative approach was developed using timed broadcast messages

that scales linearly in the number of modules (3 packets per module). In this

setup one module periodically initiates a measurement sequence by sending out

a poll message. When another module receives this message it emits its own

poll message after a fixed delay based on its ID, followed by response and final

messages after additional delays. Broadcast ranging is illustrated in Fig. 5.2.

One disadvantage of the broadcasting approach is that the total measurement

time between a pair of modules takes longer (up to 60ms in the experimental

setup) than a single pairwise bidirectional measurement (approx. 3ms). How-

ever, broadcast ranging provides two measurements for each pair of modules per

measurement iteration.

Note that each module now needs to keep track of the poll and final packet
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Figure 5.2: Packet exchange between 4 modules for bidirectional pairwise and
broadcast ranging. Timed broadcast messages allow for efficient ranging with a
large number of modules.

reception times of all other modules. The final packet becomes longer as each

module needs to transmit the response reception time (tRR) of all other modules.

5.1.2 Ranging Setup

Each MTR of SUPERball was fitted with a DWM1000 module located ap-

proximately 0.1m from the end of the strut. To simplify the notation, the top of

the MTRs (ends of the struts) and the position of the ranging sensor are assumed

the same. In practice, this offset is taken into account in the output function of

the filter (see Section 5.2).

The broadcasting algorithm runs at 15Hz and packet transmissions are spaced

1ms apart. This allows for over 20 modules to range. After one ranging iteration,

each end cap transmits its measurements over WiFi to the ROS network. A ROS
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node then combines measurements from all MTRs, along with encoder and IMU

data, into a single ROS message at 10Hz.

The fixed anchors operate in a similar way to the end caps, but are not con-

nected to a ROS node and can not directly transmit data to the ROS network.

This means that two measurements are obtained (one in each direction) for each

pair of modules on the robot, but only a single measurement between the fixed

anchors and the modules on the robot.

5.1.3 Calibration

One of the design goals of this state estimation method is quick deployment

in new environments without significant manual calibration. To achieve this, an

automatic calibration procedure was implemented to jointly estimate the con-

stellation of fixed modules (anchors, defining an external reference frame) and the

pairwise sensor offsets (oi,j). Calibration is performed - similar to common motion

capture systems - by moving the robot around, while recording the uncorrected

distance measurements (mj,i).

After recording a dataset, reconstruction error is minimized L by optimizing

over the offsets o (oi,j rearranged as a vector), the estimated anchor locations

N est, and the estimated moving module locations N float[1 . . . nsamples] (i.e. the

module on the robot’s end caps):

L (i, j, t) =
(
‖N anchor

i −N float
j [t] ‖ − oj,i −mi,j [t]

)2
(5.8)

L
(
o,N anchor,N float[1 . . . nsamples]

)
= ∑

i,j,t αj,tL (i, j, t). (5.9)

The brackets in N float[1 . . . nsamples] indicate the moving module locations

(MTR positions) at a specific timestep. For example N float[5] contains the es-
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timated end cap positions at timestep 5 in the recorded dataset. In Eq. 5.9, i

iterates over anchors, j iterates over moving nodes and t iterates over samples.

The indicator variables αj,t are equal to 1 when for sample t there are at least 4

valid measurements to the fixed module for moving module j (i.e. the number of

DOFs reduces).

In practice, constraints are added on the bar lengths, which take the same

form as Eq. 5.8 with the offsets set to 0. BFGS [111] is used to minimize Eq. 5.9

with a dataset containing approximately 400 timesteps selected randomly from a

few minutes of movement of the robot. Although the algorithm works without

prior knowledge, providing the relative positions of 3 fixed nodes (3 manual mea-

surements) significantly improves the success rate as there are no guarantees on

global convergence.

Once the external offsets (between the anchors and moving nodes) and the

module positions are known, the offsets can be estimated between moving nodes in

a straightforward way by computing the difference between the estimated internal

distances and the uncorrected distance measurements.

5.2 Filter Design

Tensegrity systems are nonlinear and exhibit hybrid dynamics due to cable

slack conditions and interactions with the environment that involve collision and

friction. This warrants a robust filter design to track the robot’s behavior.

The commonly used Extended Kalman Filter (EKF) does not perform well

on highly nonlinear systems where first-order approximations offer poor repre-

sentations of the propagation of uncertainties. Additionally the EKF requires

computation of time-derivatives through system dynamics and output functions

which is challenging for a model with complex hybrid dynamics.
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The sigma point Unscented Kalman Filter (UKF) does not require deriva-

tives through the system dynamics and is third order accurate when propagating

Gaussian Random Variables through nonlinear dynamics [112]. The computa-

tional cost of the UKF is comparable to that of the EKF, but for tensegrity

systems which commonly have a large range of stiffnesses and a high number of

state variables the time-update of the sigma points dominates computational cost.

As such, the methods used to reduce computational cost of dynamic simulation

will be described, then in the following section the outline of the specific UKF

implementation for the SUPERball prototype.

5.2.1 Dynamic Modeling

The UKF requires a dynamic model which balances model fidelity and com-

putational efficiency since it requires a large number of simulations to be run in

parallel. The model implemented for the tensegrity system is a spring-mass net

and the following incomplete list of simplifying assumptions where used:

• Only point masses located at each node point

• All internal and external forces are applied at nodes

• Members exert only linear stiffness and damping

• Unilateral forcing in cables

• Flat ground at a known height with Coulomb friction

• No bar or string collision modeling

For a tensegrity with n nodes and m members, the member force densities,

q ∈ Rm, can be transformed into nodal forces, Fm ∈ Rn×3, by using the current
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Cartesian nodal positions, N ∈ Rn×3, and the connectivity matrix, C ∈ Rm×n,

as described in [113]. This operation is described by the equation:

Fm = CTdiag(q)CN ,

where diag(·) represents the creation of a diagonal matrix with the vector argu-

ment along its main diagonal. First, note that CN produces a matrix U ∈ Rm×3

where each row corresponds to a vector that points between the ith and jth nodes

spanned by each member. Therefore, this first matrix multiplication can be re-

placed with vector indexing as Uk = Ni −Nj, where the notation Uk is used to

denote the kth row of matrix U . If one then computes V = C dN
dt

with the same

method as U , one would obtain a matrix of relative member velocities. The ma-

trices U and V are used to calculate member lengths as Lk = |Uk|2 and member

velocities as d
dt

(Lk) = Uk(Vk)T
Lk

.

Member force densities, q, are then calculated using Hooke’s law and viscous

damping as:

qk = Kk(1−
L0k

Lk
)− ck

Lk

d

dt
(Lk).

Here Kk and ck denote the kth member’s stiffness and damping constants, respec-

tively. Note that cables require some additional case handling to ensure unilateral

forcing.

Scaling each Uk by qk yields a matrix whose rows correspond to vector forces of

the members. Denote this matrix as U q ∈ Rm×3, and note that U q = diag(q)CN .

Thus this matrix of member forces can be easily applied to the nodes using:

Fm = CTU q.
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A method for computing nodal forces exerted by the members is now obtained,

and only ground interaction forces need to be computed, which will be denoted

as Fg. Ground interaction forces were computed using the numerical approach

in [114]. The nodal accelerations can then be written as:

d2N

dt2
= M−1(Fm + Fg)−G,

where M ∈ Rn×n is a diagonal matrix whose diagonal entries are the masses

of each node and G ∈ Rn×3 is matrix with identical rows equal to the vector

acceleration due to gravity. It is then straightforward to simulate this second

order ODE using traditional numerical methods.

Note also that it is possible to propagate many parallel simulations efficiently

by concatenating multiple N matrices column wise to produce N‖ ∈ Rn×3l for l

parallel simulations. The resultant vectorization of many of the operations yields

significant gains in computational speed with some careful handling of matrix

dimensions.

5.2.2 UKF Implementation

A traditional UKF was implemented as outlined in [112] with additive Gaus-

sian noise for state variables and measurements.

Several parameters are defined for tuning the behavior of the UKF, namely

α, β and κ, where α determines the spread of the sigma points generated by the

unscented transformation, β is used to incorporate prior knowledge of distribution,

and κ is a secondary scaling parameter. Hand tuning obtained these parameters

to the values α = 0.0139, β = 2 for Gaussian distributions and κ = 0 and found

this to yield an adequately stable filter.

Defining state variables as N and dN
dt

stacked in a vector y ∈ RL where L = 6n
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is the number of state variables. Also, independent state noise is assumed with

variance λy = 0.4 thus with covariance R = λyIL.
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Figure 5.3: Block diagram of data flow within the system. Red signals are
passed as ROS messages and blue signals are passed using the ranging modules.
Note that each rod contains two ranging sensors located at each end of the rod.
The gray control strategy block represents a to-be-designed state-feedback control
strategy.

The measurement data used is estimated orientation data from the robot’s

IMUs using a gradient descent AHRS algorithm based on [115], θ ∈ Rb where

b is the number of bar angles available at the given time step and all ranging

measures, r ∈ Ra, where a is the number of ranging measures available at a given

time step. Independent noise is again assumed and represented by λθ and λr. The

measurement covariance matrix is then defined as:

Q =

 λθIb 0

0 λrIa

 .

These user defined variables are then used within the framework of the UKF to

forward propagate both the current expected value of the state as well as its
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covariance. Fig. 5.3 shows an overview of the complete state estimation setup.

5.3 Filter Evaluation

5.3.1 Experimental Setup

Figure 5.4: Visualization of the UKF output. SUPERball sits in the middle of
the plot surrounded by 8 ranging base stations. Lines between the robot and the
base stations indicate valid ranging measures during this timestep.

To evaluate the performance of the UKF, eight "fixed anchor" ranging base

stations are used and calibrated as detailed in Section 5.1.3. Each end cap of

SUPERball was then able to get a distance measurement to each base station.

This information was sent over ROS along with IMU data (yaw,pitch,roll) and

cable rest lengths to the UKF. The base stations were placed in a pattern to cover

an area of approximately 91m2. Each base station’s relative location to each

other may be seen in Fig. 5.4. SUPERball and the base stations were then used

to show the UKF tracking a local trajectory of end caps and a global trajectory

of the robotic system. In each of these experiments, the UKF was allowed time

to settle from initial conditions upon starting the filter. This ensured that any
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erroneous states due to poor initial conditioning did not affect the filter’s overall

performance.

5.3.2 Local Trajectory Tracking
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Figure 5.5: Position plotted through time for both end cap 1 and end cap 2. The
thin line represents the position output measured by the camera tracking system,
and the bold line represents the position output from the UKF filter. As expected,
there is a time domain lag between the measured and estimated positions.

In order to track a local trajectory, SUPERball remained stationary while

two of its actuators tracked phase shifted stepwise sinusoidal patterns. During

the period of actuation, two end cap trajectories were tracked on SUPERball

and compared to the trajectory outputs of the UKF. One end cap was directly

connected to an actuated cable (end cap 2), while the other end cap had no

actuated cables affixed to it (end cap 1). To obtain a ground truth for the position

trajectory, a camera that measured the position of each end cap was positioned

next to the robot. Both end caps started at the same relative height and the

majority of movement of both fell within the plane parallel to the camera. Fig. 5.5

shows the measured and UKF global positions of the two end caps through time.

59



5.3.3 Global Trajectory Tracking

1 2 3

Figure 5.6: Top down view of the triangular faces to which the robot transitions
during the global trajectory tracking experiment for various setting of the state
estimator. The small inset illustrates the movement of the robot. The line shows
the estimated center of mass (CoM) using the full settings. Finding the initial
position (origin) is hard for all settings, and without the IMUs the estimator does
not find the correct initial face. After a first roll, tracking becomes more accurate.
The offsets o have a minimal impact, which indicates that the calibration routine
is sufficiently accurate.

For global trajectory tracking, SUPERball was actuated to induce a transition

from one base triangle rolling through to another base triangle as presented in

[5]. Ground truth for this experiment was ascertained by marking and measuring

the positions of each base triangle’s end caps before and after a face transition.

4 settings of the state estimator were evaluated. Full: The state estimator as

described in Section 5.2 with all IMU and ranging sensors. no IMU : Only the

ranging sensors are enabled. full w. cst. offset: Same as full, but the offsets

o are set to a constant instead of optimized individually. 4 base station ranging
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sensors: 50% of the base station ranging sensors are disabled. The results of this

experiment are presented in Fig. 5.6 and 5.7.

Figure 5.7: X and Y position of end cap 12 as a function of time for the var-
ious estimator settings. The end cap was initially off the ground and touches
the ground after the first roll. This is not tracked correctly when the IMUs are
disabled. The system works as expected when 4 base stations ranging sensors
are disabled, but with slower convergence and more noise on the robot’s position.
Around 60 s there’s a spurious IMU value from which the state estimator recovers.
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Chapter 6

Control for SUPERball

Locomotion

6.1 Basic Locomotion Concepts for a Icosahe-

dron Tensegrity Robot

Locomotion for tensegrity structures like SUPERball is achieved by deforming

the structure in a way in which moves the system’s center of mass to an unstable

configuration, tipping the robot over. This deformation is usually achieved by

either changing the length of the main cable network on the outside of the robot [5,

98] or by adding additional cables which run through the structure connecting non-

parallel rods [106]. For the rest of this section, deformation is assumed to be done

by actuating the main cable network on the outside of the robot since this is how

SUPERball is deformed.

A regular convex icosahedron is a geometric shape consisting of eight equi-

lateral triangles interlaced with twelve isosceles triangles. In a passively stable

configuration, the bottom of an icosahedron will be resting on either an equilat-
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Figure 6.1: This is XY data of the bottom triangle of a NTRT simulation
of SUPERball performing a single face transition by changing only one side of
the bottom triangle. No other cable on the system is being actuated during this
simulation. The blue triangle is the bottom triangle at the start of the simulation.
The centralized circle represents the center of mass (CoM) of the entire simulated
SUPERball and the dots represents how the CoM moves through time. The red
triangle is the configuration where the CoM moves out of the bottom triangle and
the robot begins to transition to another face.

eral or an isosceles triangle. Utilizing this knowledge, the most simple method

for moving the center of mass of an icosahedron can be obtained by changing the

length of one side of the bottom triangle to near zero. This will always move the

center of mass to an unstable configuration by effectively reducing the bottom tri-

angle, as seen if figure 6.1, which will cause the robot to transition to another face.

However, this simple control method is not always obtainable on a real robotic

system due to limitation on actuation or design methodology. For SUPERball,

this control method is obtainable when the system only has the battery mounted

required to actuate the single motor reducing the overall system weight. Figure 6.2

shows this single motor face transition on a weight reduced SUPERball.
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Figure 6.2: SUPERball performing a single face-change movement, from one
equilateral triangular face to another. The robot begins with all MTRs of the red
triangle touching the ground. Then, SUPERball retracts the yellow-highlighted
cable on the red triangle, inducing movement. Frame 2 shows SUPERball halfway
through the movement with only two points of contact on the ground. Finally,
frame 3 shows SUPERball at the end, with all 3 points of the blue triangle in
ground contact.

6.1.1 SUPERball Acutation Pattern

SUPERball is an underactuated icosahedron tensegrity robot. Of the 24 con-

nection cables, SUPERball only has 12 cables which are actively actuated and

the other cables are passive as discussed in section 4. Since each MTR is man-

ufactured with the same elements, each of the four cables attached to it are one

of four types: an actuated cable attached to a motor, an actuated cable from an

adjacent MTR terminating at this MTR, a passive cable attached to a spring, or

a passive cable from an adjacent MTR terminating at this MTR. Therefore, there

is a unique pattern of cables, and care is needed when choosing this pattern for

locomotion.

For SUPERball, a symmetric pattern is used where each equilateral triangle

has at least one actuator associated with one of its sides. As stated in section 4,

SUPERball has eight equilateral triangles, so at most three triangles will have

more than one actuated side. These triangles are evenly spaced round the surface

of the robot such that there are "rings" of six equilateral triangles with the other

two triangles flanking this ring. Forward locomotion is then achieved by transi-
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(a)	
   (b)	
  

Figure 6.3: This is the actuation pattern used on SUPERball. There are 8
equilateral triangles, shown in either red or blue. Each red triangle represents
a face with only one cable actuated. These actuated cables are denoted by the
yellow double arrows. Each blue triangle represents a face with actuators on
all cables. The basic forward rolling of SUPERball has the robot landing with
red triangles on the ground during locomotion. Figure (a) shows each triangle
highlighted on SUPERball and figure (b) shows the forward locomotion pattern,
or walking pattern, of SUPERball.

tioning the structure such that each of the six equilateral triangles on this "ring"

comes in complete contact with the ground at some instantaneous point in time.

Since a symmetric pattern was desired, it was chosen to place one actuator per

"ring" triangle in such a way where the theoretical full actuation length change of

that triangle side would cause the robot to transition towards the next sequential

equilateral triangle on that "ring". The other six motors were then attached at

all the side of the remaining two equilateral triangles, those not associated with

the "ring". Figure 6.3 (a) shows a graphical overlay of the actuation "ring" and

the fully actuated triangles marked in red and blue, respectively. Figure 6.3 (b)

is a icosahedron rolled out to show the "walking" gait pattern achieved by rolling

about the actuation "ring".
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6.1.2 Basic Steering Controller

The majority of this chapter deals with how to achieve a continuous forward

locomotion gait for SUPERball. However, having the ability to turn makes navi-

gation a bit more interesting and this section will discuss some preliminary results

in achieving a simple left and right turning gait. It has been shown in literature

that a simulated fully actuated (24 actuators) SUPERball like robot can achieve

left and right turning gaits [98] as well as goal direction navigation [103].

Figure 6.4: This figure shows the tracked center of mass of a simulated SUPER-
ball utilizing the basic steering controller. Each fully actuated equilateral triangle
was squeezed the same amount for the left and right steering. This controller
has no feed back and does have a slight bias toward turning right more than left.
Also, it is noted that the unbiased controller tends to the left, because of no opti-
mization on direction was used during the learning of the controller. It should be
noted that this figure only shows an academic example and not a fully functional
controller.

The current version of SUPERball has limited actuation as stated in section 6.1

and can not perform the published turning gaits. A simple solution which can

be implemented with any type of forward locomotion controller involves the use
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of the two fully actuated equilateral triangles outlined in section 6.1.1 and shown

in figure 6.3. Actuating all three motors for a given triangle equal amounts will

bias the gait such that the roll performs a wide turn. This equal actuation of

the triangle on the left side biases the robot left, and conversely the right triangle

biases the robot right. This behavior can be seen in figure 6.4.

6.2 Hand-Tuned Stepwise Controller

The initial controller developed for SUPERball was a basic open loop, hand

tuned controller. Motor position commands were systematically found through

experimentation which moved the robot into a kinematically unstable configura-

tion for each of the six faces mentioned in section 6.1. Under normal conditions on

flat ground, when the system starts on an equilateral triangle the forward momen-

tum of the structure after deformation will push it through the isosceles triangle

and come to rest on another equilateral triangle. Using this assumption, only six

different kinematic configurations were implemented. To automate this process,

enabling the system to detect which face it resided on was necessary. A simple

K-nearest neighbor algorithm was implemented on recorded IMU data for each

equilateral triangle face of SUPERball. Since the faces are discrete enough, one

hundred percent classification was found. With this information, a basic open loop

controller was written that used the detected face as an input and commanded the

correct motor commands for the kinematically unstable configuration to transition

the robot to the next face.

Once the robot acted the kinematically unstable configuration, all motor com-

mands were set back to their starting configuration. This ensured correct detection

and transition time for the next cycle. The hand-tuned stepwise controller has

two main states, a detect and move state and a relax state as seen in 6.5. The
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Figure 6.5: Time based state machine which automates the hand-tuned stepwise
controller. Timers are used to allow for dynamic settling before the next action
is taken.

transition between each state is time based, where the timing between states was

empirically obtained to ensure transition and dynamic settling. It should be noted

that for SUPERball, a single face transition requires more than the single motor

command as stated in section 6.1. This non ideal behavior is caused by many fac-

tors, and these factors mainly affect the maximum tension a single cable should

experience during actuation. Limiting actuation to a value less than the required

to move the CoM outside the bottom triangle.

6.3 Machine Learning Enabled Controllers

The previous sections in this chapter dealt with locomotion controllers that

are idealistically simple as in section 6.1 or completely derived by human experi-

mentation as in section 6.2. Thus, these controllers do not leverage any inherent

properties within the tenesgrity structure or have the ability to optimize around

any limitations in the structure’s design. One property that will be leveraged

in the following sections is global force distribution. Figure 6.6 shows how the

tensioning on a single cable affects all other cables on SUPERball.

68



Figure 6.6: Change in length of cables when one (13th) is pulled to 0.5 meters
while the others are kept at the same rest length. Grey bars show original length,
red show final length. While the robot is at the exact same orientation, the actual
lengths of the cables change in a non-linear way. Some of the cables shorten due
to the tension introduced by cable 13, and some of the cables relax.

The majority of the learned controllers discussed in this section will be imple-

mented in the NTRT simulation environment with the final locomotion controller

implemented on the SUPERball hardware. The first section will discuss a two

stage Monte Carlo method for maneuvering SUPERball out of craters/holes. This

if followed by an open loops learned controller for forward navigation. Finally, the

last section discusses a closed loop locomotion controller developed in simulation

and implemented on the physical SUPERball hardware.

6.3.1 Crater Escape Controller

This section explains a locomotion controller that actuates a simulated SU-

PERball like structure out of a hole/crater. In order to achieve a solution to this

task, a two stage Monte Carlo technique is used on a simplified control space

on a simulated fully actuated SUPERball in NTRT. The simplified control space

consists of clustering each equilateral triangle, shown in section 6.1, such that all

three actuators in that cluster follow a sine wave dictated by equation 6.1
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y = Asin(ωt+ ϕ) +D (6.1)

Where A is amplitude, ω is angular frequency, ϕ is phase change, and D is

the DC offset. This makes 32 parameters for a policy to learn and search over

(4 parameters × 8 clusters). A successful policy is one where the robot moves a

linear distance greater than the maximum radius of the hole/crater it starts in.

There are two stages to this process, where the first stage run 1000 samples

with evenly distributed random parameters for each samples (generation 0). The

second stage (generation 1) filters out the successful samples from the first stage

and runs 10 evenly distributed samples around each of the previously successful

parameters such that each value is no more than ±0.05% from the initial value.

Each sample is let run for a simulation time of 60 s. This approach makes it

feasible to run this simulation process in a relatively short time frame (less than

40 minutes on a 2014 or later quad core i7 or equivalent processor), enabling the

system to learn a new policy based on a real time estimate of its current state. It

should be noted that this is a simplified open loop control policy of the one used

in the open loop locomotion controller found in section 6.3.2.

Experiment and Results

Following the escape criterion set in the previous section, the robot escapes

the hole/creater when a linear distance of 25meter is reached in the simulation

environment.

Figure 6.7a shows the simulated robot’s CoM displacement for each of the 1000

samples in generation 0 of the learning process. This generation had 110 samples

which reached a distance of 25meters or greater. For generation 1, 1100 samples
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(a) (b)

Figure 6.7: (a) Generations 0 for the escape hole/crater policy. The displace-
ments reached in 1000 independent samples using Monte Carlo generated control
policies. (b) Generations 1 for the escape hole/crater policy. The displacements
reached in 1100 independent samples using control policies dictated by the suc-
cessful samples from Generation 0. The values in the set of sine wave parameters
from Generation 1 samples were each centered around one of the successful corre-
sponding sine wave parameters in Generation 0 control policies. These Generation
1 values were then modified to be within 0.5% of their respective Generation 0
values with the goal of optimizing Generation 0 control policies.

were taken, and its results are shown in figure 6.7b.

To further explore this policy, a simple comparison is conducted to evaluate

how well the policy controls the robot out of a hole/crater with only 12 usable

actuators. As a control, 100 samples are taken with all actuators functioning,

shown in figure 6.8a. Then another set of 100 samples are taken where only 12

of the actuators are responding to the sine wave command, shown in figure 6.8b.

The other actuators are modeled as passive linear springs.

The result of this policy only showed limited success with the second generation

only achieving 24% success. However, the policy is still able to achieve success even

when half of the actuators are turned off. These preliminary results demonstrate

that it is possible to actuate a SUPERball like system out of hole/craters it may

be stuck within.
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(a) (b)

Figure 6.8: (a) 100 Samples of Tensegrity Structures with 24 Actuators. By
reducing the number of functioning actuators on our simulated tensegrity, the
limitations of tensegrity escape can be better explored. With all 24 actuators
on the tensegrity functioning correctly, a successful escape is relatively easy (9%
success rate). (b) 100 Samples of Tensegrity Structures with 12 Actuators. With
just half of the original actuators functioning correctly, a successful escape is even
more difficult (see Figure 7). In this generation, 4% of tensegrity rovers were still
able to escape the ditch in the allotted time.

6.3.2 Co-Evolutionary Learning for an Open Loop Con-

troller

This section explores an evolutionary controller on a fully actuated (24 actu-

ators) SUPERball like robot, and all the results are based on a simulated robot

in NTRT. This work shows how a controller learned through machine learning

can utilize the dynamics of such a structure to find optimally consistent loco-

motion gaits for goal directed behavior. The work presented in this section are

summarized sections of collaborative work found in Iscen et al. ’s work [4].

The overall goal of this controller is to have the tensegrity robot roll smoothly

within the limitations of the simulated actuation and hardware parameters. A

periodic open loop controller is used with parameters that are set by an evolu-

tionary algorithm [116]. During rolling locomotion, the controllers will repeat the
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Figure 6.9: An example signal with 2 sub-intervals with preferred lengths of y1
and y2 and periodicity t.

same actuation motion. Considering that the rolling locomotion is a repetitive

behavior, the signals produced by the controllers will be periodic. The key to

making this system work is determining the shape of this periodic signal.

For this work, a signal of periodicity t has a function F (t) where the function

is a discrete number of step functions n. Thus, a simplistic example where n = 2

would have the form

F (t′) =


y1 for t′ ∈ [0, t1]

y2 for t′ ∈ (t1, t]
(6.2)

where t1 < t and y1 and y2 are motor position values and this simple case can

be seen in figure 6.9.

When the function is expanded to n = k it takes the form of
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F (t′) =



y1 for t′ ∈ [0, t1]

y2 for t′ ∈ (t1, t2]
... ...

yk for t′ ∈ (tk−1, t]

(6.3)

and it can easily be shown that as n→∞ any arbitrary signal may be gener-

ated. To generate a signal, the only parameters needed are number of sub-intervals

and rest length values for each sub interval. For the specific example given in Fig-

ure 6.9, the number of subintervals is 2 and y1 and y2 are the values of preferred

rest lengths for those intervals.

Algorithm and Learning Method

The problem is episodic, the agents have 60 seconds to test their policies.

At the end of each episode these candidates are evaluated according to their

performance. Performance is then measured as the distance covered in 60 seconds.

Formally, the evaluation is defined as

f = d(y0,0, y0,1, ..., y0,n, y1,0, ..., y24,n) , (6.4)

where, yi,j is the rest length for the ith controller and jth subinterval. De-

pending on the complexity of the signals (n) selected, there are 24 ∗n parameters

to learn. In order to learn these parameters, this method uses a historical average

co-evolutionary algorithm. In historical average, each member receives its fitness

according to the average of their performances. If a member survives for the next

generation (is not eliminated or mutated) the member keeps its previous experi-
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ences. At each generation, the fitness assignment is the average of this growing

history of past evaluations. The algorithm used can be found in Algorithm 1.

Algorithm 1: Cooperative coevolutionary Algorithm with Historical Aver-
age
Data: Population of n elements for each agent
for i=1..k do

randomteam ← ∅ ;
forall the Populations do

randomteam ← randomagent;
end
score = evaluate(randomteam) ;
forall the agents ∈ randomteam do

agent.history ← score ;
end

end
forall the Populations do

forall the agents do
agent.fitness = average(agent.history) ;

end
order population according to the fitness;
eliminate the last z members;
copy the first z to the last z;
mutate the last z;
clear history for the last z;

end

Learning Results

An example learning session is shown using signals with complexity (n) of 5

and period (t) of 4 seconds. Figure 6.10 illustrates the distance rolled by the robots

over the course of learning. Starting with 0 meters, the robots converge to rolling

over 32 meters in 60 seconds. This result shows that successful learning of rolling

locomotion using this method is possible. The second line at the same Figure

(Figure 6.10) shows the rate of unfeasible policies that are tried while learning to
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Figure 6.10: The performance of the robots during the learning session for
signals of complexity 5 and period of 4 seconds. As a side result, the percentage
of the policies that were failed to stay in reasonable limits are shown with the
second line.

roll. While converging to rolling locomotion, unfeasible policies drop to 0. This

shows that the learned policy lies within simulated parameters set by the user.

6.3.3 Mirror Descent Guided Policy Search

Guided Policy Search utilizes supervised policy learning to leverage a series

of non-generalized optimized local polices to learning a generalizable global pol-

icy [92]. These non-generalized optimized local policies, pi(ut|xt), only successfully

work from specific initial states and require full state information. Guided Policy

Search allows for the use of simple and efficient methods for training the local

policies, such as trajectory optimization methods when there is a known model,

or trajectory-centric reinforcement learning methods [93].

In this work, a modified version of Guided Policy Search is used based on

mirror descent [89], called Mirror Descent Guided Policy Search (MDGPS). This

version optimizes the global policy by sampling the current iteration’s local polices

and approximates the minimum divergence between the global policy and the

local policies. To optimize the local polices, J(θ) is minimized such that there
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Algorithm 2: Mirror descent guided policy search (MDGPS)
1: for iteration k = 1 to K do
2: Run either each pi or πθ to generate samples {τ}
3: Set pi ← arg minp̂i Ep̂i [`(τ)] s.t. DKL(p̂i‖π̄θi) ≤ ε
4: Train πθ using supervised learning on {τ}
5: end for

is a bound on the Kullback-Leibler divergence (KL-divergence) between the local

policy and the linearized global policy π̄θi [117, 118, 119, 87]. For clarification,

the KL-divergence is a measure of how much information is lost when using a

probability distribution to approximate another distribution. A generic MDGPS

algorithm is shown in Algorithm 2.

Policy learning machine learning algorithms, commonly called policy search

algorithms, are used to directly search the policy parameter space and are al-

ternatives to value function based reinforcement learning algorithms [120]. This

algorithm tries to find a set of policy parameters θ which optimizes the policy

πθ(ut|ot) with respect to the expected cost. With a finite set of episodes, the ex-

pected cost under the policy is given by J(θ) = ∑T
t=1 Eπθ [`(xt,ut)], where `(xt,ut)

is the cost function. xt is the state of the system at time t, ot is the observation

of the state at time t, and ut is the action at time t.

Optimizing Periodic Gaits with MDGPS

Using the MDGPS method stated in section 6.3.3, a periodic rolling gait for

SUPERball was learned using single transitions between faces mentioned in sec-

tion 6.1 as the local policies and how to transition between them using limited

sensor data as the global policy. In order to obtain this stable periodic rolling

gait, the task is split across several policies, each optimized over a small time seg-

ment. After establishing a desired behavior across the states seen by the policies,

a global policy is learned that can generalized the behavior of the local polices
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based on the Guided Policy Search framework.

GPS algorithms such as MDGPS use supervised learning to learn a global

policy, where the supervision comes from several local policies pi(ut|xt), i ∈

{1, . . . , C}. Each local policy is trained from a different initial state, where C

is the chosen number of initial states. Each local policy is optimized over T p

time steps, and we wish to learn a global policy πθ(ut|ot) that can succeed by

generalizing the behavior of these local policies over an episode of length T π.

In locomotion tasks, we ideally want the global policy to exhibit continuous

successful behavior, i.e., T π =∞, and we can empirically determine T p based on

the amount of supervision the global policy needs to learn a continuous periodic

gait. For SUPERball, T p is initialized to a short horizon, and continually increased

until the global policy learns a successful locomotion gait.

If the required T p is long, as is the case for the SUPERball locomotion task, it

is difficult to optimize a local policy over this time horizon due to the accumulation

of uncertainty and errors. However, L local policies p1
i , . . . , p

L
i can be learned for

each initial state i, each optimized for T p/L time steps. For the local policies pji ,

j ∈ {2, . . . , L}, we set the initial state xj0 to be the final state of the preceding

local policy, i.e. xj−1
T p/L. This amounts to training local policies in a sequential

fashion, where the L local policies together are optimized over T p time steps. The

algorithmic details using in learning a periodic stable gait for SUPERball can be

seen in Algorithm 3. Note that on line 7, samples can be collected from either the

local polices or the global policy. Initially, these samples are taken from the local

polices, but are switched to the global policy based on a user’s expert knowledge

for how the local polices are performing.
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Algorithm 3: MDGPS with sequential local policies
1: for iteration k = 1 to K do
2: for i = 1 to C do
3: Si ← {}
4: for the desired number of samples do
5: x0 ← initial state i
6: for l = 1 to L do
7: Run either pli or πθ to generate sample τ
8: Si, x0 ← Si ∪ {τ}, end state of τ
9: end for
10: end for
11: for l = 1 to L do
12: pli ← arg minp̂li Ep̂li [`(τ)] s.t. DKL(p̂li‖π̄θi) ≤ ε
13: end for
14: end for
15: Train πθ using supervised learning on ⋃i Si
16: end for

Kinematic Constraints for Safe Actions

A challenge for machine learning techniques is that policy requirements are

usually encoded into the techniques’ unique cost function. This function not only

needs to guide task level objectives, such as movement, but the cost function must

also guide hard constraints like safety without any other external limits. Due to

the fact that SUPERball only has position control, as outlined in section A.1.2,

a random sampling of motor position might cause the system to tension a cable

beyond it’s mechanical limit breaking the cable, the motor, or both. These con-

figurations of tension limits are difficult to to embed analytically into the cost

function and even harder to optimally balance with task level objectives. Thus,

a simple global motor position safety constraint method was implemented that

interfaces outside of the machine learning framework.

Specifically, the cable tensions are estimated for a particular set of actuator

positions using a simple forward kinematic model of SUPERball. This model is

based on the model outlined in section 5.2.1 with the simplification of no gravity
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or ground contact. The limits are preset as a maximum tension value exerted on

any cable based on a user defined maximum value. For SUPERball, this maximum

value was experimentally found to be 250N. Computing the cable tensions for a

given set of motor positions takes a few milliseconds using forward kinematics. As

this is easily parallelized, a database was constructed containing about 100 million

motor positions deemed safe in a few hours. Then, when the policy outputs an

action, an efficient look up method called Fast Library for Approximate Nearest

Neighbors (FLANN) [121] is used to compute and command the nearest (`1 norm)

safe action. This ensures that even if the exact action isn’t located in the table,

an approximate action set is chosen. At runtime, finding the nearest neighbor

action takes roughly 200 µs and is easily embedded into both training and testing

without disrupting the command frequency of 10Hz.

Generalization Across Domains

Local policies are trained with full state information xt, but the global policy

is learned such that only observations of the state ot are used as inputs. This

separation between the local policies and global policy reflects prior work on tasks

involving partial observability, where the intuition is that the local policies are

trained in a controlled environment but the global policy must be able to adapt

to a more general setting [122]. For SUPERball, the full state xt can only be

obtained through simulation or the use of an external state estimator system as

described in section 5. In contrast, an observation ot is used that can be calculated

directly from the sensors on the robot. This can greatly simplify the transfer

from simulation to the real robot, as the learned policy is less prone to overfit

to the simulation and takes actions directly based on the sensor measurements

from the physical robot. Furthermore, because the goal of SUPERball and many
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other robots is deployment to unfamiliar, remote environments, the choice of an

observation that relies only on the robot’s onboard sensors is very important, as

it is unrealistic to expect the level of information and reliability that an external

state estimator can provide.

Because real-world sensors and actuators are noisy and imperfect, noise is

introduced on the input to the policy during training. Gaussian noise of mean

0 and variance equal to 10% of the observation range is added to all sensors.

Since SUPERball uses a WiFi network, network drop out is modeled by randomly

selecting 10% of all sensor measurements as dropped measurements. When the

current observation is dropped, the previous observation is used as the input to the

policy. Adding noise improves the generalization capabilities of the learned policy

across conditions such as terrain, gravity, and motor failure. These conditions are

evaluated in Section 6.3.3.

Experimental Setup

The state of the system xt is set to be the position and velocity of each of

the 12 bar endpoints of SUPERball, and the position and velocity of each of

the 12 motors, measured in radians, for a total dimensionality of 96. There are

two different representations for the observation ot, “full” and “limited”. The

“full” 36-dimensional observation includes motor positions, and also uses elevation

and rotation angles calculated from the accelerometer and magnetometer sensors

on the robot. The “limited” observation is 12-dimensional and only uses the

acceleration measurement along the bar axis from each of the accelerometers. It

was found that interfering magnetic fields near the testing grounds at NASA Ames

cause the magnetometers to be unreliable and difficult to calibrate. Therefore, the

policy using the limited observation is much easier to transfer on to the real robot.
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Table 6.1: Average distances in meters traveled using the policies learned with
varying observation representations and local policy training schemes.

Our Method Open-Loop

Full Observation, Limited Observation, Limited Observation, Mean Actions from Hand-Engineered
Six Initial States Six Initial States One Initial State Best Learned Policy Punctuated Rolling

Normal Conditions 25.307± 0.309 24.141± 0.352 20.008± 0.871 25 .076 ± 0 .078 10.266± 0.071

Rocky 6 .025 ± 2 .835 9.568± 5.197 3.124± 1.083 3.069± 2.201 1.734± 0.411
Uphill 18.547± 0.231 16 .107 ± 0 .809 13.573± 0.174 7.721± 0.236 8.136± 0.026Terrain
Downhill 32.896± 0.275 29 .970 ± 0 .858 21.963± 2.403 27.661± 0.136 11.264± 0.091
10% 19.505± 0.746 16.966± 0.362 13.927± 0.516 18 .024 ± 2 .356 11.044± 0.054
50% 23.331± 0.871 21 .220 ± 0 .202 17.766± 0.490 19.673± 3.244 10.310± 0.010Gravity
200% 27.600± 2.307 26 .715 ± 0 .566 21.680± 1.330 24.865± 0.190 9.845± 0.009
Heavy 12.521± 1.710 14.561± 0.079 12 .972 ± 0 .110 1.081± 0.019 10.550± 0.003Robot End Cap Failure 21 .890 22.100 10.291 10.247
0% 26.494 25 .828Added Noise 20% 7 .725 19.212 N/A N/A

The open-loop mean actions from the learned policy that performs best under training condi-
tions, and the hand-engineered open-loop policy. Results are averaged across five trials of one
minute each for a variety of terrain, gravity, noise, and robot settings. “Normal Conditions”
are the training conditions, which are flat terrain, 100% gravity, 10% added noise to the input,
and normal robot parameters. When varying one setting, all other settings remain the same as
during training time. The open-loop controllers are not shown with varying input noise, because
these controllers do not have any input. Bolded numbers indicate the farthest distance traveled
for any given condition, and italicized numbers are the second farthest. Note that the first two
learned policies generally outperform all other controllers, demonstrating the benefits of this
method and using multiple initial states in learning efficient and generalizable locomotion.

The action ut is the instantaneous desired position of each motor.

For the rolling task, each local policy reliably learned in about 200 samples.

Simultaneously during training of the local policies, a global policy is learned,

which for this work is a deep neural network. The deep neural network has three

hidden layers of 64 rectified linear units (ReLU) each, using the same samples. The

cost function l(xt,ut) is simply the negative average velocity of the bar endpoints

of the robot. This trains the policy to favor faster rolling behavior.

Results in Simulation

To show that this method of training sequential local policies is effective, the

results of training two sequential local policies for 5 s each against training one

local policy for the full 10 s were compared, both using the trajectory-centric

reinforcement learning method detailed in [93]. The average distance traveled
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over five trials for the two 5 s local polices and the single 10 s policy were 3.15m

and 1.23m, respectively. These results demonstrate that, by training sequences

of local policies over shorter horizons, more efficient locomotion can be achieved

with fewer samples by decreasing the accumulation of error over time.

To demonstrate the benefit of multiple initial states, a global policy was learned

by using one long sequence of six local policies, trained over 5 s each, starting from

only one initial state. These six polices encapsulated a full rotation of the robot.

Due to the build-up in variance in the starting states of the local polices and

the divergence in the behavior of the local policies from the desired periodic gait,

training a rolling gait was not achievable. Results for testing the learned policies

against a range of environmental and robot parameters are presented in Table 6.1.

In summary, these results show that all learned policies substantially outper-

form the hand-engineered rolling controller, and the closed-loop neural network

policies outperform the open-loop baselines in almost all conditions, indicating the

benefits of both learning and feedback in SUPERball locomotion. This method

is able to learn successful and efficient policies even with the limited sensory ob-

servations provided by only SUPERball’s accelerometers, and the learned policies

demonstrate generalization to unseen conditions representative of what a plane-

tary exploration rover might encounter, such as changing terrains, unstable levels

of noise, and hardware failure. The addition of input noise during training en-

courages this generalization, and results in learned policies with similar levels of

reliability as the hand-engineered controller, though significantly faster and less

likely to cause hardware failure on the real robot.
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Figure 6.11: This plot shows actual motor positions, target motor positions,
and single axis accelerometer data over the first 40 seconds of a trial for two rod
ends which are not connected via cables and not attached to the same rod. The
commanded positions change based on the accelerometer feedback, showing the
controller working as the robot changes orientation by rolling. The actual motor
position lags behind the target motor position due to motor dynamics and network
UDP packet loss.
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Results in the Real World

We compared the learned policy with limited observation, trained in simula-

tion, against an open-loop policy that outputs the mean actions from this learned

policy under training conditions. Both policies were run on the physical SUPER-

ball robot on flat terrain. Over three trials of 100 seconds each, using the learned

policy, SUPERball rolled approximately 12m, 9m, and 8m. 12m is about the

maximum distance allowed during the trials, as the robot rolled out side the lim-

ited network range and could not roll any further. Also, a cable malfunction cut

the last trial short by about 20 seconds, which was on track to reach the 12m

limit. Despite these issues and the differences between the simulated and physi-

cal robot, the policy was able to successfully produce a gait on SUPERball that

is more reliable, and less risky for the hardware, than any previous locomotion

controller. The learned policy is able to adapt to the physical SUPERball robot

by using feedback from the accelerometers, as seen in figure 6.11.

The open-loop policy was not able to produce any reasonable behavior on the

real robot, and we ran it only once due to concerns about hardware safety.
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Chapter 7

Conclusion and Future Work

7.1 Contribution

The contributions of this dissertation to the field of tensegrity robotics are

effective state estimation from a large number of noisy senors in near real time,

algorithms and methods that will control underactuated tensegrity robotic sys-

tems with limited sensor data, and implemented a control policy learned entirely

through simulation with no prior knowledge of system dynamics on physical hard-

ware. Another smaller contribution to tensegrity robotics was the creation of the

world’s first unteathered underactuated tensegrity robot capable of complex con-

trols. Artificial neural networks (ANN) where the main control methodology used

due to the inherent nonlinear system dynamics, since ANN are data driven con-

trollers which do not require dynamic models. Several learning methods were

used to train a ANN to accomplish locomotion as well as escaping from simulated

craters. In completing these tasks, contributions were also made to the fields of

machine learning and sensor fusion.
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7.2 Future Work

7.2.1 Re-Design of SUPERball

SUPERball was the initial prototype for this project. It succeeded in perform-

ing and showcasing a tensegrity robot built for locomotion, though it does have

its limitations. An evaluation of SUPERball and its limitations may be found in

appendix A.

To overcome these limitations and to further expand the types of control po-

lices for a SUPERball like robot, a re-design is proposed which has full cable

actuation and will be more robust to large environmental impacts. The largest

limitation for the current design of SUPERball is the limited low level motor con-

trol, force sensing, and actuation stroke. With the advent of robotic companies

producing commercial off-the-shelf (COTS) motor solutions, using a COTS mo-

tor with integrated force sensing and control would be a viable option. Table 7.1

show a limited list of companies which offer products that could be consider for a

SUPERball re-design.

Table 7.1: List of companies that sell COTS actuators to be integrated into
SUPERball v2. This is not an exhaustive list.

Company Dynamixel Kinova Muse Robotics Hebi Robotics

Product MX-106 K-58 COTS motor
control boards X8-3

From table 7.1, a likely candidate to succeed is the X8-3 from Hebi Robotics.

This COTS actuator has position, velocity, and output torque control which uti-

lizes a series elastic element to directly sense the output torque. It also supports

tunable control parameters and closed loops control parameters, which all run at

1000Hz and can be tuned while the system is operating. Thus, an initial proto-

type has been designed around this X8-3 motor, where single rod and end cap
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(a) (b)

Figure 7.1: Images of initial SUPERball v2 MTR designs. (a) Close up of initial
design for SUPERball v2. An omni directional cable guide can be seen which
eliminates cable friction. (b) Full cable routing where the cable is run over a
distal pulley to increase cable length for a better effective spring constant induced
by the cable stretch.

testing still needs to be done. This prototype eliminates the internal springs and

relies on cable stretch and motor elastic element for system passive compliance.

Figure 7.1 shows what the new design concept looks like.

The redesign of SUPERball is still in very early stages of development, however

table 7.2 shows some of the differences in base physical properties and features

between the two versions.

7.2.2 Extending Controls for a Fully Actuated SUPERball

v2

In chapter 6, there was a focus on learning a forward locomotion gait for a

hardware system that had very limited actuation. SUPERball v2 aims to address
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Table 7.2: Comparison between the current SUPERball v1 and the intended
design of SUPERball v2

Number of
Actuators Size / Weight Motor Controls Sensors Maximum Length for

Change in Cable Length*

SUPERball
v1 12 1.75m/21 kg Position

Motor Encoders
Accelerometer, Gyro, Magnetometer
Ranging / localization Sensors

0.4m

SUPERball
v2 24 1.8m/30 kg

Position
Velocity
Torque

Motor Encoders
Motor Torque Sensor
Accelerometer, Gyro
Ranging / localization Sensors
Linear Cable Sensors

1.5m

* This is the total length a single motor can pull starting with no cable wound on the spool.
For SUPERball v2 this means the start length of cable will mean the robot will be in a
collapsed state initially.

these limitations and expand the robustness of the system, which will open up new

areas of research. This system will allow for forward locomotion to be achieved

through the "basic" gait as outlined in section 6.1. Using this control method

as well as the basic steering from section 6.1.2 as priors for the learning method

outlined in section 6.3.3, highly optimized gaits for navigation should be rapidly

achieved.

Decentralized Control

One limitation with the controllers developed so far for SUPERball is their re-

liance on centralized controllers for basic locomotion. A computer connects to SU-

PERball’s network in order to receive and send data over a standard 802.11 [123]

wireless protocol using the ROS UDP messaging protocol. This allows for easy

communication between the robot and the control computer, however large amounts

of data can be lost from this network structure. High data loss dramatically affects

the performance of a controller and may even cause the controller to fail. Utiliz-

ing a decentralized control method will allow the individual actuators to adapt

without this wireless network layer. Mirletz et al. developed a control scheme

which uses a Central Pattern Generator on each actuator to achieve decentral-

ized locomotion for a snake like tensgerity structure [102]. Taking this approach
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and replacing the learning method with the guided policy search method shown

in section 6.3.3, a controller could be learned in a fraction of the time that may

require no hand tuning to implement on hardware. This will enable SUPERball

to learn gaits optimized for various terrains which requires no external centralized

control input.

Path Planning

Having basic locomotion controls achieved, high level navigation and path

planning techniques can be researched and demonstrated. The path planning

method discussed in section 2.6.2, currently relies on random actuator commands

to actuate the simulated SUPERball like robot along a given path. The author

directly states that faster and more computationally efficient paths will be gener-

ated if the algorithm can assume some level of confidence when selecting a control

input [94]. Using a method like the guided policy search method mentioned above,

a list of control inputs for various scenarios may be compiled. It may also be pos-

sible to integrate the GPS algorithm into the path planning method, enabling the

creation of efficient gaits when new environments are encountered.

7.3 Conclusion

This works hopes to inform and further future research into tensegrity and

highly compliant cable driven robotics, and their applications in terrestrial explo-

ration. The future of terrestrial robotics will utilize passive compliance to adapt

and perform in scenarios such as rocky and icy terrain, surviving high falls, and

navigating through extreme conditions where it will be difficult for non-passively

compliant robots to perform.
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Appendix A

SUPERball v1 Design Evaluation

Once SUPERball v1 was built and evaluated, the system performed mostly

as designed. Since this was an initial venture into building an untethered tenseg-

rity robot, there were several design choices that ultimately impacted the system’s

performance negatively. In the following sections, I will try to summarize and eval-

uate how the mechanical, electrical, and communication subsystems performed. I

will then try to make suggestions to improve upon these systems.

A.1 Mechanical Evaluation

In this section, an evaluation of the SUPERball will be taken based on the

three main subsystems outlined above.

A.1.1 Cable Routing

Upon testing and using SUPERball, the limitations on the mechanical de-

sign became the largest hindrance to achieving consistent performance. A large

majority of the mechanical limitations stemmed from the bowden cable routing,

management, and material choices. The design of the MTR was focused around
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using a bowden system to route cables around components and features within

the housing. This allowed for the cable routing to be secondary to the placement

of components within the MTR, making the overall design easier, but increasing

the number of bends in the bowden cable housing. As explained in section 4.1.4,

the internal cable material used was braided steel cable. The steel cable allowed

for easy assembly and good wear resistance, however it has a minimum bend ra-

dius to keep the cable from plastically deforming. Our initial design took into

account this limitation with a correctly sized roller guide (see figure 4.3), though

in practice the combination of the induced tension and the wrong type of groove

in the roller guide leads to a slight plastic deformation of the steel cable in the

form of kinks. Extra friction is then imparted into the bowden system as the-

ses kinks try to slide inside the bowden housing. Friction between the cable and

housing element was a known factor, however the amount of friction it induced is

much larger than expected. Figure A.1 shows a qualitative example of hysteresis

in cable length due to the effect friction has on the system.

Another limitation imposed by the cable routing system was the lack of design

effort that went into the cable exit system. Originally, it was designed to be a

section of the nylon bowden cable housing sticking out of the robot to isolate

the steel cable as it exited the MTR aluminum housing. However, the angle in

which the cable exits the system was never considered in the original SUPERball

design. This failure meant that an exit angle of 90 degrees perpendicular to the

rod was used for the cable exit. Comparing this to the actual cable exit angle

of approximately 30 degrees from perpendicular during normal operation meant

that more than 60% of the tension force is imparted into the nylon cable and

the aluminum housing exit hole. When the cable would slide in and out of the

exit point, the nylon tube quickly would sheer apart. This then caused the steel
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(a) (b)

Figure A.1: These figures show the hystresis effect due to friction on the SU-
PERball. SUPERball in the (a) figures has been lifted off the ground and gently
placed back down so that all the springs in the system are allowed to reach equi-
librium due to gravity. No extra force has been placed on the robot other than
gravity. SUPERball in the (b) figures was arbitrarily pushed downwards on two
of the top endcaps with enough force to deform the robot. It can easily been seen
the that the internal friction does not allow for the robot to return to it’s original
state.
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cable to rub on the aluminum housing, which then would slowly saw into the

housing. Since there was not budget to redesign the whole routing system, a drop

in replacement fix was required. The solution was to use a "break noodle" steel

cable router typically used in bicycle braking systems. This prevented the steel

cable from cutting into to MTR housing, but it causes a bit more friction to get

imparted into the whole cable system. Figure A.2 shows the cable exit point on

SUPERball with the "break noodle" fix.

Figure A.2: This figure shows the original exit point for the steel cable on
SUPERball with the "break noodle" fix. The point of entry of the "break noodle"
is can be seen where the aluminum of the bracket has been cut by the steel cable
before the fix was applied.

A.1.2 Cable Tension

Another limitation on the system’s performance is the larger than designed

tensions seen on the individual cables. This caused a limit on the maximum length

each actuator imposes on a cable. Max cable tension on SUPERball was designed

around a maximum continuous operating tension force of 200N per cable. The
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system was also designed to take intermittent forces 50 − 75N higher than this

maximum that would be caused by rolling. These values were obtained through

evaluating the tension forces derived from Iscen et al’s control work within the

NASA Tensegrity Robotics Toolkit [103]. Iscen used a simulated robot based

on the initial design of SUPERball, which consisted of a total mass of 18kg and

each rod being 1.5m in length. Comparing these values to those in table 3.1, the

final SUPERball parameters were different than the ones used to determine the

operating tensions. This was due to Iscen’s work was published quite early in

the design process and not all the mechanical design aspects of the MTRs were

finalized. This discrepancy in weight caused the actual nominal operating tension

to be around 240N and the maximum operational tension to be above 400N .

The motors used in the final design of SUPERball were 100 watt Maxon motors

as specified in table 4.1. Each motor has a Maxon gearbox with a maximum

continuous output torque of 3Nm originally designed to be coupled to a spool

with a diameter of 30mm. Using the spool’s radius and the robot’s operating

tensions listed above, the reaction torques applied to the gearboxes are calculated

in equations A.1 and A.2.

τnominal,30mm = 240N × 0.015m = 3.6Nm (A.1)

τmaximum,30mm = 400N × 0.015m = 6.0Nm (A.2)

These values are well above the continuous and peak torques that the motor’s

gearbox is rated to handle. To keep from breaking all the motors when operating

the robot, smaller diameter spools were designed. The trade off is that the cable

actuation velocity is decreased, forcing the robot to move slower. Decreasing the

cable actuation velocity too far will result in a robot which will be incapable of
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achieving a continuous average forward velocity. At the time, the only controller

which moved a simulated SUPERball like robot with a continuous velocity was

Iscen’s work, which required a cable actuation velocity of 30cm/s [103]. Thus

reducing the speed below 50% could potentially be too slow to achieve continuous

forward velocity. The new spindles were then reduced to a spool diameter of

18mm and the new torques are shown in equations A.3 and A.4.

τnominal,18mm = 240N × 0.009m = 2.7Nm (A.3)

τmaximum,18mm = 400N × 0.009m = 3.6Nm (A.4)

This design still is not ideal, but is a compromise between reducing the reac-

tion torque on the gearboxes and not reducing the actuation velocity too low. The

torques induced onto the gearbox could still go over the rated value during max-

imum tension scenarios, but reduces the actuation speed to 47% of the original

value set by Iscen. To further reduce the reaction torques applied to the gearboxes,

a maximum position of cable change was set to keep the reaction torque applied

by any one motor to be within the nominal spool reaction torque in equation A.3.

Though experimentation, the limit was found to be 40cm of cable change from a

pretension value in each cable of 100N .

A.1.3 Cable Material

The choice of external cable material used on SUPERball made some compli-

cations in the long term use of the system. The material used is a 1.3mm diameter

braided hollow core Vectran cable. This cable has excellent material properties

for a system which requires light and strong cables with near zero creep. How-
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ever, the cable has a high coefficient friction and will undergo tensile fractures

when exposed to large amounts of stress. This causes the many thin fibers to fray,

eventually leading to loss in overall tensile strength and eventual failure. In SU-

PERball, this usually occurs at the cabling closest to the spool. Since this small

length of cable always experiences high stress due to wrapping around the spool,

the cables fray quite rapidly and break. The frequency of this happening depends

on how many times that particular cable is used. On average it has become an

expectation that a single cable will break after at least three hours of actuation

on that single cable. Figure A.3 shows different stages of the vectran cable as it

wears to breakage.

Figure A.3: This figure shows wear on the cable. The vectran cable’s protective
outer coating wears off during use which then allows for the individual fibers to
break weakening the entire cable. Eventually this wear will degrade the max
holding tension to the point of failure. The black cable is a new vectran cable
and the cable below shows the black coating worn away and a breakage point.
The bottom cable is from an actual failure on the system during a run. Since the
system can absorb forces, when the cable breaks the stored energy gets distributed
into the robot and no violent backlash is experienced.
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A.1.4 Force Sensors

SUPERball was designed to have three force sensors per MTR system to sense

forces being applied by the motor, the distal actuated cable, and the distal passive

cable. Since the system had a constrained budget, purchasing off the shelf force

sensors was out of the budget and custom sensors were implemented. Figure A.4

shows the designs for each force sensor.

Strain	
  Gage	
  
Loca.ons	
  

Figure A.4: This figure shows the designs for the motor mount strain gage and
the spring strain gage. The motor mount is located on the left, and it functions
when the arms of the cross beams deform due to the reaction torque caused by
torque being applied to the motor. The right shows the original design for the
spring sensors. This gage is suppose to sit between the spring and the ridged
mount and compress due to spring force. However, the design never worked.

Dynamic Torque Sensor Testing This test was performed to demonstrate the

force sensors’ ability to capture data under dynamic motion. Figure A.5 shows a

plot of sensor data from one end cap whose motor is commanded in a square-wave

position trajectory. The position trajectory had a period of 13 s, and oscillated
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Figure A.5: Motor mount torque sensor data and motor position data recorded
during a square wave input position trajectory for a single motor. This plot
shows measured tension from the sensor and cable length from motor encoder
measurements as a function of time for this dynamic movement.

between 10 rad and 15 rad of the output shaft measured before the gearbox, by

the encoder. The trajectory of sensor torque values reasonably tracks the position

square wave: the commanded position trajectory starts at 10 seconds and ends at

62 seconds, as does the sensed tension square wave. The overshoot on the torque

sensor measurements is due to the system inertia and spring dynamics.

Global Force Redistribution Sensor Testing A test was performed to vali-

date the distribution of tension throughout the system, and to show that all sen-

sors can work in conjunction simultaneously. Figure A.6 shows tension readings

from a different motor-mount torque sensor on the opposite side of SUPERball

(Cable 2) from a cable which is being retracted (Cable 1.) Cable 2 was not ac-

tively actuated during each test. For each plot in Figure A.6, the actuated cable

was retracted with various step inputs marked in the figure. Each data point in

this figure (yellow) was collected by averaging data from the sensor board for a
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total of 5 seconds at 1 kHz, after waiting 2 seconds after the step input actuation

to avoid dynamic effects. These tests were done with different levels of pretension

on the sensed cable: this pretension was adjusted by changing the length of the

sensed cable. Though the lower-pretension tests show smaller changes in readings,

the higher pretensions show increasing readings which demonstrate the ability to

sense forces throughout the tension network in pseudo-equilibrium states, as well

as SUPERball’s passive force redistribution properties.
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Figure A.6: Global force redistribution test. Yellow marks are the means of
roughly 5,000 tension sensor measurements of cable 2 opposite that which is actu-
ated (cable 1.) The black line shows the linear interpolation between points, with
the red boundary as standard deviation. The pretension in the sensed cable is
adjusted in each test, showing measurement sequences at increasing pretensions.

Force Sensing Viability The force reaction sensor was the only custom sensor

to accurately sense the forces applied. However, inconsistencies in manufacturing

this sensor made calibration of each sensor extremely difficult. A single sensor
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could be made, calibrated and functional for about a day or two after which the

sensor’s strain gages would shift. This either would make the calibration no longer

valid or be such a shift, that the sensor would no longer be functional. Due to

these set backs, the force sensors were disregarded as viable sensors to be used on

the system.

A.2 Electrical Evaluation

A.2.1 Sensor Board

The sensor board eventually functioned as designed. All major functions that

were set out in its inception were implemented. It was able to deliver the CAN

physical layer for the Beagle Bone Black, interpret and condition sensor data, and

enable the addition of the DWM module (which was not in the initial design).

The only caveat in its sound function was driver code developed for the DWM

module. If the DWM module crashed, usually due to the inability to handle soft

system resets, the SPI communication line would block the sensor board code.

This was a rare occurrence, but would require a full power cycle of the sensor

board to recover. The correct fix is to implement the DWM module’s SPI code

to be non-blocking, however this was not a higher priority than finishing other

higher level control experiments.

A.2.2 Power Board

This board was the "heart" of SUPERball and functioned extremely well. It

distributed conditioned power to all electronics and sensors on SUPERball as well

as managed many of the safety features on SUPERball. One down side to this

board was its size. Since it has many complex features implemented in discrete
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logic, the board has 136 components. This made the board expensive and large,

with some extra features which were never utilized in the final implementation

of SUPERball. To improve upon this, designing the board as a two sided PCB

would reduce the size dramatically. Furthering reducing the size and complexity

would be to not support 6 power lines. These were originally implemented to

support expansion boards. However, this feature was never utilized and in hind

sight would never need to support that many extra boards.

A.2.3 Motor Board

For the most part, all the electronic boards on SUPERball functioned as de-

signed with only the motor control board having lasting issues that hindered the

performance of the system. The motor board was supposed to be a low cost

solution to achieve position, velocity, and torque control utilizing the Field Ori-

ented Control (FOC) method to commutate the brushless DC motors. A third

party start-up company was tasked with the design of the motor board. It took

the company many attempts to get a working version for just position control,

with the initial delivery causing motors to generate excessive heat due to short-

ing the windings during commutation. After a quick redesign and manufacturing

new boards, position control was achieved with pretty good results. However,

the company went out of business after their delivery of working motor control

boards and never completed their implementation of the other control methods.

This in conjunction with the issues stated in section A.1.4, torque control was

never implemented.
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A.3 Communications Evaluation

There were two main types of data communication on SUPERball, a CAN bus

and the wireless WiFi network enabled on each rod.

A.3.1 CAN Bus

Since SUPERball was designed to have multiple boards communicating on a

single network over distances greater than one meter, a CAN bus was implemented

to achieve these goals. For the most part, this network along with the CANOpen

standard met all of the initial design criteria. However, sending a small number

of messages at 1 kHz would over flow the bus at the maximum network speed of

1Mbit/s. This is in part due to the large CANOpen message header and the large

data types bing transmitted. The protocol also uses a lot of system resources to

manage. It was measured that approximately 10% of the micro controllers’ total

computation went into handling CAN messages.

A.3.2 WiFi Network

SUPERball relied upon standard WiFi communication through ROS to trans-

mit data from the robot to an external computer on the network. ROS messaging

is extremely convenient for data logging, management, and conditioning all shared

over a common network. The main issue experienced with this implementation on

SUPERball is due to the ARM based network driver support and WiFi dongles

used. These issues result in unexpected network lags and connection issues to

the network. Several driver and module addition were required to get the WiFi

communication on the Beagle Bone Blacks to be stable and with a relative low

network latency. However, these fixes never solved the network connection issue.
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The maximum range of the system was also limited due to the budget home

router used. Since purchasing though a government entity put limits on computer

hardware, it was difficult to find a good wireless router which fit the design needs

and budget. Therefore, a budget router was purchased and the routing feature

on the wireless router was disabled. In its place, a Linux computer was setup as

the router. The budget wireless router (now a wireless access point), had a very

weak signal and limited the systems range to about 12m in an open space.
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