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Abstract

Morphological Design and Control of a Bio-Inspired,

Structurally Compliant Quadruped

by

Dawn Hustig-Schultz

From the viewpoint of evolution, vertebrates first accomplished locomotion

via motion of the spine. Legs evolved later, to enhance mobility, but the spine remains

central. Contrary to this, most robots have rigid torsos and rely primarily on movement

of the legs for mobility. The force distributing properties of tensegrity structures presents

a potential means of developing compliant spines for legged robots, with the goal of

driving motion from the robots core. In addition, the increasing complexity of soft and

hybrid-soft robots highlights the need for more efficient methods of minimizing machine

learning solution spaces, and creative ways to ease the process of rapid prototyping.

In this thesis I present the process of morphological design for a tensegrity

quadruped robot, the first to the author’s knowledge, which I call MountainGoat, and

its impact on controllable locomotion. All parts of the robot, including legs and spine,

are compliant. Control is initially demonstrated with three variations of MountainGoat,

focusing on actuation of the spine as central to the locomotion process. Following the

general pattern of biological evolution, leg actuation is developed next. Additionally,

to reduce the overall machine learning space, I present four different choices of mus-

cle groups to actuate: three for a primarily spine-driven morphology of a tensegrity
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quadruped, called MountainGoat, and one for a primarily leg-driven variation of this

quadruped, and compare the resulting differences in locomotion speed. Each iteration

of design seeks to reduce the total number of active muscles, and consequently reduce

the dimensionality of the problem for machine learning, while still producing effective

locomotion. The reduction in active muscles seeks to simplify future rapid prototyping

of the robot. For this portion of the thesis, two separate approaches to actuation, one

primarily spine-driven and the other primarily leg-driven, are explored.

Locomotion for all models is aided by the use of central pattern generators,

feedback control via a neural network, and a two-tiered machine learning approach in-

volving the Monte Carlo method as well as genetic evolution for parameter optimization.

ix



This work is dedicated to my Father, Charles H. Hustig, who was my earliest

engineering influence, and to my husband Kevin Schultz, whose love and support

has helped sustain me.

x



Acknowledgments

I would like to thank Vytas SunSpiral, Brian Mirletz, and Perry Bhandal for

developing and advising on the NTRT learning and machine learning framework, As well

as others affiliated with the NASA Ames Intelligent Robotics Group, including Adrian

Agogino, Andrew Sabelhaus, and Jonathan Bruce for further insights and support.

Additional thanks goes to Tom Flemons for his initial quadruped design and inspiration.

I would also like to thank Paloma Fautley, Jian Hao Miao, Kevin Le, and

Joshua Gier for their work on schematics, cad, and construction of the static prototype,

and other members of DANSER Lab at UCSC, including Nick Cramer, Steve Lessard,

Dennis Castro, Amir Pourshafiee, Sina Kahnemouyi, Samira Zare, Anca Popescu, Gor-

don Keller, and Calvin Chopra for their general help, encouragement, and support. And

I would expressly like to thank professor Mircea Teodorescu, my advisor for providing

3 years of guidance and insight in my research career.

The text of this thesis includes reprints of the following previously published

material: [[14]]

xi



Chapter 1

Introduction

Current wheeled and rigid-bodied robots are limited in their mobility over

rough terrains and in their ability to operate in unpredictable environments. This

limits their usefulness for such tasks as space exploration, search and rescue missions,

and missions in environments unsafe for humans. These environments are well suited

for compliant quadruped robots.

Class-1 Tensegrity structures consist of disjoint compression members (rods)

interconnected by a system of tension members (cables) with no two compression mem-

bers in direct contact. Other class-k structures, with k equaling the number of compres-

sive members that come into contact at a movable joint, also exist [38]. These structures

were introduced in architecture by Kenneth Snelson [39], but more recently have been

incorporated into robotics. Tensegrity robots are lightweight and robust to failures, as

the failure of one actuator leads to diminished performance rather than failure of per-

formance. They are impact tolerant, as forces distribute evenly over the whole instead
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of being magnified into joints by internal lever arms, causing less damage to itself and

to other objects in its environment.

Figure 1.1 shows a model of MountainGoat, a tensegrity quadruped robot

based off an original model by Tom Flemons [9], balanced on a terrain filled with blocks.

Of note in this figure is MountainGoat’s passive terrain interaction, and how it naturally

adapts to complex footing by utilizing the multiple degree-of-freedom compliance of its

tensegrity spine. This ability of tensegrities to redistribute forces to achieve equilibrium

is a compelling reason for their application to constructing robots that can traverse

rugged ground. The goal of this research is to develop a quadruped robot with the

agility and adaptability of a mountain goat.

Figure 1.1: The Quadruped balancing on blocks, naturally adapting to complex footing
by utilizing the multi-DOF compliance of its tensegrity spine.

Prior studies with other tensegrity morphologies has shown robust locomotion
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over rough terrain [42], [15], [2], [25], [22], [23], [24], [21], [40]. The quadruped mor-

phologies we present, however, have not yet been developed to the point where they

can locomote over rugged ground. With the results presented here, we are beginning to

understand the process of whole-body control, and how the spine of a compliant robot

provides support to shoulders and hips in order to lift legs. For instance, we have not

quite achieved the amount of leg lift necessary to actively traverse rugged terrain. In

addition, our quadruped still lacks knees, which enhance motion over obstacles. Nev-

ertheless, these findings have given important insights toward the ultimate goal of a

compliant quadruped that can travel over multiple types of terrains.

As tensegrity structures and their control mechanisms become more complex,

it is important to find strategies for keeping the dimensionality of the solution space

small for more efficient performance of and more successful outcomes from machine

learning. Iscen, et. al. have explored the use of coevolutionary algorithms to control

underactuated tensegrity structures [16], while keeping solution space small. Previ-

ous research into the redundancy of actuators on the SUPERball tensegrity robot, by

Lessard, et. al. has also shown that reduction in active muscles gracefully degraded

productive locomotion, rather than curtailing it [17]. This study showed that the reduc-

tion of the dimensionality of the solution space for a tensegrity robot, which can help

increase the chances of finding desirable solutions, will not necessarily harm the robot's

performance and can ease the process of learning desirable locomotion solutions.

Because of the increasing complexity of tensegrity robots, rapid prototyping

can be more challenging than for rigid-bodied robots. One major obstacle is the large
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amount of actuatuated cables that may be needed in order for a tensegrity quadruped to

move effectively even over flat terrain. These actuated cables sinusoidally change length

in order to make the robot move. On a robotic prototype, the mechanism for this chang-

ing of length could be the spooling of cable by a DC motor. This effect could also be

achieved using pneumatic actuators, Shape Memory Alloys (SMAs), or dielectric elas-

tomers. Some promising potential solutions exist in the form of pneumatic actuators,

as investigated by Polygerinos, et. al. [32] and Niiyama, et. al. [27], Shape Memory

Alloys as implemented by Umedachi, et. al. [41], and dielectric elastomers, as explored

by Pelrine, et. al. [30], Petralia et. al. [31], and Bilodeau, et. al. [4]. Many of these

solutions, however, have drawbacks, such as heat dissipation and reliability for SMAs

or the need for large volumes of air for pneumatics. Others, such as soft actuators, are

still in early developmental stages. Initial rapid prototyping could potentially benefit

from being able to use readily available, off-the-shelf parts, with reliance on more so-

phisticated actuators left to later prototypes. For more complex robotic morphologies,

this means finding the most efficient approach that minimizes the use of commercially

available actuators.

For our exploration of minimized solution space dimensionality, we will use

two different quadruped morphologies. In our previous publication, we have discussed

the centrality of the spine to locomotion [14], using the morphology seen in figure 1.2a.

Besides the spine's central role in locomotion, a well-formed achilles tendon also plays

an important supporting role. Various research groups have found that, though the

gastrocnemius muscle does little mechanical work, elastic energy storage and return from
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(a) This version of MountainGoat will be used for spine actuation only, implementing three
different actuator configuations that use 52, 24, and 16 muscles. See figures 4.2 4.5a and 4.5b
for simulation results, and figure 4.7b for the different locomotion trajectories.

(b) This version of MountainGoat, called Achilles, will use leg actuation only. The muscles to
be actuated are highlighted on only two of the legs in the figure, but will be actuated on all four
legs. See figures 4.6 for simulation results and 4.7b for the locomotion trajectory.

Figure 1.2: Two different approaches to actuating MountainGoat.
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the achilles tendon plays a major role in power production at the ankle of bipeds and

quadrupeds [8], and that the absence of a well developed achilles tendon muscle would

prevent bipeds from running effectively both at high speeds and over long distances

[37]. This suggests the importance of having an achilles tendon to help produce the

necessary ground reaction force for quadruped locomotion. Researchers at MIT have

explored the advantages of an achilles tendon in the Cheetah robot [3]. In the process of

reducing the solution space of our robot, we will also present preliminary findings of an

implementation of an achilles tendon on MountainGoat, for which we will simulate the

morphology shown in figure 1.2b. We will focus on a total of four different hand-chosen

actuation solutions for the two morphologies mentioned above, one for the leg-driven

morphology, and three for the spine-driven morphology.
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Chapter 2

Background

2.1 Rigid-Bodied Quadruped Robots

Boston Dynamics' BigDog and Spot robots have had success in navigating

robust terrain including on ice and snow [33] [1]. These robots can be energy expensive,

prone to single-point failures, and susceptible to damage on impact, to the robot itself

as well as to objects and people in its environment. Degrave, et. al. have incorporated

some compliance in the legs of quadruped robots [6]. These rigid bodied robots, however,

represent more constrained solutions that lack the compliant spines that are central to

the speed, agility, and stability of quadruped and biped locomotion [12].

2.2 Compliant Quadruped Robots

The benefit of a compliant spine to quadruped locomotion has been studied

by Zhao, et. al., simulating robots that have multiple spinal joints ranging in number
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from 1 to 12 [43]. Although improved locomotion was shown with two and four spinal

joints, these simulated designs use one-DOF joints that represent single points of failure,

and the legs of the robots in these simulations were completely rigid. Researchers at

the University of Pennsylvania compared two robots with the same semi-rigid c-shaped

legs, one with a rigid body and the other with a parallel elastic actuated spine. The

robot with the elastic spine showed more distance and agility in forward leaps than its

rigid bodied counterpart [7].

2.3 Tensegrity Structures for Robotics

One of the earliest investigations of tensegrity locomotion involved gait pro-

duction in a simple three-bar tensegrity structure by researchers at Cornell University

[29]. Some robots, such as MITs Cheetah robot, have incorporated tensegrity princi-

ples in the legs, but not in the spine of the robot, where it could have greater benefit

[36]. Although the legs of the Cheetah robot are very effective in forward motion, they

are somewhat limited in the kind of lateral motion needed to give good balance and

stability.

Various morphologies can incorporate tensegrity structures. Xydes, et. al.

have studied the locomotion of a snake-like tensegrity structure for duct inspection

[42], Lessard, et. al. have developed tensegrity arms [18], and Agogino, et. al. have

studied locomotion of the SUPERBall robot, a tensegrity rover intended for exploration

of Saturn's moon Titan [15], [2]. Tensegrity structures can be used to model spines[19],
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and extensive research has been done by Mirletz, et. al. on flexible tensegrity spines

for their potential benefit in locomotion, with the eventual goal of building compliant

quadruped and biped robots [25], [22], [23], [24], [21], [40]. The study of tensegrity

spines in these papers has demonstrated the robustness of tensegrity locomotion over

rough terrain. Similar spines have been incorporated into rigid-legged quadruped robots

by Sabelhaus, et. al. [35].
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Chapter 3

Methods

3.1 Mechanical Design

All our models are class-1 tensegrity structures, since rods are only connected

to each other via cables. Our structural design approach began with a fully passive

model of MountainGoat, designed by Tom Flemons [9]. Due to the tendency of tenseg-

rity structures to redistribute loads and deform to equilibrium shapes, designing for

movement can be very counter intuitive, and structural design and control end up being

highly coupled. Because of this property, many of our design iterations came about as

a result of attempts to control previous model designs.

The initial design, called Flemons, seen in figure 3.1a, consists of a spine of

six X-segments of four struts each, with three of the segments oriented vertically and

three oriented horizontally. ten cables, which play a similar role to muscles in biological

creatures and which serve as the actuators, connect each segment in the spine, with the
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exception of the penultimate segment which is connected by fourteen cables. The hips

and shoulders consist of single T-segments, of three struts each. Each of the shoulders

are connected to the spine by ten cables, and each of the hips are attached to the spine

by nine cables. the hips connect to each other with one cable, to add stability. Legs

also consisted of single X-segments, but with shorter support rods added to the bottom

of each leg for stability. Each leg is connected to its corresponding hip or shoulder, foot,

and spine by fourteen cables. The feet consist of two rods which cross each other, and

11 cables connecting these rods to the legs, for support. The full model has a total of

60 struts. In qualitative testing on hilly terrain, we found that the cross rods of the foot

caught too easily on obstacles, and didn’t provide enough stability to keep the structure

standing.

Figure 3.1b shows NewFeet, which differs only in the feet. The bottom rod

of the leg is extended by 5 cm, and a compliant foot, consisting of a four strut prism,

replaces the two cross rods, and brings the model to a total of 68 struts. An extra cable

was also added to each hind leg, shown in red in figure 3.1b, connecting these legs to

the last vertebra in the spine to improve overall balance. This compliant foot provided

more stability to the structure. To test this new model, we used a passive drop test.

The drop test was done in simulation by placing the robot at a starting position so

that the feet are 30 cm higher than the ground. For context, the robot itself is 36 cm

tall. Two different terrains were employed. The first consists of randomly placed 5 cm

wide by 5 cm tall by 5 cm long blocks, and the second consisted of evenly spaced 6 cm

tall hills with a base diameter of 6 cm. The simulation is then run in graphics mode,
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so that the final landing position can be observed. This was then repeated multiple

times. These tests are relevant, as they allowed us to assess the passive stability of

the robot's morphology, which helps assure that the robot will also be stable during

actuation. In drop tests on hilly and block-filled terrains, these feet helped the model to

maintain a standing position on landing, rarely falling over. Flemons and NewFeet were

not actuated, but were primarily evaluated passively and qualitatively for structural

stability.

For ease of actuation, the structure was updated again by adding an extra

vertebra to the spine, bringing the total number of struts to 72. This was done to

simplify the initial approach to control, as each vertebra of the spine would have an equal

number of CPGs. Then input parameters for only 8 CPGs on one vertebra would need

to be learned, and then applied to the 7 identical spine segments, reducing the overall

solution space. In comparison, Flemons and NewFeet would need to learn parameters

for an additional 12 cables, to accommodate the penultimate vertebra. The change

had the extra benefit of providing enough distance between the front and back feet to

keep them from colliding with each other as well as adding a bit more torsion to the

spine. Torsion is the twisting of the spine of a quadruped in the transverse plane, that

is, the plane that divides the quadupred into anterior and posterior portions. For our

simulations in NTRT, this consists of the xz-plane. This motion is important because it

helps to pull the legs vertically, off the ground, in a regular alternating pattern. Figure

3.2 shows this new model of MountainGoat, called LongTorso. LongTorso has a total

of 56 CPGs, in the spine only, which actuate the simulated model. Results of spine

12



(a) The initial model of the quadruped, Flemons, based off a design by Tom Flemons. On uneven
ground, the feet didn’t provide the desired structural support and were prone to catching on
obstacles.

(b) The first revision of MountainGoat, called NewFeet, with improved compliant feet for better
balance and reduced catching on obstacles. Differences are shown in red.

Figure 3.1: The first two versions of MountainGoat. Machine learning was not applied
to these two models, instead they were evaluated qualitatively, leading to improved
models.
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actuation on this model can be seen in section 4.1.1.

Figure 3.2: The second revision of MountainGoat, called LongTorso, with an extra
vertebra added to the spine.

As stated earlier, morphological design and actuation of a tensegrity robot

are highly coupled, due to the tendency of these structures to redistribute loads and

deform to equilibrium shapes. As an example, early attempts at manually designing

a controller to lift a single leg resulted in the corresponding shoulder drooping toward

the foot, rather than the leg lifting off the ground. Since the initial cable layout of the

spine did not provide the stability to hold the shoulder up, two extra spirals of cables

were added to the spine, one clockwise and one counterclockwise. These extra twenty

cables, which serve a similar function as the latissimus dorsi muscles in many four-legged

vertebrates, can be seen on Spirals in figure 3.3. The addition of these cables helped

increase torsion in the spine, which led to increased distance traveled in simulation, as

14



is shown in section 4.1.1.

Figure 3.3: A close-up of the spine on Spirals, showing the extra cables added to the spine
highlighted in red. Though these cables appear almost as duplicates of the previously
existing cables, they only share one endpoint in common with each corresponding cable
from the original spine morphology.

Simulations of control of the structures in figure 3.2 led to the conclusion that

ground reaction force was being lost in the compliance of the feet. As shown on NoFeet

in figure 3.4, the feet were thus removed, and two extra cables were added between each

leg and its adjacent body segment, to keep the model standing. This removal, which

reduced the total amount of struts to 56, added more distance to simulated locomotion

experiments, as shown in section 4.1.1. LongTorso, Spirals, and NoFeet are 86 cm long

by 42 cm wide by 36 cm tall. Flemons and NewFeet have a similar scale.

3.1.1 Reduction of Total Actuators

Our first actuator configuration of NoFeet, which we discussed in section 3.1

consists of all 52 spine cables as shown in figure 1.2a. This design will be included as a

comparison to other configurations with fewer actuators.

Figure 3.5a shows a configuration, which we will henceforth refer to as Spiral-
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Figure 3.4: Model of MountainGoat, NoFeet with feet removed.

sOnly, consisting of 24 actuators, shown in red. The passive cables, left unhighlighted,

were left in the morphology in order to provide support to the structure. This passive

function is similar to that of fascia in biological creatures. The choice to actuate only

these cables followed naturally from this beneficial function, which in our previous work

gave extra torsion and support to the shoulders of MountainGoat. The question of inter-

est in making this choice is whether actuating this set of spiral cables alone will degrade

performance, as previous studies have shown [17], while still allowing the morphology

to still successfully carry out its intended function, or whether some improvement will

be gained by reducing the interference of overlapping actuators.

The third actuator configuration that will be explored can be seen in figure

3.5b. This configuration, which will be called ReducedSpirals, consists of 16 actuators

in green. It is essentially the same as the configuration of 24 actuators from figure

3.5a, but with the first and last four actuators converted to passive fascia. Again, the
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question of interest is whether the reduction in the number of active spiral cables will

gracefully or severely degrade performance.

Figure 1.2b shows an actuator configuration that depends on leg cables, rather

than on cables in the spine. This configuration, called Achilles, has an opposing pair of

cables in each leg, which act similarly to the combination of the gastrocnemius muscle

and the Achilles tendon in many quadrupeds and bipeds. Since there are only two active

leg cables, the total number of actuators for this configuration is 8. Additional rods in

the feet of the model were needed to increase stability during locomotion.

(a) An illustration of the spirals, which consist of 24 active cables, shown in red.

(b) An illustration of the shorter spirals, which consist of 16 active cables, shown
in green.

Figure 3.5: Two different actuator configurations consisting of spiral muscles, which
were first mentioned in section 3.1. Both of these actuator configurations produce
torsion in the spine, which assists in lifting the legs of the robot. Since there are more
active cables in the configuration in figure 3.5a, it produces more torsion than than the
configuration in figure 3.5b. Consequently, it will be shown in section 4.2.1 that the
first configuration produces faster locomotion speed.
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3.1.2 Integrated Spine and Leg Actuation

Considering the centrality of the spine for locomotion, as hypothesized by

Gracovetsky, et. al. [12], as well as the importance of the Achilles tendon for push off,

as extensively explored by Folkertsma, et. al. [10], we wanted to see how combining

active spine and leg cables would affect locomotion speed. SpiralsOnly was chosen as

the spine actuator configuration to combine with leg actuation since, as will be shown

in section 4.2.1, it was the fastest of the three spine configurations. We will refer to this

combined leg and spine actuator system as AchillesSpirals.

3.2 Machine Learning for Locomotion

The open source NASA Tensegrity Robotics Toolkit (NTRT) was used for

simulation 1. NTRT is built on the Bullet Physics Engine, version 2.82, which handles

rigid body dynamics to simulate the rods of the structure. This is supplemented by an

additional custom soft body spring-cable model with contact dynamics, which is used

to simulate the cables of the structure. The dynamics of the spring-cable are based on

Hooke’s law for a linear spring, and collisions are detected using ghost objects within

Bullet [24]. Internal cable and rigid body dynamics were previously validated within

1.3% error [5]. Additional tests validated steady state error on maximum cable tension

within 6.1%, maximum system tension on hand-tuned controllers was validated within

7.9% error, and tensions from CPGs were validated within 1.6% error [24].

1Source code for NTRT can be found at https://github.com/NASA-Tensegrity-Robotics-Toolkit
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Simulations were run at 1000 Hz. Five different iterations of MountainGoat

are presented. The stiffness, pretension, and damping parameters used for these models

can be found in table 3.1. For reference, a pretension setting of 700 is about 5N, 1000 is

about 7N, 2500 is about 17.9N, 3500 is about 25N and 10,000 is about 71N. Damping is

in kg/cm3 and Stiffness is in kg/s2. The last three of these model revisions were tested

in simulation on flat terrain, using the actuation approach discussed below.

Table 3.1: Parameters used for each model

Model Parts pretension stiffness damping

Model 1:
Flemons

All
parts

700 2000 20

Model 2:
NewFeet

All
parts

700 2000 20

Model
3: Long-
Torso

Spine
Legs
Feet

0
2500
1000

1000
3000
1000

10
30
10

Model 4:
Spirals

Spine
Legs
Feet

0
3500
1000

1000
4000
4000

10
10
10

Model 5:
NoFeet

Spine
Legs

0
4000

2000
10000

10
10

3.2.1 Genetic Evolutionary Algorithms and Reinforcement Learning

Inspired by evolution, and the central role spines play in vertebrate locomotion,

we initially focused on driving motion from the spine. This approach allowed us to

continue the research of Brian Mirletz [25], [22], [23], [24], [21], [40], by applying his

tensegrity spine control research to MountainGoat. Thus, we use machine learning to

optimize the controls for novel morphologies, allowing us to evaluate the effectiveness
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of a specific morphology. These methods were also adapted to control the legs of the

robot, in order to explore the role of the Achilles tendon in locomotion.

A learning run starts with a Monte Carlo stage, where 30,000 random trials

are generated. Each trial has a duration of 60 seconds and, since we use the distance

traveled in one minute as the measure of fitness, this distance is determined by taking

the difference between the location of the center of mass at the beginning and end of

each trial. Those trials in which MountainGoat travels the greatest distance in any

direction are considered the fittest trials. After the Monte Carlo stage ends, we evolve

the fittest 40 trials via a genetic algorithm with crossover, mutation, and elitism. Given

a complex parameter space with many peaks and valleys, we use Monte Carlo trials

to find initial decent results, and then optimize them with the genetic algorithm. The

mutation chance used was 50% while the mutation deviation was 3%.

3.3 Hierarchical Structure of Biological Nervous Systems

Our approach to actuation reflects the hierarchical nature of biological nervous

systems, with local reflexes at a lower level and Central Pattern Generators (CPGs) at

a higher level [13].

3.3.1 Impedance Controllers

Impedance control is used for the lower level reflexes, based on an equation

first used for tensegrity by Orki, et. al. [28] and adapted to account for descending

commands from the CPGs by Mirletz, et. al. [21]:
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T = T0 +K(L− L0) +B(V − V0) (1)

T is the output tension, T0 is the tension offset, and K is the position gain on

the difference between the current length L and the desired length L0. B is the velocity

gain on the difference between the current velocity V and the desired trajectory V0.

This V0 term is a descending command from the CPG.

3.3.2 Central Pattern Generators

The CPG equations used consist of adaptive phase coupled oscillator equations

with frequency feedback [34], as well as amplitude and phase feedback [11], and were

previously used by Mirletz, et. al. for locomotion of tensegrity spines [25]:

ṙi = γ(Ri + krFr − r2i )ri (2.1)

θ̇i = ωi + kθFθ +
∑
j

rjwijsin(θj − θi − φij) (2.2)

ω̇i = kωFω sin(θi) (2.3)

V̇i = ri cos(θi) (2.4)

where ri is the wave’s amplitude, ωi is its frequency, and θi is its phase. Vi is

the input to the impedance controller. The amplitude, as seen in equation 2.1, is set

by the convergence parameter γ and the setpoint Ri. The coupling weight wij , phase
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offset φij , and the the amplitude of the neighboring node rj are used to determine the

derivative of the phase θ̇i. The resulting Vi from equation 2.4 is used as input to the

lower level impedance controller. The constant terms kr, kθ, and kω are scalar gains

on the corresponding feedback parameters Fr, Fθ, and Fω. These feedback parameters

come from outputs of an artificial neural network, and are used in a similar manner as

in [11] and [25]. As in [25], this neural network consists of two input nodes for which the

inputs are tension and length, one hidden layer of four nodes, and three output nodes

for Fr, Fθ, and Fω.

To keep the size of the solution space manageable, the two parameters explored

by the algorithm for all models are the phase offset φij and coupling weight wij , from

equation (2.2). Our leg actuator configuration, Achilles, which employs antagonistic

pairs of long cables, required re-tuning of the PD and impedance controller parameters

T0, K, and B from equation (1), which previously were empirically tuned for shorter

cables. While these parameters can be tuned by hand, requiring time, trial, and er-

ror, our machine learning algorithm will instead be used to tune these parameters for

the Achilles model. Mirletz, et. al. experimented previously with machine-learned

Impedance control parameters for tension, length, and velocity [25]. In addition to this,

the proportion and derivative input parameters for PID control are learned via evolution

of randomized trials.

The CPG equations are integrated using ODEInt, which is part of the Boost

C++ libraries [26]. Each actuator is coupled only to other actuators that share rigid

bodies [25], [21]. The linearity of the rigid bodies attached to these actuators ensures
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that there are at most three rigid bodies in each coupling set.

3.4 Solution Space Reduction

For the Achilles model, we used a similar approach for reducing the solution

space as in [21]. That is, our solution space consists of the coupling weights and phase

offsets of one leg, and those parameters were reused for all four legs. This approach

could be modified to produce different gaits by adding an offset pair for each leg to the

individual weight-coupling pairs. The result would be the generation of different gaits,

while still keeping the solution space small. Currently, our research does not yet utilize

such a gait-dependent offset pair, but future work could explore different gaits using

this technique.
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Chapter 4

Results and Discussion

4.1 Spine Driven Locomotion

4.1.1 Control

Due to the counter intuitive nature of how these structures move, we found that

hand-designing controllers was ineffective, so we turned to machine learning techniques,

as originally developed by Mirletz for learning the control for tensegrity spines. Machine

learning using CPGs and a neural network for feedback, as discussed in section 3.2,

was used to actuate LongTorso, Spirals, and NoFeet from figures 3.2, 3.3, and 3.4 in

simulation. Figure 4.1a shows the results for LongTorso from figure 3.2. As can be seen,

only five of the 30,000 controllers achieved a distance greater than 30 cm/min, and only

one of these controllers yielded a distance greater than 50 cm/min. Table 4.2 shows

that genetic evolution more than doubled this distance, to 110.9 cm/min.

Figure 4.1b shows the results of 30,000 Monte Carlo trials for Spirals, from
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(a) Distance traveled by LongTorso over
30000 Monte Carlo trials.

(b) Distance traveled by Spirals over 30000
Monte Carlo trials.

Figure 4.1: A comparison of the results from the Monte Carlo stage of machine learning
for LongTorso and Spirals.

figure 3.3. Although the extra spirals of cables added to Spirals did not improve the

longest distance traveled over 30,000 Monte Carlo trials, the total number of Monte

Carlo trials that traveled farther than 30 cm/min increased from 5 to 18, and the

number of trials that achieved close to 50 cm/min increased from 1 to 4. Table 4.2

shows that evolution yielded a more than 100% improvement with a distance of 130.4

cm/min. This shows that this change in morphology, with the aim of increasing torsion

in the spine, improved distance outcomes in CPG control.

NoFeet, from figure 4.2, showed the best results over both Monte Carlo and

evolution. The longest distance yielded from Monte Carlo, which was 247.1 cm/min,

was more than double the longest distance of both LongTorso and Spirals after 30,000

Monte Carlo trials. As can be seen in figure 4.2, ten of the trials traveled a distance

greater than 100 cm/min, and many more traveled distances greater than 50 cm/min

than for LongTorso and for Spirals from figures 3.2 and 3.3. Table 4.1 shows that
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genetic evolution yielded a distance of 339.4 cm/min which is, again, more than double

the distance of Spirals and more than triple the distance of LongTorso after genetic

evolution. These gains from removing the feet show that distance was indeed lost from

having feet with too much compliance. The resulting increase in ground reaction force

from removing the feet led to increased speed.

Figure 4.2: The initial 30,000 randomized Monte Carlo trials, each one minute in du-
ration, for NoFeet. For the evolutionary results of the best 40 of these trials, see table
4.2.

Table 4.1: Longest Distance Per Minute for Each Model

Model Monte Carlo Evolution

LongTorso 53.7 cm/min 110.9 cm/min

Spirals 51.4 cm/min 130.4 cm/min

NoFeet 247.1 cm/min 339.4 cm/min

Figure 4.3a shows the increase in distance over subsequent generations of evolu-

tion. This particular plot comes from the evolution of the best 40 trials from LongTorso,
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(a) The distance traveled over 60 genera-
tions using control policies dictated by the
40 most successful Monte Carlo trials for
LongTorso.

(b) Trajectory of NoFeet's center of mass
over a one-minute simulation. Note the
straight path taken by the robot during lo-
comotion.

Figure 4.3: The evolution process and the resulting trajectory of MountainGoat.

shown in figure 3.2, and for which the Monte Carlo results are shown in figure 4.1a. Note

that the total distance increases more quickly over the first 20 generations than it does

over the last 40 generations. This shows an example of how the machine learning and

control scheme described in section 3.2 converges to a near-optimal locomotion gait for

a given morphology.

Figure 4.3b shows the trajectory of the center of mass of NoFeet, from figure

3.4, over one minute. This shows that the simulated robot takes a straight path during

travel. While the robot does not yet move quickly, we are still developing useful theories

of morphological design. The current model of MountainGoat does not yet even have

knees, for instance, which would enhance the robot’s ability to move over uneven terrain.

We have, however, shown with our above results the importance of spinal torsion for

locomotion.

The machine learning results shown in figures 4.1a, 4.1b, and 4.2 and in table
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4.1 yield interesting results about the complexities of morphological design of tensegrity

structures for locomotion. The passive compliance of the tensegrity quadruped is very

valuable, as it allows for natural force distribution and passive terrain adaptation. Yet

passive compliance in some cases hinders the effectiveness of locomotion, as can be noted

from the differences in the Monte Carlo results for Spirals and NoFeet, in figures 4.1b,

and 4.2, as well as the longest distances traveled in table 4.1. More productive motion

was gained from reducing compliance in this part of MountainGoat. A lesson learned

from this outcome is that when it comes to leg design, especially when it comes to

the future work of designing knees, would be that the legs should become mechanically

stiff (the knees and hips ”lock”) during the stride phase and should become passively

compliant (knees and hips ”unlock”) during the swing phase.

The advantage of tensegrity robots is that pretension and stiffness can have

different settings in various body parts to enable more productive motion, as shown

in table 3.1, where the legs of LongTorso, Spirals, and NoFeet have greater stiffness

and pretension settings than the spine does. The ability for components of the robot

to be either compliant or stiff is a unique characteristic of tensegrity robots. But, the

morphology of the structure must be designed correctly to be able to provide those

points of stiffness, such as lifting the shoulder via the spiral spine cables added to

Spirals, from figure 3.3, which increased the distance traveled after Monte Carlo and

genetic evolution. How to design for both passive compliance and active stiffness is an

open research topic, for which there is currently no guiding theory.
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4.1.2 Mechanical Design

To determine whether NoFeet from figure 3.4 represents a stable structure out-

side of simulation, we constructed a static prototype. Figure 4.4 shows this prototype,

which consists of wooden dowels, plastic golf balls, and elastic strings held in place with

brass hooks. Passive equilibrium due to force distribution is key in tensegrity structures,

and this static prototype shows that NoFeet stands in a stable position the same way

it does in simulation.

Figure 4.4: Static prototype of NoFeet.

4.2 Reduced Actuation and Leg Control

The three new actuator configurations discussed in this section represent ways

of reducing the total number of actuators required for productive motion. This includes

the two spine-only configurations, which include SpiralsOnly (24 active cables) and
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ReducedSpirals (16 active cables), and the leg-only configuration – Achilles – which has

only 8 active cables in total. The results of NoFeet presented in section 4.1.1, which has

52 active spine muscles, are included in the discussion as a reference point for comparing

the performances of all the configurations that employ reduced actuation.

4.2.1 Control

The results of 30,000 Monte Carlo trials on the actuator configuration of

NoFeet, illustrated in figure 1.2a above, can be seen in figure 4.2, which was previ-

ously discussed in section 4.1.1. This configuration of 52 active cables, yielded longer

distances after Monte Carlo than SpiralsOnly or ReducedSpirals, with 24 actuators and

16 actuators, respectively. NoFeet produced many more trials which traveled farther

than the 50 cm/minute threshold than for SpiralsOnly or ReducedSpirals. The distance

traveled after evolution, which as we discussed above was 339.4 cm/min, is listed again

for comparison in table 4.2.

The Monte Carlo results for SpiralsOnly, the configuration with 24 active spine

cables as depicted in figure 3.5a, can be seen in figure 4.5a. The number of trials that

traveled longer than 50 cm/min is much sparser than for NoFeet, which is in keeping

with the idea explored by Lessard, et. al. [17]. However, the best trial traveled at a

speed of 229.4 cm/min, which though slower than the best trial for NoFeet, as seen in

in figure 4.2, is nonetheless close. Despite the sparsity of trials faster than 50 cm/min,

this configuration of 24 active spine cables improved the most during evolution. This

evolution result could be due to the fact that SpiralsOnly had at least one more trial
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(a) The initial 30,000 randomized Monte
Carlo trials, each one minute in duration,
for SpiralsOnly. See table 4.2 and figure
4.7a for the resulting distance after evolu-
tion from the best 40 of these trials.

(b) The initial 30,000 randomized Monte
Carlo trials, each one minute in duration,
for ReducedSpirals. See table 4.2 and figure
4.7a for the resulting distance after evolu-
tion from the best 40 of these trials.

Figure 4.5: A comparison of the Monte Carlo results for SpiralsOnly and ReducedSpi-
rals.

with a distance longer than 150 cm/minute than NoFeet had. The favorable traits from

this extra MC trial would most likely give it an advantage over multiple generations.

As seen in table 4.2 and figure 4.7a, the distance traveled increased to 366.8 cm/min

after the evolution phase of learning.

Figure 4.5b shows the results of 30,000 Monte Carlo trials for ReducedSpirals,

the configuration of 16 active spine cables shown in figure 3.5b above. As with the

configuration of 24 spine actuators, there is a sparser number of trials faster than the 50

cm/min threshold than there is for NoFeet. The use of 16 spine actuators resulted in a

best trial of 150.2 cm/minute, which was slower than the best trials for both SpiralsOnly

and NoFeet. The results of evolution continued this trend, increasing the speed of

locomotion to 274.7 cm/min as in table 4.2 and figure 4.7a. In our previous work,

we discussed the importance of this type of spiral cable configuration for increasing
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torsion in the spine and giving more shoulder support for lifting the legs [14]. The

resulting performance of ReducedSpirals, in comparison to SpiralsOnly, supports this

claim, inasmuch as decreasing the length of this spiral lead to decreased torsion and

shoulder support. Also, the general reduction in the number of actuators supports the

graceful degradation, rather than sharp cessation, in performance.

Since we use machine learning to tune the PD and impedance parameters for

Achilles, we ran three times the amount of Monte Carlo trials. Recall from section

3.1.1 that Achilles moves by means of actuating an opposing pair of cables in each leg,

rather than by means of actuated spine cables. Figure 4.6 shows the results of these

90,000 trials. As can be seen, the best trial for the Achilles configuration, at 458.3

cm/min, is roughly three times as fast as NoFeet, SpiralsOnly, and ReducedSpirals

after Monte Carlo, and is even faster than the evolved results for these other three

cable configurations, at 807.4 cm/min. Figure 4.6 shows that the majority of the trials

are concentrated below a threshold of 200 cm/min, which is much higher than the 50

cm/min threshold of SpiralsOnly and ReducedSpirals, and the 20 cm/min threshold of

NoFeet. Also, the results in the upper half of this plot are not quite as sparse as they

are for the other experiments. This indicates that, again, running more Monte Carlo

trials would improve our evolutionary results. It is quite possible that the strong ground

reaction forces generated with the help of these long, antagonistic pairs, contributes to

this increase in speed.

Figure 4.7a show the progress of evolution for NoFeet, SpiralsOnly, Reduced-

Spirals, and Achilles. The first half of improvement occurs within the first 20 genera-
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Figure 4.6: The initial 90,000 randomized Monte Carlo trials, each one minute in dura-
tion, for Achilles. For the results of the best 40 of these trials, see table 4.2 and figure
4.7a.

tions of evolution, in most cases leaving relatively minor improvements to the last 40

generations. This shows that our genetic algorithm converges quickly to the most ad-

vantageous solutions for a given morphology. ReducedSpirals both begins and ends the

evolutionary stage as the slowest of all four actuator configurations, although during

generations three through eleven it is tied with SpiralsOnly. Although SpiralsOnly and

NoFeet start out close in performance, NoFeet overtakes SpiralsOnly as early as the

tenth generation. Nevertheless, SpiralsOnly barely wins out over NoFeet by generation

30. Achilles starts out performing better than SpiralsOnly and ReducedSpirals, and

therefore continues to outperform both throughout the entire evolution stage.

Figure 4.7b compares the resulting trajectories of the various actuator config-

urations. The paths traveled are the results after evolution, and the distances are listed

33



(a) A comparison of the progression of ge-
netic evolution for NoFeet (red), Spiral-
sOnly (blue), ReducedSpirals (green), and
Achilles (cyan).

(b) The trajectories of NoFeet (red), Spiral-
sOnly (blue), ReducedSpirals (green), and
Achilles (cyan), based on the center of mass
of each robot.

Figure 4.7: The evolution process and the resulting trajectory of MountainGoat.

Table 4.2: Longest Distance Per Minute for Each Model

Model Monte Carlo Evolution

NoFeet 247.1 cm/min 339.4 cm/min

SpiralsOnly 229.4 cm/min 366.8 cm/min

ReducedSpirals 150.2 cm/min 274.7 cm/min

Achilles 458.3 cm/min 807.4 cm/min

in table 4.2. When plotted, some of the trajectories were rotated with respect to the

origin in order to better compare distance. Note that all trajectories are, for the most

part, straight. The distances, however, are very different. These different distances

further support the concept, which we discussed in our previous work [14], that mor-

phological design and control are highly coupled. A relatively minor reduction in the

number of active cables from 24 to 16, for instance, caused a notable decrease in the

speed of locomotion. A change in mode of actuation, from spine-driven to leg-driven

locomotion, also resulted in an even more notable increase in the speed of locomotion.
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Now to return to the question of whether reducing the amount of active cables

in the spine would slightly or severely degrade performance. Reducing the number of

spine actuators from 52 to 24 resulted in graceful degradation after Monte Carlo, but

resulted in slightly improved performance after evolution. This improved performance

after reducing the number of actuators was unexpected, and counter to the results found

in [17]. Reducing the number of spine actuators to 16, however, showed a slightly greater

degradation of performance after both Monte Carlo and evolutionary stages of learning.

This is in line with results cited in [17]. Despite this slower performance, however, the

robot was still able to travel a distance of almost three times its own body length in

one minute, which is still respectable. Although using only 8 leg actuators resulted in

substantially increased performance, this could be due to the employment a different

mechanism of propulsion (i.e. legs instead spine).

4.2.2 Solution Space

Mirletz et. al., in their earlier analysis of solution space dimensionality of CPG

networks, arrived at the following formula for the number of possible coupling weight

and phase offset pairs that a morphology with repeating segments and bi-directional

CPG couplings would be required to learn for productive motion [21]:

CPG couplings =
m(3m+ 1)

2
(3)

With m representing the number of active cables, and hence number of active
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Table 4.3: Number of parameter pairs learned for each model

Model Active
Cables

Max per
Segment

Weight-
Coupling
Pairs

NoFeet 52 16 392

SpiralsOnly 24 8 100

ReducedSpirals 16 8 100

Achilles 8 2 7

CPG nodes, per segment. The configuration with 52 spine actuators, as shown in figure

1.2a, has 16 nodes per segment, while the configurations with 24 and 16 spine actuators

each have 8 nodes per segment. the configuration with 8 leg actuators, Achilles, has only

2 nodes per leg. As seen in table 4.3, this equates to a larger solution space for NoFeet,

which requires learning 392 coupling pairs. The other spine configurations, SpiralsOnly

and ReducedSpirals, have smaller solution spaces, with 100 coupling pairs that need to

be learned for productive locomotion. In contrast, Achilles has only 7 coupling pairs to

be learned. Despite the fact that Achilles has extra parameters to be learned for the

PD and impedance controllers, these only account for 5 more parameters, and thus this

configuration has the smallest solution space of all four configurations.

4.3 Integration of Spine and Leg Control

Initial examination of the results shown in figure 4.7b might lead to the intu-

itive conclusion that pure leg actuation is preferable to pure spine actuation. Indeed

the overwhelming majority of quadrupedal and bipedal robots take this approach. But
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natural selection has found it advantageous for humans and other legged creatures to

have both legs and a spine, and both of these structures have important roles in locomo-

tion, as Gracovetsky, et. al. [12] and Folkertsma, et. al. [10], among many others, have

theorized. It is only natural, then, to combine both legs and spine to see how speed of

locomotion in MountainGoat is improved.

Figure 4.8: The initial 90,000 randomized Monte Carlo trials, each one minute in dura-
tion, for the model using both active spine and leg muscles.

As SpiralsOnly proved to be the fastest of the three spine-driven actuator

configurations explored in 4.2.1, we chose to combine this configuration with that of

Achilles for this experiment. We called this combined spine- and leg-actuated system

AchillesSpirals. As with Achilles, we ran 90,000 Monte Carlo trials to allow for explo-

ration over a solution space including PD and impedance controller parameters. Figure

4.8 shows the spread of the resulting 90,000 Monte Carlo trials. The longest distance
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traveled during the Monte Carlo stage, as listed in table 4.4, was 787.0 cm/minute, and

after genetic evolution the longest distance increased to 1189.2 cm/min.

Even more so that for Achilles (shown in figure 4.6), the upper half of the

Monte Carlo plot in figure 4.8 shows a denser concentration of trials, especially between

the distances of 200 and 500. Again, this means that running even more than 90,000

Monte Carlo trials would potentially yield more trials with longer distances, which in

turn would improve our evolutionary results.

Table 4.4: Longest Distance for Achilles and Number of Parameter Pairs

Model Monte
Carlo

Genetic
Evolu-
tion

Active
Cables

weight-
coupling
pairs

AchillesSpirals 787.0
cm/min

1189.2
cm/min

32 107

This evolutionary result shows an almost 50% improvement over Achilles, as

listed in table 4.2. The total number of active cables in AchillesSpirals, also listed in

table 4.4, is 32, and the total number of weight-coupling pairs that makes up the solution

space is 107. This is still fewer actuated cables and, consequently, a smaller solution

space than for NoFeet. But the resulting performance of AchillesSpirals is 3.5 times

greater than NoFeet.

Figure 4.9a compares the process of evolution for AchillesSpirals with that of

SpiralsOnly and Achilles. As can be seen, the evolution of AchillesSpirals starts and ends

a faster speed than both SpiralsOnly and Achilles. As with the previous examples of

genetic evolution shown above, most of the evolutiontary work is done within the first 20
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(a) Comparing the evolution of AchillesSpi-
rals (magenta) over 60 generations to that
of SpiralsOnly(blue) and Achilles(cyan).

(b) Comparing the trajectory of Achil-
lesSpirals (magenta) with those of Spiral-
sOnly(blue) and Achilles(red).

Figure 4.9: Evolution and Trajectory of SpiralsOnly, Achilles, and AchillesSpirals, to
show improvement when both are combined.

generations, with only minor improvements made during the remaining 40 generations,

showing convergence toward the best solution.

In figure 4.9b, the trajectory of AchillesSpirals's center of mass is compared

with those of SpiralsOnly and Achilles. As in figure 4.7b, the trajectories of each

actuator configuration are rotated about the origin in the plot for better comparison

of distance and straightness of path. The trajectory of AchillesSpirals shows that the

distance it traveled is roughly the amounts of SpiralsOnly and Achilles added together.

Note, however, that the path of AchillesSpirals is not quite as smooth as those of

SpiralsOnly and Achilles. One possible reason for this is that while there is nearest

neighbor coupling for CPGs in the spine, as well as nearest neighbor coupling within

each leg, this nearest neighbor coupling is not preserved between the legs and the spine.

A way to reintegrate nearest neighbor coupling between the legs and the spine, which

could be explored in future work, would be to create a hierarchy of CPGs along with a
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more sophisticated feedback system for the higher level CPGs, as has been explored by

Markin, et. al. [20]. A system such as this could lead to better coordination between

the legs and the spine of the robot.
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Chapter 5

Conclusions and Future Work

Our research explored the coupled aspects of morphological design of a spine-

driven tensegrity quadruped, MountainGoat, and evaluation of the resulting CPG con-

trolled locomotion in simulation. Each improvement to structural design increased the

distance traveled by the robot. These results show that we have gained an understand-

ing of the process of whole-body control, where the spine is central to locomotion and

how extra support of the shoulders from the spine are necessary in order to lift the legs.

Future work could involve fine tuning aspects of the model such as the optimal

number of vertebrae, distance between legs, shape of legs and vertebrae, stiffness and

pretension of muscles, and arrangement of muscles. Using co-evolution of the robot’s

morphology and control would be an efficient means of exploring these aspects. Adding

more torsion and the ability to bend the spine the the sagittal plane could be added,

to help facilitate the lifting of legs. Knees could be added to the legs to aid locomotion

over rough terrain, and these joints could be designed to become mechanically stiff in

41



the stance phase but become passively compliant in the swing phase.

Several active cable configurations for MountainGoat were explored, with each

configuration reducing the solution space and improving speed over the original. The

active spine configurations using 24 and 16 cables produced more productive locomotion

than the configuration of 52 active cables, with the 24 cable configuration traveling the

fastest of all configurations after evolution. The active leg configuration, with a total of

8 active cables, also showed improvement over the 52 cable spine configuration. Future

work could include verification of these results with construction of actuated prototypes,

to test the practicality of the various designs. Different gaits could also be explored in

simulation, using gait-dependent offset pairs for individual legs.

Spine and Leg actuation were combined in an effort at whole-body control of

MountainGoat, leading to a 50% speed increase over legs alone. Future work to improve

the coordination between legs and spine would include a CPG hierarchy with a more

robust feedback system for the higher level CPGs. Such a hierarchy would help smooth

the trajectory of the robot's path.

It is interesting to note that morphological design and actuation strategy makes

a notable difference, as over the course of morphological exploration presented in this

thesis there was greater than 10X improvement in speed, even when reducing the total

number of actuators. This shows that, when approached intelligently, efficiency of design

and actuation can be achieved at the same time that performance is improved.
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