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Abstract

The field of evolved virtual creatures has been suspiciously
stagnant in terms of complexification of evolved agents since
its inception over two decades ago. Many researchers have
proposed algorithmic improvements, but none have taken
hold and greatly propelled the scalability of early works. This
paper suggests a more fundamental problem with co-evolving
both the morphology and control of virtual creatures simul-
taneously — one cemented in the theory of embodied cogni-
tion. We reproduce and explore in greater detail a previous
finding in the literature: premature convergence of the mor-
phology (compared to the convergence point of optimizing
controllers), and discuss how this finding fits as a symptom
of the proposed problem. We hope that this improved under-
standing of the fundamental problem domain will open the
door for further scalability of evolved agents, and note that
early findings from our future work point in that direction.

Introduction

In 1994, Karl Sims’ seminal work on “Evolving Virtual
Creatures” (Sims, |1994b) created a field of study by that
name. This work featured simulated creatures that were able
to optimize both their physical layout and their behavioral
control strategies for such tasks as terrestrial locomotion,
swimming, phototaxis, and competition (Sims} |1994a)).

The potential applications of virtual creatures extends be-
yond their initial contribution to computer graphics and ani-
mation, serving as a testbed for the co-optimization of brain-
body systems in robotics. With the challenges of continually
modifying the morphology of physical robots during the op-
timization process, the field of Evolutionary Robotics often
turns to virtual creatures to optimize morphologies (and their
associated controllers) before physical robots are manufac-
tured from the optimized designs (Lund et al., [1997; [Funes
and Pollackl, 1998; |Lipson and Pollackl, 2000; Nolfi and Flo-
reano), |2002; |Doursat et al., 2012; |Bongard, 2013).

However, in the two decade lifetime of this field, there
have been notable struggles in optimizing creatures, with
a very limited ability to extend beyond Sims’ initial
works (Geijtenbeek and Pronost, 2012)) — despite significant
increases in computing power. Many researchers have sug-
gested hypotheses for the cause of this standstill, such as de-

ficiencies in the search algorithms (Hornby, [2006; Lehman
and Stanleyl, 2011} Mouret and Clune, 2015) or genetic en-
codings (Hornby et al., 2001; Bongard and Pfeifer, |2003)). It
has also been suggested that the environments/tasks chosen
are not complex (or morphologically dependent) enough to
necessitate optimization of both the morphology and con-
troller (Auerbach and Bongard, [2014} (Cheney et al., [2015]).
But since we have yet to clearly surpass Sims’ work, each of
these hypotheses must be approached with some skepticism.

This work takes note of the particular difficulty in opti-
mizing morphology (Joachimczak et al.l |2016) and sets out
with the intent of proposing a new hypothesis for the field’s
current roadblock. Our hypothesis, unlike many before it,
does not rely on more powerful or astute search algorithms
to laboriously make our way through the rugged and harsh
search space which make optimization of virtual creatures so
difficult. Rather, we intend to use our understanding of the
behavior of virtual creatures, specifically the theory of em-
bodied cognition, to suggest a fundamental issue in the way
that we frame the problem of optimization of virtual crea-
tures — which in turn causes the search landscapes to present
such an unpleasant terrain.

The theory of embodied cognition suggests that a funda-
mental part of the cognitive control process of an individual
is being situated (Wilson, 2002). It suggests that the dy-
namic interactions between a reactive agent and the environ-
ment, through sensory-motor feedback loops, are an impor-
tant driver of behavior (Brooks, [1991)), as opposed to cog-
nitivism — the hypothesis that the central functions of mind
can be accounted for in terms of the manipulation of sym-
bols according to explicit rules (Anderson, |[2003)).

This line of reasoning puts an extra emphasis on the mor-
phology of an individual, as it acts as the lens and modulator
for all physical communication between that individual’s in-
ternal controller and the outside environment (Pfeifer and
Bongard, [2006). This work outlines the specific hypothesis
that the body’s importance, afforded to it by its role as the
connection between internal desires for action and the exter-
nal consequences of them (as well as external events and the
internal sensory observations of them), is understated. With-



out a well established and properly functioning communica-
tion channel, the sensory information and motor commands
of an individual are ineffective.

From this supposition, we can create a testable hypoth-
esis about the value of the established morphological com-
munication channel. Specifically, control optimization on
an existing morphology can be more effective than morpho-
logical optimization on a fixed controller — as the latter does
not maintain an established communication framework from
the controller to the environment (through the morphology).
This results in a system which effectively causes large, un-
intended variations in the behavior of the controller, as its
physical interface is constantly being scrambled while opti-
mization seeks to improve the physical shape of the body.

In comparing each of these hypothetical situations to the
current state of evolved virtual creatures, we will conclude
by discussing a possible connection between this theory of
embodied cognition and the lack of effective optimization.
Our hope is that such evidence will shed additional light on
(at least one of) the problem(s) facing our field, and arm us
with the information to help tackle it in future works.

Background

The literature on failed attempts to co-optimize the mor-
phology and control of virtual creatures is sparse. This
may be due in part to the bias against publishing negative
results (both in submission and acceptance of such find-
ings) (Fanelli, |2011). However, informal conversation with
members of the field acknowledge the lack of progress. We
note the difficulty of optimizing morphologies in our own
virtual creatures (Lipson and Pollack, 2000; Bongard and
Pfeifer, 2003} |(Cheney et al.l [2014} 2015) (and unpublished
works), but find ourselves grasping for an understanding of
why this may be the case.

One clear and concise description of this very problem is
expressed in Joachimczak et al.| (2016), where they note:

It can also be observed how during the first 100 gener-
ations of the evolutionary run, morphological changes
occurred very frequently. At generation 125, the over-
all morphology of the best individual already resembles
the best final individual found in the generation 1386
(although its fitness is only 5.07, compared to the 11.15
of the latter). The following generations bring multiple
small changes to the morphology of adult form and al-
most no changes to the larval form. Both stages, how-
ever, undergo continuous modifications of their con-
trollers, and it is these alterations that contribute the
most to the improvements in fitness. This pattern was
also observed in other evolutionary runs: the final
morphology would emerge in the first few hundreds
of generations and the remainder of the run would
be spent on small tweaks to the bodies and optimiza-
tion of controllers. (emphasis added)

This notion of premature convergence of morphology is
not a stand alone case. At times this premature convergence
can be incorrectly interpreted as a positive trait, noted as di-
versity of results (despite the lack of explicit diversity main-
tenance), as in |Cheney et al.| (2013)).

In the remainder of this work we set out to reproduce
the symptoms described inJoachimczak et al.| (2016)), where
morphology converges prior to control. We seek to further
examine and characterize this phenomenon, and describe a
theoretical framework which may help to explain its cause.

Methods

Similarly to [Joachimczak et al| (2016), we employ soft
robots as our instantiation of evolved virtual creatures. We
use 3D voxel-based soft robots, following from |Cheney
et al.| (2013), but replace their discrete muscle types and
synchronized contractions with voxels which allow individ-
ualized phase offsets, consistent with the controllers used
in Joachimczak et al.|(2016)). This allows for behaviors such
as propagating waves, which were not possible in [Cheney
et al.|(2013)) (but were achieved inlJoachimczak et al.|(2016)
and|Cheney et al.|(2014)). A global frequency of oscillations
is also optimized.

Dual-Network CPPN

We genetically encode the soft robot phenotypes as a
network, inspired by the CPPN-NEAT (Stanley, [2007),
the algorithm employed by both |Cheney et al| (2013)
and Joachimczak et al.|(2016)) (though the later cleverly em-
ploys the CPPN alongside development, rather than as an al-
ternative to it). However, this work differs from those two by
optimizing two separate networks, one containing only the
outputs associated with the physical structure and material
placement (“morphology”) of the creatures, while the sec-
ond network produces only the outputs used to determine the
actuation of the muscle voxels (“control”). This allows us to
very clearly make variations to either the morphology or the
controller, without affecting the genotype of the othelﬂ

To translate the CPPN genotype to a soft robot pheno-
type, for each individual voxel in our 7 x 7 x 7 discretized
design space, the “presence” output of the morphology net-
work is queried. If the output value (which all span the range
[—1,1]) is positive, a voxel is placed there and the “mate-
rial type” output is queried. If the “material type” output is
positive as well, then a the voxel is an active “muscle” cell,
otherwise, that voxel is a passive “tissue” cell.

For each active muscle cell, the control network is
queried, and the floating point value of the “phaseOffset”
output (again from [—1, 1]) is assigned as the relative phase
offset of that muscle cell (where O is exactly in phase with a
global clock, —1 and 1 are synchronized a full phase ahead
or behind it, and —0.5 and 0.5 are perfectly out of sync with
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it). Finally, the frequency of this global “clock™ oscillator is
set using the mean value of the “frequency” output across all
voxels (including those not currently expressed in the phe-
notype). In order to easily allow the full range of possible
frequencies to be expressed after averaging, a mean value of
—0.5 or lower corresponds to the minimal frequency of 5Hz,
while a mean value of 0.5 or higher corresponds to the max-
imal frequency of 10Hz (with linear scaling between them),
despite the continued [—1, 1] range of each individual “fre-
quency” output node. The optimization of the global oscil-
lation speed is intended to allow the muscle actuations to
resonate with the natural frequency of a given morphology.

We should note that this encoding does allow for morpho-
logical changes to affect the expressed control (as the addi-
tion or removal of muscle cells will allow more or less of the
underlying phase offset pattern to be expressed in the pheno-
type). Due to the integrated and embodied nature of control,
we believe that such an effect would happen with various
definitions of “morphology” and “control” — such as a robot
with 6 legs expressing a different number of joint control
outputs than a 4 legged robot in the rigid body paradigm.
This concept of morphology determining the expression of
control may be less about this specific implementation and
instead a more general consequence of embodied cognition
in a situated creature (Pfeifer and Bongard, 2006).

Physics Simulation in VoxCad

Consistent with |Cheney et al.| (2013), we employ the open-
source soft-body simulator VoxCad (Hiller and Lipson,
2014) as the physics engine which determines the fitness of
each creature’s phenotype. In order to normalize the number
of actuations per muscle cell across creatures with different
actuation frequencies, each individual is evaluated for ex-
actly 20 actuation cycles (following a passive initialization
period in which it is allowed to settle on the ground in a
relaxed pose — intended to discourage passive falling strate-
gies rather than active locomotion behaviors). This means
that two creatures with different actuation frequencies will
be simulated for different lengths of time. Following the
termination of the simulation, the displacement of the crea-
ture’s center-of-mass along the positive x axis is returned to
the evolutionary algorithm. All other parameters regarding
VoxCad simulation are taken from Cheney et al.[(2013).

Evolutionary Algorithm

The optimization of these soft robots takes the form of an
evolutionary algorithm. The genotype is a directed acyclic
graph, represented in memory as a tree to allow an imple-
mentation similar to that of genetic programming. Follow-
ing from CPPNs (Stanleyl [2007), each node in the graph
sums its weighted inputs and feeds them through a series of
nodes with geometric activation functions (here: sigmoid,
sine, absolute value, negative absolute value, square, square
root, or negative square root) to arrive at each of its output

value(s). The inputs to this network are Cartesian (x,y, 2)
and polar () coordinates of the voxel in question, along with
a bias node. The outputs are interpreted as described above.
Variation and selection follow a (u/p + A) scheme of
(50/25 + 25). Variations may be: the addition/removal of
a node to a network, addition/removal of an edge between
existing nodes, mutation of the weight associated with an
edge, or mutation of a node’s activation function. Each of
these variations occurred with equal probability, and each
variation occurs to only one network of the phenotype, each
with equal probability. Crossover was not considered in this
work. Variations to the genotype were only considered valid
if they resulted in a phenotypic change in the resulting soft
robot. Variations were also disallowed if they resulted in
creatures who occupied less than 10% of the available vox-
els, or employed less than 5% of the available voxels as ac-
tuated muscle cells. Selection was rank-based with elitism.

Statistical Reporting

All experimental data below represent the mean values of
30 independent runs lasting for 5000 generations each. P-
values are calculated using a Mann-Whitney rank-sum test,
as we cannot assume normality of fitness values. Confidence
intervals were plotted using bootstrapping of 10,000 sam-
ples at the 95% confidence level. Significance values are
marked with the following convention: ns for p > 0.05,
* for p < 0.05, ** for p < 0.01, and *** for p < 0.001.

Results

First and foremost, we set out to replicate and examine the
results founds in Joachimczak et al.| (2016), where “the fi-
nal morphology would emerge in the first few hundreds of
generations and the remainder of the run would be spent on
small tweaks to the bodies and optimization of controllers.”

By visually inspecting the resulting creatures we find
that this implementation appears able to reproduce the phe-
nomenon. Fig. [T|shows the optimization over time of the 10
best performing trials. Notice how conserved the morpholo-
gies appear to be over time, with the gross morphology gen-
erally emerging at or before the 100 generation mark (mid-
dle column). While only the top 10 trials are shown for sake
of space, this theme applies generally to all the runs.

It is also interesting to note that the top two final-fitness-
achieving runs were the only two to undergo a morphologi-
cal change between generations 1000 and 5000 (the last two
columns). This suggests that creatures to which search im-
mediately converges upon are not optimal, and that better
performing solutions may not be that far away in pheno-
typic space (inferred from the similarities between the top
two rows at generations 1000 and 5000), yet such creatures
appear to be difficult for this search process to find (inferred
by the lack of occurrence before generation 1000 in the top
two runs, and at all in the next 8 runs). The idea that each
run converges to a local, rather than global, optimum is also
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Figure 1: Evolved morphologies at various stages in opti-
mization (voxel color from red to green indicates phase off-
set of controllers). Each row represents one of the top 10 run
(out of 30, order by final fitness). Each column represents a
point in time during optimization. Note that morphologies
generally lock in before gen 100, often on simple forms.

Run 2

Run 11 Run 12 Run 22 Run 4 Run 28 Run 24 Run 29 Run 21

Run 16

evident by the fact that the set of final creatures differ from
one another, rather than converging to the same form.

This visualization serves as an initial indication that the
effect of early convergence is apparent in our setup, as it was
in [Joachimczak et al.| (2016). However, it does not demon-
strate that the effect of stagnation is more prominently fea-
tured by morphology than controllers, or characterize just
how detrimental such an effect may be. These two questions
are both approached quantitatively in Figs.[2]and[3]

To quantify how early the morphology converges and how
detrimental this may be towards the optimization of virtual
creatures, we artificially freeze the morphology after a given
amount of time, and only allow control variations to occur
after this point. If the resulting fitness value does not show a
significant change following a morphology freeze at a given
time (compared to optimizing both the morphology and con-
trol for the entire optimization process), we can be confident
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Figure 2: Fitness impact of freezing morphology at vari-
ous points in optimization. Both morphology and control
are optimized up to the freezing point. After it, only con-
trol variations are considered for the reminder of the trial.
The p-values (and significance markers) reported compare
the resulting fitness to that achieved with co-optimization
of both morphology and control for the full 5000 genera-
tions. Note that morphologies optimized for 25 or more gen-
erations show no significant fitness difference, compared to
those optimized for all 5000 (noted above in bold).
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Figure 3: Fitness impact of freezing control at various points
in optimization. Note that controllers with less than 250 gen-
erations of optimization (but full morphological optimiza-
tion) show no significant difference with those optimized
for all 5000 gens, suggesting that control mutations continue
to provide fitness benefits further into optimization than the
morphology variations, which cease to be beneficial to fi-
nal fitness values much earlier (cf. figure 2, generation 25 —
please note the different x-axis compared to that Figure).



that the morphology did not significantly contribute to fit-
ness improvements after that point in optimization time.

Fig. [2| shows the fitness impact of morphology freezes
at various times during optimization compared to co-
optimization of morphology and control for the entire 5000
generations. We see that full optimization does not show a
significant fitness improvement compared to morphologies
optimized for 25 generations or more (at the 95% confidence
level, as p > 0.0604 for all freezing points > 25 gens). This
means that the morphological variations after generation 25
do not significantly contribute to the fitness of the resulting
creatures, suggesting that morphology converges to (near)
final forms by generation 25. The visual inspection of these
creatures in Fig.|l|does not contradict such a suggestion.

This does not mean that optimization as a whole is con-
verged at this point. Improvements from control optimiza-
tion occurring after the final gross morphology is fixed are
noted in Joachimczak et al.| (2016). We also see this effect
here, with the fitness resulting from control optimization af-
ter morphology freezing (26.520) significantly outperform-
ing (p < 0.001) the fitness at the time of freezing (21.157).

Fig. |3| shows the impact of the converse treatment, in
which the creature’s controller is frozen at a given point in
time and only morphological variations are allowed there-
after. This treatment shows that significant differences in
resulting fitness values occur for at least 100 generations (at
the 95% confidence level, as p < 0.001 for freezing points
< 100), but not more than 250 generations (p > 0.0565
for freezing points > 250). The lack of significant differ-
ence past 250 generations also points to early convergence
of controllers to (near) final levels early in optimization.

However, the significant drop in fitness from control
freezing (at times past those when morphological change
stops contributing to final fitness values) suggests that this
example of virtual creature evolution creates earlier conver-
gence for morphologies than it does for controllers.

This picture is further reinforced when we examine the
time of convergence to a final morphology and controller in
each run. On average, the convergence to the final (best of
run) morphology occurs at generation 558. In comparison
the mutation which leads to the best-ever controller occurs
significantly later (p < 0.001) at generation 2926. Widening
our view from only the final successful variations, and con-
sidering all individuals who were the top fitness performers
at some point during optimization, we see the same story,
with controller mutations leading to top performers contin-
uing significantly later than those created by morphological
mutations (mean of gen 750 vs. gen 158, p < 0.001). The
next section will discuss a potential cause for such an effect.

Discussion

The above results suggest that, in this instance of virtual
creatures co-evolving morphology and control, we run into a
problem of premature convergence, which is especially pro-

nounced with regard to the morphology of the creature. Pre-
mature convergence alone could point to issues in any num-
ber of aspects of optimization (diversity maintenance, ge-
netic encoding, etc.). However the difference between opti-
mization effectiveness of morphology and control draws our
attention towards the theory of embodied cognition.

Let’s revisit the concept of the morphology as the inter-
face between the control architecture and its effect on the
environment. This suggests that modifications to an agent’s
morphology will not only change the shape of its body, but
also change the way in which its control architecture affects
the environment, since the commands sent by that controller
will now be interpreted differently — as it affects the actua-
tors of a different body layout. Thus mutations to the mor-
phology of a creature will have the effect of also “scram-
bling” its controller (causing variation in it) as well.

Contrary to the chain reaction effect of morphological
mutations, variations which occur to the controller do not
affect any part of the morphology’s relationship with the
outside environment. While the control signals which the
body is receiving may change, these new commands are still
executed in the same framework and “language” as previ-
ous commands were. The organization and path of infor-
mation from controller through morphology to environment
causes variations in the morphology to propagate upstream
(i.e. affecting the controller/morphology interface in addi-
tion to the morphology/environment interface), while varia-
tions to the controller do not propagate downstream (affect-
ing the control/morphology interface, but not the morphol-
ogy/environment interactions).

This feature of embodied cognition has the effect of cre-
ating larger (and arguably more unpredictable) behavioral
changes to similar sized variations to the “morphology”
genome than the “controller” genome. This effect would
lead to a more rugged fitness landscape in the space of
morphologies (for a given controller) than exists in the fit-
ness landscape of controllers (for a given morphology). We
would then predict that a more rugged landscape would lead
to more local optima and less efficient optimization with
quicker convergence to sub-optimal solutions than in less
rugged landscape (Kauffman| |1993). This is consistent with
what we have experienced thus far with the optimization of
morphology converging prior to control.

Potential Causes and Limitations

There are undoubtedly features of this experimental setup
which may cause us to overstate (or understate) the impor-
tance of embodied cognition compared to other instances.
Firstly, this setup employs soft robots, which are notoriously
compliant and adaptive to a wider variety of environmental
conditions than their rigid body counterparts (Trivedi et al.,
2008). Given that adaptability of this robot-environment in-
terface (in our case to unexpected perturbations in control
signals), it’s possible that soft robots dampen this effect. In



the extreme, one may conjecture that the soft robot paradigm
is so compliant that almost any morphology can adequately
move along flat ground. If this is the case, then it would not
be surprising that freezing the morphology on an arbitrary
shape has little effect on the resulting fitness value. As soft
robots are relatively new to the literature, this may explain
why this effect has been unnoticed previously.

In order to further explore this facet, we produced an al-
ternative fitness function which explicitly selects for shape
(adding a term to minimize the number of actuated voxels or
“energy”’). In the extreme this would produce creatures with
minimal muscle cells, though since actuated cells directly
contribute to locomotion ability, a complex trade-off creates
an incentive for specialized energy-efficient morphologies.
Another way incentivize to specialized morphologies would
be to evaluate the robot in a more complex (and morpholog-
ically dependent) task environment than flat ground.

Performing the same “freezing” tests on creatures evolved
under the alternative fitness criteria, we see that that freezing
morphology continues to show a non-significant effect on
fitness at times when control freezing produces a significant
fitness drop (e.g. gen 50). Fig[d]visually shows the continued
convergence to final gross morphologies (with morphologies
at gen 50 generally mirroring those found at gen 5000), as
well as the added morphological dependence of the task — as
the morphologies demonstrated here visually appear more
complex than the more fully occupied shapes in Fig. [T}

In this treatment, we also see the final controllers appear-
ing significantly later (gen 2968) than the final moprhologies
(gen 419, p < 0.001). This is also seen in the average best-
so-far individuals, with those produced by control mutations
continuing to appear significantly later on average (gen 709)
than those produced by morphological variations (gen 119,
p < 0.001). This data suggests that while the original task
was not as “morphologically dependent” as others, the find-
ings still hold in a scenario which puts more of an emphasis
on morphological optimization.

A second aspect which may contribute to this effect is
the size of the search space. These runs use robots of
size 7 x 7 x 7. As each of these voxels can have one
of three states (empty, actuated, or passive) which results
in 33%3 = 4.5 % 10'63 distinct morphological phenotypes.
It’s possible that the difficulty in searching the morphology
space is due in part to its size. This could explain why this
effect was not seen sooner (as previous work in evolutionary
robots heavily favors legged morphologies with low degrees
of freedom). This phenotype is indirectly encoded, but gen-
erative in different ways than previous work evolving mor-
phology (Sims) [1994b}; [Lehman and Stanley, 2011).

In attempting to reproduce the work from Joachimczakl
et al.|(2016)), we optimize phase offset and frequency for an
oscillating actuation as the control parameters. These values
are encoded by floating point numbers, and thereby create a
continuous (theoretically infinite) search space for control.

(a) Generation 50:

(b) Generation 5000:

Figure 4: Stagnation shown in the top 10 morphologies un-
der the distance/energy fitness treatment. Note the similar-
ity in gross morphologies from gen 50 (top) to gen 5000
(bottom). The top performing creature shows the largest
change between these points, with the new morphology ar-
riving from a mutation at gen 53. Also note the variance

and complexity in forms, compared to Fig.[I] suggesting the
added morphological dependence of this fitness function.

ol

The concept of discrete physical cells creating a morphol-
ogy and real valued control parameters (such as neuronal
synapse weights) fits biologically — but the differing search
spaces give us pause from an optimization perspective.

To create a similar scenario where the size of the con-
troller search space was smaller than that of the morphology,
we borrow the two distinct “muscle type” system from |Ch-
eney et al.| (2013). This allows just two offset control states
(implemented by rounding the continuous phase offset val-
ues) to create a search space of size 2343 = 1.8 x 10103
(smaller than the morphology space). In this set of tri-
als, we see the above effect disappear, and morphology no
longer appears to be more difficult to optimize than “con-
trol”. Here, the final morphological innovation of each run,
on average, occurs at generation 665, while control innova-
tion continues only to gen 795 — an insignificant difference
(p = 0.149). Similarly, the point at which freezing morphol-
ogy causes a non-significant difference in resulting fitness
values no longer occurs before that of controller freezing.

However in this scenario, the line between “morphol-
ogy” and “control” becomes very blurry. In practice, a two-
oscillator-actuation system can be viewed as the placement
of cells of these two types (a “morphological” concept) more
so than the fitting of phase offset parameters to a prede-
fined placement of muscles (a “control” concept). Thus one
could easily argue that the two discrete-phase-offset system
from |(Cheney et al.| (2013) should be considered to be en-



tirely morphological optimization, with little to no control to
be optimized (as is argued in that paper), and thus immune
from our embodied cognition argument.

This is representative of a larger “problem” of this CPPN
oscillating actuation setup: that there may not be a clean dis-
tinction between “morphology” and “control” to be made,
and such divides may be arbitrary labeling. In our example,
one could argue that the output node denoting if a cell is ac-
tuated or passive should belong in the “morphology” CPPN,
as it denoted the placement of different types of cells (“mus-
cles” or “tissues”). But another person could argue equally
well that this output belongs in the “control” CPPN, since it
does not change the actual shape or stiffness of the creature,
and only informs where actuations do or do not occur.

The point here is that virtual creatures are situated and
embodied, and thus ideas like embodied cognition or mor-
phological computation (Pfeifer and Gomez, 2009) suggest
that there isn’t a clear cut distinction or dualism between two
separate pieces (the body and the brain), but rather a single
integrated and embodied agent. Therefore we need to con-
sider the tight coupling and interdependencies of the “mor-
phology” and “control” and consider holistic effects when-
ever we attempt to modify a single part of the system.

Future Work

The results shown in this work are specific only to this in-
stance and experimental setup. Thus, many more instances
of this approach (artificially separating morphology from
control and freezing each to measure their independent im-
pact on fitness) would need to be attempted on different ex-
perimental setups to extrapolate from this single instance.
This should ideally include different: morphological encod-
ings (such as the generative block encodings used by |Sims
(1994b)); control architectures (perhaps complexifying to
neural nets rather than simplifying to discrete oscillations
as we did in our follow up tests — or employing closed-loop
control, which may help controllers to adapt to new mor-
phologies); evolutionary algorithms (especially those with
a strong emphasis on diversity); tasks (increasing environ-
mental complexity); and/or scales (as increased scales of
a cellular creature closer approximate a “‘continuous” mor-
phology — which comes with various benefits and costs).
Regarding the distinction between “morphology” and
“control”, this work necessarily chooses a logical splitting
point between the two: representing CPPN outputs that dic-
tate placement of voxels as “morphology” and outputs that
dictate voxel size changes as “control”. But this distinction
is far from black and white. Future work should explore var-
ious groupings of outputs into the categories of “morphol-
ogy” and “control” (or any grouping names), and examine
the effect that such distinctions produce on these results.
The central issue to this paper can be viewed as a prob-
lem stemming from the dynamic coupling of control on
morphology, with different morphologies creating hills and

valleys in the fitness landscape of controllers. As in any
multi-modal landscape, diversity maintenance during search
is crucial. This includes diversity coming from crossover
(omitted here), or from any existing diversity maintenance
method. However, informed by this paper, we would be wise
to notice that since hills and valleys of this landscape may be
caused by the morphology and onto the controller, diversity
maintenance would do best to focus on protection of diver-
sity within morphologies if it were to encourage the morpho-
logical variations (despite their adverse effects on control).

The most important future work would involve poten-
tial solutions to this problem. Initial results regarding fu-
ture work already suggest that our understanding of em-
bodied cognition, and the finding of especially poor muta-
tion success for morphological variations, can inform im-
proved search methods. Specifically, results employing a
multi-timescale model, in which morphological mutations
are given time to re-adapt their controllers to their new situ-
ated forms (and thus conform themselves to their new mor-
phological “communication channels”, thereby “unscram-
bling” the detrimental effects of the morphological muta-
tion) before the value of these morphological variations are
evaluated, shows an improved ability for optimization of vir-
tual creatures compared to traditional methods. This is ex-
actly the type of diversity maintenance that focuses on pro-
tecting innovations to the morphology specifically.

Ideally, further algorithmic improvements will occur from
embracing the fundamental theory of embodied cognition,
but the positive initial results noted here provide conforma-
tion that it’s possible and that the understanding gained from
this current work may contribute to future improvements.

Conclusion

We have examined a specific example of co-evolving mor-
phology and control in virtual creatures. In this exam-
ple, morphology prematurely converges: converging quicker
than control, showing a lack of fitness benefits after as lit-
tle as 25 of the 5000 generations, and with “optimal” final
morphologies emerging significantly sooner than final con-
trollers. We have suggested a theoretical basis, founded in
the concept of embodied cognition, that could explain such a
obstacle and is consistent with the results we present. While
there is plenty of work still to be done to solidify this the-
ory, we conclude by suggesting future work based from our
newly proposed understanding, and note its striking poten-
tial in early initial results. We hope this work will help to
explain the difficulty we face in scaling the complexity of
evolved virtual creatures, and will help inspire (combined
with other efforts) a solution to our current stagnation.
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