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Adaptive Central Pattern Generators for Control of Tensegrity Spines

with Many Degrees of Freedom

Abstract

by

BRIAN TIETZ MIRLETZ

This work seeks to advance understanding of how to construct and control tensegrity

spines: highly compliant robots with many degrees of freedom inspired by biological

spines. Tensegrity describes systems of rigid bodies stabilized by cables, where on a

simulated twelve segment robot up to 72 degrees of freedom require constraints or

control. To coordinate the high number of actuators, central pattern generator (CPG)

based controllers provide goal directed, adaptive trajectories for movement on rough

terrain. As a result, this work details, to the author’s knowledge, the first CPG based

robotic control capable of goal directed locomotion on rough terrain. This control

scheme is implemented on four different tensegrity spine designs.

Prior to this work, tensegrity spines were passive, hand constructed models; the

open source NASA Tensegrity Robotics Toolkit (NTRT) was created to develop robots

inspired by these and other tensegrity models using physics based simulation. This

work also discusses the development and implementation within NTRT of a cable

model with contact dynamics and realistic forces. Finally, the simulations are vali-

dated against the forces measured in the hardware implementation of a three segment

tensegrity spine robot.
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Chapter 1

Introduction

Many desirable applications of robotics, such as search and rescue, planetary ex-

ploration, and environments dangerous to humans are still largely inaccessible to

current robots. Even though robots operate quite effectively in structured, largely

predictable environments such as factories, single floor residences, and missions with

detailed guidance from a human operator, robots have difficulty locomoting through

unstructured terrain or with low bandwidth commands. In order to complete these

more difficult missions, robots need to actively adapt to their surroundings, utilizing

compliant yet rugged bodies to execute those adaptations.

1.1 Motivation

Anyone with sufficient experience in or exposure to dance, sports, or martial arts has

likely encountered the phrase “use your core” or “move from your center.” This is

always a great mystery to beginners, who are still very focused on where to put their

hands and feet. The answer was finally revealed to me about eight years into learning

the swing dance Lindy Hop, when an instructor pointed at the bottom of his rib cage

and said “your legs start here.” Similarly, later in the lesson, the other instructor

pointed at her sternum and said “your arms start here.” In more biomechanical terms,
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using flexibility of the torso is necessary for efficient, powerful, agile, and aesthetically

pleasing movement.

This is an important anecdote to remember as we develop mobile robots for

increasingly complex and dynamic tasks. The recent DARPA Robotics Chal-

lenge finals highlighted the difficulty of movement with a large, rigid torso

[Guizzo and Ackerman, 2015]. Out of twenty three teams attempting to complete

eight tasks in a simulated disaster scenario, most robots either fell or required human

assistance at some point, and only one of the robots was able to recover from a fall

without human assistance. Among quadruped robots, even the impressive cheetah

inspired robot from MIT reaches some concerning pitch angles as it jumps hurdles

[Park et al., 2015]. Additionally, while some robots can approach the efficiency of

their biological counterparts on laboratory floors and treadmills, the most capable

robots are orders of magnitude less efficient [Ruina, 2011].

Biological observations highlight how a flexible, actuated spine could improve

a robot’s performance in multiple ways. In evolutionarily ‘lower’ tetrapods such

as lizards and crocodiles, the lateral bending (in the coronal plane) of the skeleton

produces the advancement of the limbs for locomotion [Gracovetsky, 1985]. Mammals

also have the ability to bend vertically (in the sagittal plane), which enables higher

speed gaits such as galloping [Schilling and Hackert, 2006]. Galloping in particular

utilizes the elasticity of the spine to transfer energy between legs [Alexander, 1988]. In

addition to motion and efficiency, dorsal muscles of a dog’s spine appear to contribute

to stabilization in all three planes of the body, with roles (mobility and stability)

changing somewhat between gaits [Schilling and Carrier, 2010].

Such improvements in agility and efficiency could enable robots to be more suc-

cessful in applications where it is dangerous, difficult, or undesirable for humans to

venture, such as search and rescue and planetary exploration. Constructing a robotic

spine with a series of rigid bodies connected by rotary motors may not capture the
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© 2006 Tom Flemons

Figure 1.1: A tensegrity spine model using a tetrahedral complex as vertebrae. Eight
strings connect each segment, four of which form a tensegrity saddle joint. Image
courtesy of Tom Flemons, originally from [Flemons, 2007].

desired features of energy storage, be too heavy, or too difficult to control. The energy

storage and control problems may be solved by increasing compliance in the entire

system, allowing for the robot’s body to accommodate low level details of movement

[Paul, 2006], but a fully soft system may not have the strength to transmit the de-

sired forces. Tensegrity structures appear to have the appropriate strength to weight

ratio and force transmission capabilities [Skelton et al., 2001]. Tensegrity is a concept

from art and architecture referring to systems stabilized with continuous tension net-

works [Snelson, 1965], where all of the rigid elements are in compression and forces

are transmitted through elements in tension, such as cables. This can be used to

model biomechanical systems on multiple scales [Ingber et al., 2014, Scarr, 2014]. A

properly designed and controlled tensegrity spine may provide robots with many of

the desired properties and behaviors of biological spines.

1.2 Scope of this dissertation

For the purposes of this dissertation, a tensegrity spine is defined as a tensegrity

structure, built primarily along a single axis, which is capable of a stable, compliant

response to forces in any direction. Prior to this work, tensegrity spines were passive

models constructed from wood and elastic strings [Flemons, 2007]. An example is

shown in Figure 1.1, with twelve segments composed of tetrahedral complexes, and
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eight strings between segments.

There are three main possibilities for a tensegrity spine in robotics:

1. A ‘spinal engine’, aiding in the dynamic locomotion of a legged robot

2. A passive ‘force integrator’, replacing the rigid torso of a quadrupedal or bipedal

robot

3. A stand-alone snake or legless lizard like robot

Each of the above shares common issues in mechanism design and control, but

the stand alone robot is the most tractable given the state of prior art. The process

of developing a stand alone spine will create the tools required to evaluate dynamic

tensegrity spine designs and their controllers for the eventual application to legged

robots. Therefore this dissertation will focus on the stand alone robot.

The next question is: what sort of controller should be used with a tensegrity

spine? To enable command of a robot with appropriately high level tasks, it is logical

to incorporate reflexes and online adaptations into the locomotor control. Traditional

modeling control leaves too many possibilities for the number of degrees of freedom

in a tensegrity spine for task level control [Rovira and Mirats Tur, 2009]. Central

pattern generators (CPGs) are a biologically inspired, distributed control system

that can accommodate low bandwidth commands from high level controllers, and

reflexively adapt to feedback [Ijspeert, 2008]. This dissertation will explore using

CPGs for adaptive control of tensegrity spines.

The purpose of this work is to develop adaptive controllers and simulation tools for

tensegrity spines with many degrees of freedom. The controllers need to be capable

of goal directed locomotion over rough terrain, with minimal descending commands.

The simulation tools need to represent the real world sufficiently accurately to inform

the design of future robots and controllers.
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1.3 My Involvement and Contributions

I first encountered the concept of tensegrity in 2011 when I was introduced to Vytas

SunSpiral through my NASA Space Technology Research Fellowship. Our initial goal

was to control a spine or snake-like tensegrity robot with central pattern generators

(CPGs), based on the intuition that these two oscillatory systems would synchronize.

The compliance of its tensegrity structure should give the robot a high degree of loco-

motion competence at the structural level, which would complement the adaptability

of the central pattern generator based controller.

Figure 1.2: Tetraspine moving across: Top: 4 cm hills, Middle: A 7.5 degree ramp,
Bottom 1 cm blocks. This simulation of Tetraspine used 10 cm rods in the tetrahe-
drons.

Since analytical design methods for tensegrity robots were not (and still are not)

well defined, we decided to test the idea in a preliminary version of the NASA Tenseg-

rity Robotics Toolkit (NTRT, Chapter 3). I started with simple sine waves providing
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AA B
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Figure 1.3: Four different tensegrity spines simulated in the NASA Tensegrity
Robotics Toolkit. Locomotor gaits were tuned by machine learning for all structures,
and all demonstrated multiple gaits. A: Tetraspine, with tetrahedral segments and
six cables between each segment. B: Tetrahedal complexes for segments, with eight
cables connecting each segment. C: Octahedral complexes for segments, with four
passive and four active cables between segments. D: A spine with rigidly connected
ribs connected by seven active cables and four passive cables.

a trajectory to distributed impedance controllers for the morphology that became

Tetraspine, and eventually moved to an open loop CPG (Chapter 6). In simulation,

movement was achieved with suspicious alacrity on rough terrain, including hills,

blocks, a ramp, and a wall as shown in Figure 1.2. Due to the success in simulation

we decided to pursue hardware in parallel, with one version of Tetraspine at CWRU

and another version at NASA Ames. Ultimately the hardware was capable of loco-

motion, but not of the terrain handling we observed in simulation due to the spine’s

shorter length.

With results from our first hardware attempt, we were able to make improvements

to NTRT including replacing the default position-based cables from the Bullet physics

engine with a custom Hooke’s law based spring model, resulting in more realistic

though less impressive simulations. Based on Tetraspine’s performance under these
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new conditions, we concluded it would be worth investigating additional morpholo-

gies. Tom Flemons, a tensegrity researcher from British Columbia, has developed

a series of passive tensegrity models inspired by vertebrate anatomy [Flemons, 2007,

Flemons, 2012]. Chapter 5 shows the NTRT implementation of these spines, with the

addition of a novel tensegrity spine I created. With four different morphologies, it

would have been too time consuming to hand tune controllers for each experimental

morphology. Thus, I developed an algorithm for automatically determining a CPG

controller based on the morphology of a tensegrity structure, assuming reasonable

symmetries between the actuators (Section 6.3). We then adapted machine learn-

ing techniques to parameterize these controllers, detailed in Chapter 4.1. I applied

this technique to four morphologies controlling between forty four and eighty eight

actuators with up to seventy two degrees of freedom, a record high for a tensegrity

robot.

In addition to contributing to NTRT’s open source release, I then added contact

dynamics to our custom cable models. To my knowledge, this is currently the only

open source cable model with both realistic forces and contact dynamics. This enabled

reinvestigation of rough terrain locomotion with improved realism. As expected, the

success of the tensegrity spines depended on the ratio between the size of the obstacle

and the size of the spine. In order to enable spines to handle larger obstacles, I

adapted feedback equations for a central pattern generator based controller in a novel

way. I added descending inputs via an artificial neural network for goal direction, a

step towards allowing for simple ‘go that way’ commands from an operator. The full

control scheme is discussed in Chapter 6.

In order to verify the realism of these results, Dr. In-Won Park and I used the

NASA Ames Tetraspine hardware to verify the forces predicted by NTRT. We showed

that NTRT is capable of predicting the maximum tension in the hardware within

7.9%, giving us confidence in our ability to use NTRT to design future robots. Both
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the NASA Ames and CWRU hardware, and the validation work are presented in

Chapter 7. Finally, Chapter 8 includes my ideas for future directions for tensegrity

spines, and other applications of tensegrity research that could utilize this work’s

contributions to control algorithms and simulation software for tensegrity robots.
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Chapter 2

Background and Related Work

2.1 Structures

Having had the pleasure of working with a team that includes mechanical engineers,

computer scientists, and tensegrity designers, I have learned the value of common

technical vocabulary, thus a brief robotics background is included here.

The ‘structure’ is the robot’s body, and how it interacts with the world. Robots

have a wide range of structures, from a ‘shoebox on wheels’, to an arm, to a humanoid,

to a variety of soft structures. Structures are typically simplified as rigid elements

(sometimes referred to as links), and actuators (motors and similar).

Degrees of freedom (DOF) is an important concept to help describe dynamic

structures such as robots. DOF refers to the number of variables required to describe

the robot’s current configuration, such as its position in space or the orientation of its

links. The number of degrees of freedom is closely related to the number of actuators

and constraints needed to control the robot. Position in three dimensions can be

described in three variables (x, y, z). If the object has any shape (it is not a point),

an additional three variables are required to describe its orientation (yaw, pitch,

roll). Thus, an unconstrained rigid body has six degrees of freedom. Constraints can
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reduce the DOF, for example a wheeled vehicle on flat ground is often described in

two dimensions, with three degrees of freedom (x, y, and yaw). A structure fixed

(with bolts or welds, etc.) to a base has zero degrees of freedom. A hinge joint

provides a single rotational degree of freedom, a prismatic joint one linear degree,

and a ball joint three rotational. A robotic arm with a chain of rigid bodies, fixed at

the base, would have degrees of freedom exactly equal to its number of actuators. The

tensegrity systems considered here have up to seventy two degrees of freedom, with

between forty four and eighty eight actuators. Depending on the morphology, the

motion of these degrees of freedom can be actively actuated or passively constrained.

2.1.1 Robotic Spines

While many existing robots are capable of versatile motion on rough terrain with

a rigid torso [Raibert et al., 2008], other robots have gained mobility advantages by

including a few degrees of freedom in the torso. Applications of body joints tend

to fall into two broad categories. First, body joints can be actuated as needed to

enhance behaviors like climbing [Allen et al., 2003, Daltorio et al., 2008]. Passive de-

grees of freedom can also provide additional adaptations. By tuning the stiffness of

their robot’s cable driven spine, Takuma et al. were able to optimize the speed of

their quadruped robot [Takuma et al., 2010]. The caterpillar whegs robot had a spine

composed of rubber spacers which increased passive compliance [Kern, 2012]. Servo

driven cables provided turning and rearing. The next iteration of the design utilized

a tensegrity joint design between segments (a compression spring between rigid el-

ements, with the actuated cables as tensile members), and actuated each segment

individually [Webster et al., 2013]. These designs demonstrate the ability of robots

with body joints to adapt to their environment with minimal computation, but these

types of joints play a limited role.

Alternatively, body joints can drive locomotion. Snake robots use a serial
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chain of motors to generate whole body locomotion directly [Wright et al., 2007,

Wright et al., 2012], or with passive wheels [Mori and Hirose, 2002]. Controllers for

these robots mimic the gaits seen in biological snakes [Transeth et al., 2009]. Ijspeert

et al.’s salamander robot uses a chain of motors in swimming and walking with bio-

logically inspired central pattern generator based control [Ijspeert et al., 2007].

Quadruped robots have also been driven by a spine, increasing the range of motion

of legs for increased speed and agility [Leeser, 1996]. Zhao et al. examined a planar

quadruped performing a bounding gait on flat ground with a rigid, passive, and

actuated spine, and found that the actuated spine increased speed over the other

two spines [Zhao et al., 2013]. Eckert et al. experimented with actuated spines with

multiple segments that move in the sagittal plane with at most one actuator, and

found that a compliant spine can produce stable gaits up to 0.75 m/s on a 0.224

meter long robot [Eckert et al., 2015]. Duperret et al. showed a parallel elastic spine

improves the agility of leaping in the quadruped Canid, when compared to the similar

XRL robot with a rigid body [Duperret et al., 2014]. Spines developed for humanoid

robots have so far focused on motion and stabilization of the trunk using cable driven

[Mizuuchi et al., 2005, Liu et al., 2009, Pfeifer et al., 2013] or hydraulic mechanisms

[Roos et al., 2006], but have not been used while walking.

This work seeks to combine compliant adaptability with active spine motion by

using fully actuated, spine-like tensegrity structures.

2.2 Tensegrity Structures

A tensegrity structure is most generally defined as a set of rigid bodies (compression

elements), stabilized by tension elements (typically cables or strings), in the absence

of external forces [Skelton and De Oliveira, 2009]. A simple simulated tensegrity with

three bars and nine cables in a prism configuration is shown in Figure 2.1. Initial work
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Figure 2.1: The simplest three dimensional tensegrity structure, a three bar prism,
simulated in NTRT. The purple and yellow cylinders represent bars and red lines
represent the cables.
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on tensegrity structures was performed by Kenneth Snelson and Buckminster Fuller in

the late 1940’s, with patents filed in 1959 and 1960 [Fuller, 1962, Snelson, 1965]. Fuller

went on to apply the work to large structures such as geodesic domes [Fuller, 1965],

while Snelson created artistic sculptures [Heartney, 2009]. Contemporary architects

have used tensegrity structures in their designs for applications ranging from bridges

[Franklin et al., 2010] to football stadiums [Levy, 1991]. Current research in adaptive

civil structures is examining tensegrity structures for improved building functionality

or damage control [Sterk, 2006, Korkmaz et al., 2011].

With three rigid bodies, the tensegrity prism in Figure 2.1 has 18 degrees of

freedom. While the cables do constrain the motion, the constraints are not rigid in

the same way as a hinge or prismatic joint. In order to balance the forces and keep the

structure’s shape, the cables are elastic, meaning they will change their length when

a force is applied. While in an absolute sense the rods also have some elasticity, they

are orders of magnitude stiffer than the cables, so rigidity is usually a safe assumption.

The cables’ elasticity is assumed to be similar to that of a linear spring, where the

force is linearly proportional to the distance away from its ‘rest length.’ A cable’s

elasticity is usually represented as F = k∆x, where F is the force, k is the spring’s

stiffness, and ∆x is the distance from the rest length. However, unlike a spring, cables

cannot be pushed (compressed). A slack cable applies no force (beyond its usually

negligible weight), so if ∆x ≤ 0, F = 0. A more rigorous set of equations for computer

simulation of tensegrity structures is discussed in Section 3.2. With their composition

of rigid elements and cables, tensegrity robots are often considered a hybrid of soft

and rigid robots [Lipson, 2014]. Constraining the rigid bodies with cables instead of

rigid links provides desirable properties including:

• Most of a tensegrity structure is empty space, so tensegrity can provide minimal

mass for a structure of a given strength, also known as a high strength to weight

ratio [Skelton et al., 2001]
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• Forces applied to the structure will be passively distributed through-

out all of the tension elements, minimizing points of local weakness

[Skelton and De Oliveira, 2009, SunSpiral et al., 2013]

• If one or more actuators fails, others can still move the structure in useful ways

[Iscen et al., 2014, Paul et al., 2006]

• The tension elements store elastic energy within the structure

[Juan and Tur, 2008]

2.2.1 Tensegrity in Biology

  

Figure 2.2: A tensegrity model of a human leg, which is able to support its own
weight and transmit forces through the knee into the foot. Image courtesy of Tom
Flemons, originally from [Flemons, 2012].
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Many of the desirable properties of tensegrity structures are already present in

biological systems. For exampe, the non-linear mechanical properties of the cell’s

cytoskeleton such as strain hardening (strengthening under sufficient stretch) can be

modeled with tensegrity [Ingber et al., 2014]. These insights have implications for

practical applications in tissue engineering, such as determining how cells will at-

tach to substrates [Wang et al., 2002], and even changing the genetic expression of

the cell (known as cell fate) [Ingber, 2003]. Tensegrity properties can also be ob-

served in macroscopic biological structures, particularly through the connective tis-

sue such as fascia [Myers et al., 2001]. Turvey and Fonseca have hypothesized that

tensegrity based biomechanics would explain phenomena in haptic perception (forces

experienced from touch) such as loss of limb awareness in microgravity and percep-

tion of phantom body parts [Turvey and Fonseca, 2014]. Passive tensegrity models

of the spine [Levin, 2002, Flemons, 2007], knee [Flemons, 2012], and shoulder gir-

dle [Levin, 1997], can capture geometric features of anatomy without the simplifying

assumption of a stable platform within the body or a large reduction in the degrees of

freedom (compared to more traditional models such as [Cholewicki and McGill, 1996]).

A tensegrity model of the human leg is shown in Figure 2.2, for review of biotensegrity

models see [Scarr, 2014]. Stability in this leg model is a result of the intuition that

the tension network should hold the bones apart. The knee is capable of transmit-

ting compressive forces and bending in the normal range of motion while constrained

in others. However, these models are still in need of quantitative validation, par-

ticularly of their dynamic properties. These biologically inspired designs motivated

robotic tensegrity models of the caterpillar [Orki et al., 2012], and manta-ray’s wings

[Moored et al., 2011] or tail [Bliss et al., 2008, Bliss et al., 2013], which are discussed

further in section 2.5.1 and may assist with quantitative validation.
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2.3 Controllers

A controller’s role is to solve the problem: ‘How do I get my robot to do what I want it

to do?’ For a robot, this means rotating or translating some parts of the robot relative

to other parts via actuators, ideally coordinating the actuators in a desired pattern

with higher level algorithms. If the motor commands are pre-specified and never

change this is known as open-loop control. One level above pre-specified commands

considers a desired position, force, or torque for the motor or some point on the robot

(often referred to as an end-effector, such as a hand or foot), and uses feedback on

that variable to determine motor commands. If only the variable is considered (say,

position), then this is known as proportional control. If derivatives and/or integrals

are considered the controller is referred to as proportional-integral-difference or PID

control. Cruise control in a car is a PID controller, where the driver chooses the

speed. The field of control theory deals with methods such as PID control to ensure

a system’s output matches the desired input for a variety of increasingly complex

systems, including methods for optimization like minimizing energy consumption.

Then there is the question of how to determine the desired position, or setpoint, for

proportional control. In some situations this is well known, but in others, additional

variables need to be considered before choosing the setpoint. For example, in traffic,

distance from the other cars becomes important to choosing a speed. If the setpoint

needs to change over time, it is typically referred to as a trajectory. For a tensegrity

structure, trajectories typically coordinate length changes between the cables for the

desired movement of some point on the robot (center of mass or end effector).

This is where things get interesting (to me, at least). First, determining a tra-

jectory for locomotion of tensegrity structure is complex due to the elasticity of the

structure and the coupling between the actuators. Thus, machine learning algorithms

are frequently used for determining a trajectory. The algorithms used in this disserta-

tion are described in Chapter 4.1. Second, repeatedly using the same trajectory can
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be effective in well known situations, such as walking on flat ground. These situations

are often referred to as ‘steady state’. However, in non-steady state conditions, such

as rough terrain, the trajectory may need to be modified to get around obstacles or

change the direction of locomotion to reach a new location. The bulk of Chapter

6 focuses on how to generate and adapt these trajectories, using inspiration from

biological systems.

2.4 Tensegrity Simulation and Analysis

Much of the work on controllable tensegrity structures has focused on form finding:

determine the equilibrium points of a structure given a set of compression and ten-

sile members, their lengths and connectivity [Masic et al., 2005]. The lengths and

connectivity can be represented as vectors of nodes (the points where the members

connect) and their relationships can be specified by a connectivity matrix. Form

finding led to applications in deployable structures - since the volume of tensegrity

structures is mostly empty space, they can be packed and transported more densely

than a traditional compression based structure [Skelton et al., 2001]. This is a par-

ticularly attractive property for planetary missions, since packing can minimize the

launch weight and volume of the structure [SunSpiral et al., 2013]. The form finding

algorithm addresses quasi-static movements between equilibrium points, but does not

account for dynamic motions of the structure.

Some of the earliest theoretical work on dynamic tensegrity control looks to sta-

bilize the vibration of the structure, such as as Djouadi et al.’s optimal control based

algorithm for a tensegrity antenna-beam [Djouadi et al., 1998]. More recent work by

Skelton and Friesen develops means to determine required length changes in actuators

(inverse kinematics) to move tensegrity structures along known, desired trajectories

[Skelton and De Oliveira, 2009, Friesen et al., 2014].

17



CHAPTER 2. BACKGROUND AND RELATED WORK

However, these algorithms depend upon well defined trajectories for the robot,

and environmental contact points. These assumptions, especially about con-

tact, are rarely valid for robots moving through natural unstructured environ-

ments. Physics-based simulation, which can provide more sophisticated envi-

ronmental information, can help quantify the robots’ potential performance in

more complex environments. Many of the prior tensegrity simulations were ded-

icated to modeling only the equations of structures with axial bars only con-

nected to cables [Rovira and Mirats Tur, 2009, Hirai and Imuta, 2012]. Finite el-

ement methods such as those used in [McGarry and Prendergast, 2004], also as-

sume pre-defined contacts. Modern physics engines provide advantages such as

the fast computation of contact dynamics [Boeing and Bräunl, 2007], and new

robot morphologies can be easily implemented and tested in complex environ-

ments [Rieffel et al., 2010, Tietz et al., 2013, Mirletz et al., 2014]. Engines includ-

ing ODE [Paul et al., 2005b, Rieffel et al., 2008, Rieffel et al., 2010], Simmechanics

[Orki et al., 2012], and Bullet via the NASA Tensegrity Robotics Toolkit (NTRT)

[Tietz et al., 2013, Caluwaerts et al., 2014, Friesen et al., 2014] have been used by

tensegrity researchers for simulation. Additionally, the faster run time of these en-

gines means that machine learning algorithms can be used to determine control strate-

gies for structures [Paul et al., 2005b, Iscen et al., 2013b]. For more information on

NTRT, see Chapter 3.

2.5 Prior Work: Tensegrity Robots

Tensegrity robots originated when form finding methods motivated exploring actu-

ated tensegrity structures for cantilever like manipulators [Aldrich et al., 2003], since

the trajectory of a chosen point on the stucture (end effector) could be represented

by a series of equilibrium points. For locomotion, Masic and Skelton developed a
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theoretical controller for a tensegrity tower that mimics the peristaltic motion of a

worm [Masic and Skelton, 2004]. Paul et al. developed the first mobile tensegrity

robot in hardware, a three strut prism capable of crawling [Paul et al., 2005b].

2.5.1 Tensegrity Robot Designs

Designs for tensegrity robots have fallen into two broad categories: those determined

by geometry, and those determined by machine learning. The simplest tensegrity

structure in three dimensions is a three strut prism, which has been investigated

by [Paul et al., 2005b] for basic locomotion and trajectory following in simulation in

[Rovira and Mirats Tur, 2009] (with hardware capable of shape changes discussed in

[Mirats-Tur and Camps, 2011]). Additional struts can be added to the prism, as is

typical for a tensegrity version of a Stuart platform parallel manipulator [Burt, 2013].

These prisms can also be chained together into the helical tensegrity spires, similar

to a number of Snelson scupltures [Scarr, 2014], or connected at the rods to make

a tower for peristaltic motion [Masic and Skelton, 2004]. Ball joints can be used

between compressive nodes to further extend these structures into cylinders, toruses,

or spheres [Nagase and Skelton, 2015].

More recent efforts towards the locomotion of tensegrity robots focus on the icosa-

hedron configuration as a crawling or rolling tensegrity robot, as shown in Figure

2.3. Efforts by Koizumi et al. have produced slow ‘flops’, which deform the struc-

ture to change the face in contact with the ground, in a pneumatic tensegrity robot

[Koizumi et al., 2012]. This configuration has also been used extensively by the NASA

Ames Super Ball Bot project [Agogino et al., 2013], and has subjected the configura-

tion to numerous drop tests [SunSpiral et al., 2013]. Controllers for this morphology

are discussed in both sections 2.5.3 and 2.6.

Other tensegrity robots attempt to mimic the geometry and mechanics of a liv-

ing organism. Orki et al. used an Assur truss to model caterpillar crawling in 2D,
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Figure 2.3: The tensegrity icosahedron with six bars and twenty four strings simulated
in NTRT. The structure touches the ground at three points.

with struts representing legs and the internal compression, and cables representing

muscles [Orki, 2012]. This model was capable of representing the internal pressure

characteristics of a crawling caterpillar. Bliss applied a tensegrity truss to a swimming

application similar to the tail of a manta ray [Bliss, 2011]. His hardware implemen-

tation used two actuated cables, which allowed for a pair of antagonistic actuators,

a requirement of the oscillators he used for control [Bliss et al., 2013]. The robotic

application of the passive, biologically inspired designs discussed in section 2.2.1 is

the subject of Chapter 5.

A tensegrity structure’s morphology can also be determined by evolution-

ary algorithms, which can explore a wider range of possible shapes than intu-

ition alone. The resulting morphologies can either use a high degree of symme-

try, as in Connelly and Black’s catalog that was generated using group theory

[Connelly and Back, 1998], or produce irregular structures by learning the connectiv-

ity matrix directly [Paul et al., 2005a]. Rieffel et al., extended this work by encoding
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the connectivity into a graph [Rieffel et al., 2009].

2.5.2 Actuation Methods

Prior to discussing control algorithms in more detail, it is important to clarify assump-

tions about actuation. There are three possible options for actuating a tensegrity

structure: actuate the tension elements, the compression elements, or a combination

of both. Most researchers avoid actuating both, due to the control complication of

full system actuation. While the struts are sometimes actuated in civil engineering

applications, such as Fest et al.’s active structure [Fest et al., 2004], robotic applica-

tions typically opt for the increased speed available to actuators that change the rest

length of tension elements.

A common method (used by [Paul et al., 2005b, Tietz et al., 2013,

Bliss et al., 2013, Caluwaerts et al., 2014, Bruce et al., 2014], among others) is

to place a motor at one end of the cable, and a tension element (spring) on the

other. The tension element can either be a tensile spring, as in the ReCTeR robot

from [Caluwaerts et al., 2014], or a compression spring as in [Bruce et al., 2014].

Other techniques for robots include placing linear actuators in line with the tension

elements [Kim et al., 2014] or exploiting the oscillations of the structure using

vibrational motors [Khazanov et al., 2013].

2.5.3 Machine Learned Controllers

The simplest possible controller for a tensegrity robot is open loop position control via

a direct encoding of length changes for the actuated cables. This approach was used

by [Paul et al., 2005b, Rovira and Mirats Tur, 2009] and [Iscen et al., 2013a]. The

algorithms by Paul et al. and Iscen et al. both explicitly sought periodic actuation

patterns, while Rovira and Mirats Tur revised the actuation pattern every 50 ms using

a model based controller. As a result Rovira and Mirats Tur demonstrated trajectory
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following control for a line, square, circle; a first for a tensegrity robot. However, for

any other morphology their search algorithm would result in a state space explosion

that could not be solved in real time, so most subsequent research has performed

learning offline.

Offline methods to determine a trajectory for the cables include genetic algo-

rithms [Paul et al., 2005b], where control parameters are iteratively modified either

with small mutations of existing parameters, or crossover with existing parameter

sets to produce (hopefully improved) new controllers. These algorithms can work

effectively when only a subset of cables is actuated [Paul, 2006]. More details on

genetic algorithms can be found in section 4.1.3. Iscen et al. determined controls for

the icosahedron configuration by using a co-learning algorithm [Iscen et al., 2013a].

In this application, co-learning assigns each of the 24 strings (or sometimes a group of

strings) a controller and creates ‘teams’ of controllers to coordinate the entire robot.

Controllers are then evaluated by their average score after participating in multiple

‘teams’ and controller parameters are modified by mutation. When provided with

state information such as contact and goal direction, the teams can be trained to

move the robot towards a goal location by continuously tipping the center of mass of

the robot onto a new face of the icosahedron [Iscen et al., 2014]. While Iscen et al.’s

controller was robust to perturbations of short duration during locomotion (such as a

large impulse throwing it off the shortest path), the controller needed to be retrained

for new terrains. Thus, other researchers have developed closed loop strategies for

tensegrity control.

2.5.4 Morphological Communication and Distributed Con-

trol

An effective way to close the loop in a tensegrity robot is to distribute controllers

and take advantage of the structure’s passive dynamics, minimizing communication
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between disparate elements. For example, Khaznov et al. were able to make an

icosahedron tensegrity robot travel across the floor without rolling by vibrating at

different frequencies through online learning using an off-board motion tracking sys-

tem [Khazanov et al., 2013]. A more active strategy is a spiking neural network, as

applied to tensegrity robots by Rieffel et al. [Rieffel et al., 2010] for the structures

from [Rieffel et al., 2009]. The inputs of the network are the tensions in the cables,

and a spike results in a 50% change in rest length. Rieffel et al.’s controllers relied

on the physical structure to communicate control information, a concept known as

morphological communication. The weights of the network and the positions of the

actuated cables were tuned with a genetic algorithm. Rieffel et al.’s control is closely

related to the idea of morphological computation, which relies on compliance and

nonlinearities in the physical structure to handle typically complex control problems

[Pfeifer and Gómez, 2009, Hauser et al., 2011, Hauser et al., 2012]. The icosahedron

tensegrity configuration has also been used for morphological computation for lo-

comotion, performing a gait change after changing the equilibrium length of a few

springs [Caluwaerts et al., 2013].

In contrast to much of the prior work, the controller’s output could be the ten-

sion of the cables. Impedance control (originally developed for manipulators by

[Hogan, 1985]), allows for the specification of a stiffness along a trajectory, and thus

allows for both the tension and length of cables to be considered. Orki et al. adapted

impedance control to tensegrity structures with a scalar equation for the force in each

cable [Orki et al., 2012]. Orki et al. then use a binary descending control to com-

mand the cables to lengthen or shorten for motion resembling caterpillar crawling.

The advantage of the impedance control approach is that impedance control explicitly

considers the forces of the actuators, which allows for distributed reflexes for terrain

adaptation.
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2.6 Central Pattern Generators

The previously discussed algorithms have not dealt with generating online adaptations

for a complex robot. Animals are capable of generating adaptive behavior through the

many degrees of freedom in their bodies, so control ideas from neuroscience may be

effective for tensegrity robots. To handle the challenge of coordinating many degrees

of freedom, motor control in animals is distributed across neural centers, ranging

from higher centers in the brain, to local control circuits [Grillner et al., 2007]. Well

designed low level controllers for robots will allow for descending commands to be

relatively simple, easing the job of an operator or high level controller.

The quintessential low-level neural circuit for locomotor control has been de-

scribed as a central pattern generator [Grillner, 1985b], which is a group of

neurons capable of generating a rhythmic pattern. Networks of coupled os-

cillators forming a central pattern generator (CPG) are typically found in the

spinal cord in vertebrates [Grillner, 2006] or in thoracic ganglia in invertebrates

[Büschges et al., 2008]. CPGs have been found to control multiple types of loco-

motion, including walking [Brown, 1911], swimming [Grillner et al., 1981], and flying

[Wilson, 1961, Stevenson and Kutsch, 1987], as well as non-locomotor functions such

as digestion [Robertson and Moulins, 1981]. Feedback is used to modulate the CPG

and adapt the rhythm to the environment [Delcomyn, 1980, Grillner, 1985a]. Addi-

tional behaviors can be generated by descending commands from the brain, which

change the CPG’s rhythmic patterns, such as the transition from walking to swim-

ming in the salamander [Cabelguen et al., 2003].

Computational models of central pattern generators need to represent both oscilla-

tors and the connectivity between them. These can range from using detailed models

of individual neurons as a ‘node’ [Hellgren et al., 1992, Daun-Gruhn and Tóth, 2011],

to neuron models based on firing frequency [Ekeberg, 1993], to abstract dynamical

systems that produce oscillations [Matsuoka, 1985]. For review see [Ijspeert, 2008].
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These computational CPGs produce what is known as a stable limit cycle, a path

through phase space that is robust to perturbations. The drawback is system complex-

ity; the detailed neuron models require at least two differential equations, including

several exponential and hyperbolic terms [Daun-Gruhn and Tóth, 2011], and have a

strong dependence on coupling in order to produce sustained oscillations. Simpler

nodes have two linear differential equations [Matsuoka, 1985], but again are highly

dependent upon coupling. These drawbacks can make CPGs for robots hard to design

and tune.

An important simplification for engineering use is to assume a node has

all of the properties it needs to oscillate, representing a population of neurons

[Buchli et al., 2006]. Thus a designer can focus on the network dynamics, and os-

cillator parameters can have clear effects on the output. One example is an ampli-

tude controlled phase coupled oscillator implemented by Crespi and Ijspeert at École

Polytechnique Fédérale de Lausanne in Switzerland (EPFL) on a lamprey-like swim-

ming robot [Crespi and Ijspeert, 2006] (see equations 6.2, 6.3, and 6.4 in section 6.2).

This CPG successfully simplified the parameters to clear amplitudes and phase dif-

ferences. The same oscillator with a different network topology was also used in their

salamander [Ijspeert et al., 2007] and boxfish inspired robots [Crespi et al., 2007].

CPGs in those robots also simulated a descending command from the mesencephalic

locomotor region of the brain to change gaits and turn, similar to salamanders

[Cabelguen et al., 2003].

Properly formulated oscillator equations can even adapt to their environment

online using local feedback, and continue using that pattern if feedback is lost

[Righetti et al., 2009]. This entrainment behavior was used on a swimming tenseg-

rity by Bliss et al. [Bliss et al., 2013]. Feedback can also come from non-rhythmic

sources. Utilizing feedback from a simulated gyroscope, Gay et al. implemented

the phase coupled oscillators of the salamander/lamprey research on a quadruped
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with a rigid torso [Gay et al., 2013]. The feedback parameters were learned offline

though particle swarm optimization, which enabled the simulated robot to traverse a

55 degree downward slope and randomized rough terrain.

One of the problems with existing tensegrity controllers was that controllers

needed to be re-tuned for each terrain type. CPGs could solve this problem by al-

lowing for online adaptations via feedback functions. Additionally, properly designed

low level controllers can mimic reflexes, to complement the mechanical compliance

of the tensegrity structure. Therefore this dissertation will use CPGs with feedback

and impedance controllers with a compliant tensegrity spine for locomotion on ir-

regular terrain. Machine learning methods will help determine parameters for these

controllers.
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Chapter 3

The NASA Tensegrity Robotics

Toolkit

A primary focus of this dissertation was developing the NASA Tensegrity Robotics

Toolkit as a platform for simulating tensegrity robots and developing control algo-

rithms for those robots1. This chapter summarizes the architecture and features of

NTRT that were developed for and used in this work.

Note that capabilities and accuracy of NTRT have improved dramatically through

this work, and many papers that comprise this dissertation were written before rele-

vant features of the toolkit were implemented. For reference, Appendix B summarizes

the features and their implementation dates, as well as the dates that relevant data

was recorded from the simulator. Generally speaking, the control algorithms discussed

in Chapter 6 have been successful throughout the improvements to the simulator, with

appropriate retuning of parameters.

1Information, source code, and documentation for NTRT can be found at
http://irg.arc.nasa.gov/tensegrity/NTRT
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3.1 The Bullet Physics Engine

Rigid body physics simulation engines handle the task of integrating the equations

describing the motion of objects and detecting and resolving their collisions. Depend-

ing upon the constraints of the system, it may be more effective to write simulator

equations directly in terms of the positions of joints, rather than world space (Carte-

sian coordinates). Physics simulators can thus either be implemented in Cartesian

space, or joint space. Given that there are not rigid constraints between rigid bodies

in tensegrity structures, in NTRT they are simulated in Cartesian space. Addition-

ally, implementing terrain interaction is easier when simulating in Cartesian space.

The NTRT simulator uses Bullet Physics version 2.82 as its underlying physics engine

[Coumans, 2012]. The initial choice of Bullet was motivated by:

1. Bullet’s inclusion of soft body dynamics

2. The desire to use all open source code with NTRT

3. The large community of developers that use Bullet, and an active support forum

(1) and (3) were the key reasons for choosing Bullet over the Open Dynamics

Engine (ODE), another common choice within robotics. [Erez et al., 2015] provides

a recent comparison between the rigid body capabilities of these and other engines.

Simulations in NTRT are run at a fixed timestep (between 1000 and 4000 Hz for

the work in this dissertation), at which they can either run in real time with render-

ing (60 Hz), or faster than real time without rendering. For example, a 60 second

simulation without rendering or cable contact dynamics can run in approximately 7

seconds on an Intel CoreTM i7 CPU. The use of numerical integration for CPGs also

slows runtimes, the slowest simulations with contact cables and complex terrains tend

to be about 1/2 of real time (two real seconds to one simulation second).

We construct models in NTRT using a set of builder tools that takes a tagged

set of Cartesian coordinates (nodes) and their connectivity (pairs), and generates
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a tensegrity structure according to physical properties of the rods (radius, density,

friction, restitution) and cables (stiffness, damping, motor properties). Models can

either use objects of uniform mass, such as a series of compounded rods, or place

point masses at nodes to simulate mass concentrations such as motors and increase the

accuracy of the inertia matrices used by the simulator. Examples of model parameters

are given in Appendix A. Units used within the simulator are scaled to keep the

numbers within reasonable ranges for numerical integration, and gravity is scaled

accordingly. Simulations were run at cm scale unless otherwise noted (gravity at 981

cm/sec), data presented in this dissertation has been scaled as necessary.

3.2 NTRT’s Cable Models

My initial work in [Tietz et al., 2013] used Bullet’s default soft-body cables, which

use a position based animation method. Later work determined that these cables

were not realistic. In particular, the cables’ elasticity coefficient did not have a force

term, therefore they could not simulate the forces required to appropriately scale

the world. Additionally, their behavior was wildly different with varying timesteps.

Therefore we implemented our own custom cable models. Changing the cable model

has not reduced the speed of the spine like robots, but it has made crossing rough

terrain realistically difficult. Comparison data is provided in Chapter 6.

3.2.1 Internal Dynamics

NTRT’s custom cable model uses a Hooke’s law based spring and cable model origi-

nally implemented in [Caluwaerts et al., 2014]:

f =


0 : ‖x‖ ≤ `i

(k(‖x‖ − `i) + b ˙‖x‖)x̂ : ‖x‖ > `i

(3.1)
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Figure 3.1: A graphical representation of equations 3.1 and 3.2. The top picture
represents a slack cable. In the bottom the motor has spun clockwise, tightening the
cable and applying equal and opposite forces to the rods.

x = pi,0 − pi,1 (3.2)

where k is the spring stiffness, b is a linear damping term, x is the Euclidean dis-

tance between the attachments of the spring-cable assembly (pi,0 and pi,1), and `i

is the cable length. Actuation is accomplished by changing `i, which is subject to

speed and force constraints comparable to the actuators in hardware designs. Our

simulation with this cable model was validated by our prior Planetary Lander work

to be accurate within 15 mm for a robot with 1 m struts when performing a roll

[Caluwaerts et al., 2014]. Further validation on tensegrity spine models is discussed

in Chapter 7.

Initially our actuator model was ideal (flat torque speed curve) and inertia free,

so that as long as these constraints were not violated, the rest length would change

as desired. Subsequently, I implemented a model of an actuator with inertia and

friction, using the following equation for a brushless DC motor:
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θ̈ = (τa − b ∗ θ̇ + r0 ∗ T )/I (3.3)

where θ is the angle of the rotor, τa is the torque applied by the stator, b is a

damping constant (units of length2 ∗mass/second), r0 is the radius of the rotor and

spool, T is the tension in the cable, and I is the inertia of the rotor. Setting r0 = 1

models a linear actuator, τa is typically constrained by a linear torque-speed curve.

θ is integrated semi-explicitly within the model’s class. The motor model can either

be backdrivable (movable by external forces alone) or non-backdrivable.

3.2.2 Collision Handling

The above cable model was originally implemented without contact dynamics, so it

only interacted with the two rigid bodies to which it was attached. When restoring the

contact dynamics, a major design consideration was whether or not to add mass to the

cables. [Servin et al., 2011] provides an equation for determining the maximum force

a given cable can simulate in a numerically stable fashion, based on the vibrational

modes of the cable and its numerical stability:

fcrit =
LM

4N2h2
(3.4)

In a typical tensegrity simulation: a reasonable maximum force, fcrit is 100 N, the

length of the cable L = 0.3 m, the mass of the cable M = 0.004 kg, and the timestep

h = 0.001 s. N represents the number of mass nodes. Under these conditions, a

stable simulation could only use three mass nodes, which is not sufficient to properly

determine contacts. Thus, I developed a massless contact model using behavior in-

spired by [Servin and Lacoursière, 2007] and [Servin et al., 2011]. Collision detection

is handled by ghost objects within Bullet, placing a small cylinder between the two

endpoints for collision detection. As additional contacts are accumulated, additional
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Figure 3.2: Left: Two rods and a cable encounter a square block, creating a single
point of contact. The cable in this case would be modeled with two cylinders for col-
lision detection. Right: A graphical representation of equation 3.5 for this situation.
The contact force fc is applied to the block, while cable forces −fa and −fb are applied
to the rods.

cylinders are added to a compound object, subject to a maximum resolution. Thus,

Bullet determines contact points, and NTRT’s code resolves the contacts. Forces are

applied to detected contacts by the following equation:

fc = fa + fb (3.5)

where fa and fb are the forces along the length of the cable between the two

nearest end or contact points and fc is applied to the contacted object along the

contact normal. A diagram of the application of this equation is shown in Figure 3.2.

Figure 3.3 shows a NTRT simulation of a similar situation.

After they are placed, contacts are subject to an overall cable length minimization

similar to [Servin et al., 2011], which accounts for sliding. Contacts are removed when

they violate the resolution constraint, their force would be applied ‘outward’ of the

geometry (i.e. the cable would push), or when contact is lost. Additional details of

the algorithm are specific to Bullet, and are discussed in Appendix B.

3.3 Additional Features

NTRT also includes:

1. Machine learning algorithms, discussed in Section 4.1.
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Figure 3.3: An analogous situation to Figure 3.2 simulated in NTRT, except the cable
contacts the rod in two places due to its orientation. The axes indicate the geometric
center of each collision object.

2. Classes to implement Impedance Control and PID Control (Chapter 6).

3. Numerical integration using ODEInt [Ahnert and Mulansky, 2011], for the Cen-

tral Pattern Generator models discussed in Section 6.2.

33



Chapter 4

Machine Learning and Metrics

4.1 Learning Algorithms

This section discusses how I approached parameterizing controllers for tensegrity

robots, and tradeoffs between the algorithms I used. The specific structures and

controllers for my tensegrity work are discussed in the next chapters. However, the

metrics and learning algorithms can generalize to the control of most types of robotic

locomotion.

Determining an effective controller is one of the challenges of using robots with

many degrees of freedom, such as tensegrity robots. While these controllers can

be hand tuned, this typically requires a reduction of the dimension of the problem.

To preserve the advantages of many degrees of freedom, controllers are frequently

designed using machine learning or optimization techniques. Machine learning has

two major advantages:

1. Machine learning algorithms can ‘discover’ designs and parameterizations that

a human might not think of intuitively.

2. The algorithms can be run in the background, freeing the designer to work on

other things, such as writing.
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The disadvantage is that machine tuning a controller for locomotion is difficult,

since the algorithm might not get enough information to differentiate between modes

of failure. For example, the robot falling over may produce an indistinguishably

low score of an objective function, compared to the robot getting stuck on a terrain

feature. Without meaningful score differences between scenarios, many algorithms

have trouble determining what changes to make to parameters. On the other hand,

highly random algorithms frequently need a large number of function evaluations in

order to find an effective controller (known as the tradeoff between exploration and

exploitation).

This work uses algorithms that explore the state space more randomly, with the

objective function generally being distance traveled. Using highly exploratory algo-

rithms enables handling high dimensional spaces, such as fully actuated structures.

Thus, future efforts will understand what tradeoffs are being made when grouping or

reducing the number of actuators.

For this section, a ‘trial’ refers to a single instance of the simulation, running from

zero to N simulation seconds. A ‘generation’ refers to a group of trials with a fixed

set of controllers. Finally, a ‘run’ refers to a complete evolution, which has ideally

converged on a maximum.

4.1.1 Monte Carlo

If simulation times are sufficiently short, it is possible to randomly sample the pa-

rameter space and locate the neighborhood of good solutions. This is called Monte

Carlo sampling. Since the parameter estimation is random, trials can be run entirely

in parallel, there is no need to synchronize for a mutation step. Monte Carlo provides

a significant advantage to cluster computing, since the speed of the algorithm scales

linearly with the number of processors. This algorithm allows for a rapid (though not

exhaustive or optimal) search of a complex parameter space, allowing us to quickly
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identify parameters for effective locomotion. Domain knowledge is sometimes neces-

sary to bound solutions, such as setting the maximum frequency and amplitude for

cable trajectories. A typical result of a Monte Carlo run is shown in Figure 4.1. Most

of the solutions are terrible, moving less than 14 cm in 30 sec. However, around one

in a thousand is good enough for effective locomotion. These can be tuned further

using other algorithms.

Figure 4.1: The results of a typical Monte Carlo learning run. As expected, there
is no correlation between trial number and score. Scores above a certain threshold
become the seed of the subsequent learning run.

4.1.2 Gaussian Sampling

In order to optimize the controllers determined by Monte Carlo, I typically sampled

nearby control parameters using a Gaussian distribution. Thus, the prior controllers

become the ‘seed’ of the Gaussian sampling step. If the new controller is better, sam-

pling continues around the new controller’s parameters. A single random controller

is unlikely to be good in this application, so seeding with prior controllers is strongly
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recommended. Parameters to be mutated were chosen by chance (typically 50%) and

mutated simultaneously, with no upper limit on the number of parameters to mu-

tate. The operator needs to determine the deviation of the Gaussian used to sample.

Performing Gaussian sampling after Monte Carlo is sometimes called two-tier Monte

Carlo.

Figure 4.2: Sampling around the best controllers from Figure 4.1. The vertical jumps
indicate a new best controller.

Gaussian sampling can also be thought of as evolution with a population of two,

the better of which is mutated. The results for eight controllers (optimized in parallel)

are shown in Figure 4.2. Note how the improvements occur more frequently than

‘good’ parameters in Monte Carlo, especially at the beginning.

4.1.3 Evolution

A large category of algorithms fit into the category of ‘evolutionary algorithms’. The

general idea is that a population of controllers (generally, agents or organisms) is

iteratively evaluated by a fitness function. Depending on the task, in this work
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population sizes for evolutionary algorithms varied from 2 to 100. The best controllers

are then allowed to reproduce (influence the next generation) by any of a number of

methods, detailed below, and the worst controllers are discarded. There are three

methods by which controllers can be chosen for the next generation.

Elitism - directly copying the best controllers over to the next generation. De-

pending on the objective function these controllers may or may not need to be re-

evaluated in the new generation.

Mutation - changing some (or all) parameters of the best controllers by a small

variation. This is similar to Gaussian sampling, but any number of controllers can be

mutated in a generation since the population is larger.

Crossover - combining groups of parameters (an analogy is often made to genes

in the literature) in the controller. There are multiple methods for crossover, the

most common of which is picking a location in the parameter vector and using one

parent’s vector before that location and the second’s after (one-point crossover). An

alternative is selecting random parameters from each parent (uniform crossover).

Population members can either be a seed from a prior method like Monte Carlo

or hand tuning, randomly determined, or some combination. Typically an artificial

neural network (discussed in detail in Chapter 6) can be evolved starting with a

random seed, whereas a CPG needs to be evolved from an existing good seed.

Other algorithms group parameters for evolution. For example, Iscen et al.’s

coevolution algorithm tested controllers for specific cables, and used an historical

average to choose the best controller for each individual cable [Iscen et al., 2013a].

This resulted in faster evolution and a better final controller than a centralized scheme.

I adapted this by grouping parameters by function, for example impedance controller,

feedback, and CPG. Thus the best historical average within each functional group

can be used.

Specific patterns for an evolution run are included in Appendix A.
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4.1.4 Implementation within NTRT

Two iterations of machine learning algorithms were implemented within NTRT. The

first generation utilized C++ learning modules. As implemented, multi process learn-

ing within C++ was possible by spawning multiple processes locally on the same ma-

chine by hand, but crossover for evolution algorithms could not be multi-threaded,

since each thread was fully independent. In March and April 2015, Perry Bhandal

and I transferred the learning algorithms to Python, and provided parameters to the

C++ controllers through a JSON (JavaScript Object Notation) interface. This eased

the implementation of automated multi-process learning, which was crucial to speed

up the algorithms for learning across multiple terrains with the contact cables. In

this way, the trials for an entire population could be parallel processed, and then

synchronized for the mutation step.

4.2 Metrics and Objective Functions

4.2.1 Objective Functions

For most of this work, the most practical objective function was distance traveled for

a set length of trial. This can either be distance in any direction, or distance towards a

specific location (goal). In both cases this is measured ‘as the crow flies’ comparing the

starting and ending positions of the robot, rewarding controllers that travel relatively

straight paths. There are several key caveats to this. First, the length of the trial

matters. If a goal directed trial is too short for the robot to arrive at the goal, the

learning algorithm has no knowledge of whether the robot will in fact get to the goal,

as the robot could leave its current path after the trial. Second, there is the question

of historical averaging: Should controllers keep scores from previous generations?

Historical averaging is particularly valuable for non-deterministic evaluations, so the
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best controllers continue to incorporate information about possible worlds. Averaged

evaluations can consist of multiple goal positions, starting robot orientations, and

terrains. However, it is difficult to optimize for all of these criteria in one run, so we

organized the sub-problems as follows:

1. Use Monte Carlo to determine a controller that coordinates effective locomotion

in a structure (any direction).

2. Improve the performance of that controller on flat ground using Gaussian sam-

pling (any direction).

3. Add a feedback controller, tune the performance on rough terrain using evolu-

tion (any direction).

4. Determine a controller that can reach a single goal on rough terrain using evo-

lution.

5. Evolve from a single goal to multiple goals on rough terrain.

Terrain Types

  

Figure 4.3: The two primary rough terrain types used throughout this work. Left,
sinusoidal hills. Right, randomly placed blocks.

Terrains considered in this work included flat ground, hills, and a field of blocks.

Hilly terrain was composed of sinusoidal hills with an amplitude of 2 cm, and was
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represented as a single triangular mesh within Bullet. The block field consisted of

500 randomly placed blocks on otherwise flat ground. The blocks were 5 cm wide,

0.5 cm tall and were fixed to the ground within a 200 cm by 200 cm area around the

origin. These terrains are shown in Figure 4.3.

These terrains were chosen since they represent slightly different problems. While

the hills are a larger perturbation, they are perfectly smooth and were implemented

to be deterministic. The sharp corners on the blocks are more likely to catch cables.

The randomness of the blocks provides some assurance that the controllers have not

been overfit. The size of the terrain features was chosen as the smallest features that

impeded the existing spines and controllers, more details are given in Chapter 6.

In the original work, Tetraspine was also capable of traversing a wall and going

up a ramp via manual steering and adjustment of cable tensions. These obstacles are

not feasible to learn without autonomous goal direction, as a controller without a goal

input would always go in an easier direction. Given that a goal directed controller is

included in this work, future work could re-implement these behaviors.

4.2.2 Cost of Transport

While distance traveled is a good metric for evaluating a new structure, it is not the

only metric that should be considered. Therefore we also computed the efficiency

metric cost of transport (COT) and included it in the results. It was not included

in the optimizations. Cost of transport is defined using Equation 4.1, as discussed in

[Tucker, 1970]:

COT =
W

mgd
(4.1)

Where W is the work put in to the system, m is the mass, g is gravity, and d is

the distance traveled. Cost of transport is unitless, and provides a means to compare

different mobile systems. Given equation 4.1, a lower COT indicates a more efficient
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system.

This metric highlights a tradeoff between the overall capability of the system and

its performance on flat ground. Bicycles are great on roads, but become much more

difficult to use in the woods without a path, where walking or running is much more

effective.

The most efficient legged robots are typically designed by studying the pas-

sive dynamics of walking, taking advantage of the resonance modes of these sys-

tems on flat ground, and then seek to minimize control input by using reflexes

[Bhounsule et al., 2014]. Their approach achieved the record cost of transport in

a legged robot of 0.19, comparable to human walking (0.2). Of note this record

cost of transport was achieved on a linoleum lab floor, a controller that was robust

enough to walk on Cornell stadium’s track for 65 km had a higher cost of transport

(0.28). For efficient running, Seok et al. focus on an electromechanical optimization

for their cheetah like robot, and utilize custom, regenerative motors and low inertia

legs [Seok et al., 2013]. A recent implementation can run at 4.5 m/s with a COT of

0.5 [Park et al., 2015].

Within legged robots, the most capable robots, such as those from Boston Dynam-

ics, have an estimated total cost of transport of up to 15 [Ruina, 2011]. Honda’s Asimo

is estimated to have a total cost of transport of 3.2 [Collins et al., 2005]. The mechan-

ical cost of transport in simulation for our current tensegrity systems range from 1.55

to 3.2, depending on the structure and controller [Iscen, 2014, Mirletz et al., 2014].

This is within the expected range for robots that have not yet been optimized for

efficiency, and these gaits have been able to perform agile goal directed locomotion

through rough terrain [Iscen et al., 2014], whereas the more efficient robots have only

shown basic turning on relatively flat ground.

To compute the energy input to the tensegrity spines with the basic actuators, we

used the sum of the work to shorten the strings: Tension times distance shortened at
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each timestep. For energy calculations on the basic (ideal) motor model, we assumed

that relaxation was passive, similar to biological muscles or a backdriven motor. The

cost of transport for a system similar to our hardware implementation may be higher

if the motors are actively unspooled during relaxation. With the kinematic (brushless

DC) motors, we integrate power (applied torque times speed) over time.
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Chapter 5

Tensegrity Spine Structures

My exploration of tensegrity spines has been an iterative process. The four spines

presented here represent different design goals, which is the focus of this chapter.

Quantitative results for all spines are discussed in the next chapter, alongside the

relevant controllers.

Given their software implementation, all spines could be lengthened or shortened

with a single parameter (see 6.3 for details on how the controller adapts.) Spines

were typically tested with twelve segments in computationally simple scenarios (no

contact dynamics in the cables), and six for more complex scenarios. The length of a

given spine in segments will be given in each iteration of the results.

5.1 Tetraspine

For our initial morphology, our primary goal was to simplify the morphology to de-

termine the feasibility of a tensegrity spine as a robotic structure. Inspired by the

structures in [Flemons, 2007], Tetraspine (Figure 5.1) uses tetrahedrons as ‘verte-

brae’, with six cables connecting each segment, the minimum for a tensegrity spine as

defined for this dissertation. The arrangement of the cables allows for active control

of pitch, yaw, and axial translation, and each cable has a clear line of action within
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Figure 5.1: Tetraspine, a tensegrity spine robot with tetrahedrons as segments, and
six cables connecting each segment. From [Tietz et al., 2013, Mirletz et al., 2014]

these degrees of freedom. Three cables extend from each outer vertex to the segment

behind it, and three cables extend from the tip of each segment to the outer vertexes

of the segment in front of it. Convex tetrahedrons for segments also allow a lot of room

for mounting motors, sensors, and control boards for a hardware implementation, as

in Chapter 7. This morphology successfully demonstrated the first locomotion of a

tensegrity spine robot both in simulation and hardware [Tietz et al., 2013].
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Figure 5.2: The tetrahedral complex spine, with eight cables between segments, sim-
ulated in NTRT performing a sidewinding motion.

5.2 Tom Flemons’ Designs

Once NTRT was sufficiently developed with tools to assist the creation of structures

and design of controllers, I implemented Tom Flemons’ spine design as shown in

Figure 5.2. This structure uses a tetrahedral complex as its vertebrae, with four cables

composing a tensegrity saddle joint [Flemons, 2007], and four cables running along the

outside. All eight cables are actuated in this case. Changing the morphology of the

structure from a convex tetrahedron to a tetrahedral complex and the addition of two

cables adds two important elements to the structure, when compared to Tetraspine.

First, the cable routing allows control of all six degrees of freedom. Second, the

center of mass of the structure is now over its line of support, which decreases the

tension required to hold the structure’s shape by a factor of 500 when compared to

Tetraspine: 10 N on Tetraspine vs 0.2 N on the tetrahedral complex. Note that

the force required to hold a static shape with Tetraspine increased to 25 N once we

accounted for motor placement. We have not yet done detailed simulations with

motor placement on the tetrahedral complex, though mechanisms are being designed

for a hardware implementation [Sabelhaus et al., 2015]. This design has stood out

with the fastest locomotor speeds and the highest efficiency.
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© 2014 Tom Flemons

Figure 5.3: Octahedral complexes form the vertebrae, with four passive (white) and
four active (blue) connections between segments. The simulated spine has twice as
many actuated cables. Every saddle joint has a pair of actuators on either side. Image
courtesy of Tom Flemons, originally from [Mirletz et al., 2014]

One possible disadvantage of the tetrahedral complex shape is the high number

of actuators per segment. In order to reduce the number of actuators and maintain

stability we decided to place passive cables at each of the tetrahedral saddle joints.

However, in the previous morphology this would severely limit the range of motion,

so Mr. Flemons suggested we try cross-linking through the saddle joints. Four cables

compose the saddle joint, while another four cross link on either side of the saddle

to provide antagonistic actuation. We also transitioned to an octehedral complex as

the vertebrae shape, to avoid interference between the cables and vertebrae (this was

initially implemented prior to the cables’ contact dynamics). See Figure 5.3 for a

passive model with half the number of cross linked cables (blue cables). Note how the

angle of the spine changes between each vertebrae. This structure is bistable, each of

these can be ‘switched’ to the other position and stay there as well. When resting on

the ground, only one rod from each vertebrae touches.

This structure was my first attempt with unactuated cables, as opposed to the

Tetraspine cables with their velocity setpoint of zero. This morphology also success-

fully demonstrated locomotion in simulation.
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5.3 Novel Designs

In order to do additional analysis on how the shape of the structure affects its motion,

I designed one novel structure. We hypothesized that snake like slithering motions

would be easier on a closely packed vertebrae structure with longer attachments, like

the ribs on a snake skeleton. I created the shape by attaching 3/4 of an ellipse in

place of one of the rods of the tetrahedral complex.

  

Figure 5.4: Ribs are rigidly attached to three rods in a configuration that mimics
three rods of the tetrahedral complex. cables that only touch ribs are passive, the
other seven are active. Originally from [Mirletz et al., 2014]

Actuator locations were chosen by examining anatomy textbooks and mimicking

muscles [Gray, 1918, Myers et al., 2001]. Five cables surrounding the spine mimic

the Interspinales and Intertransversarii muscles. Our initial tests with these muscles

proved unstable, so we added four passive cables between each segment’s ribs, mim-

icking fascia in the thoraxic region. The passive cables were half of the stiffness of

active cables (500 N/m), and were not pretensed. This was still insufficient, so we

added two more muscles connecting the transverse processes to the inferior ribs. Upon

reexamination of the anatomy books, we realized these may play a role similar to the

Levatores costarum. This spine displayed two forms of locomotion, one of which was

slithering.
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Chapter 6

Control Methods and Simulation

Results

This chapter details the evolution of the tensegrity spine controller over the course of

this project, starting with the simplest controller and ending with a controller capable

of goal directed locomotion over rough terrain. Occasionally this includes the literal

evolution of the controllers via machine learning, as good controllers from a previous

iteration make good seeds as new components are added. Rather than presenting

all of the controllers and then all of the results in a separate chapter, this chapter

presents simulated, full-system results as closely as possible to the relevant controller.
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Figure 6.1: The control system for a single cable. A block diagram for impedance
control is shown in the upper right hand corner, graphically representing Equation
6.1. CPG connectivity is shown in Figure 6.6.

6.1 Impedance Control

As discussed in Section 3.2, in NTRT we assume the robot’s cables are actuated.

Given typical sensors and actuators, this means that there are two variables to control:

the cable’s length and its tension. In order to incorporate both, we use a distributed
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form of impedance control, adapted for tensegrity by [Orki et al., 2012]. Impedance

control provides tunable stiffness through changing its gains. The equation is as

follows:

T = T0 +K(L− L0) +B(V − V0) (6.1)

Where T is the tension setpoint, T0 is a tension offset, K is a position gain

on the difference between the cable’s current actual length L (x in (Equation 3.1))

and desired length L0. B serves a similar function for V and V0 (velocity, equiva-

lent to ẋ), where V0 is the trajectory: a control input from the CPGs or sine waves

[Tietz et al., 2013]. In Orki et al.’s implementation V0 is always zero [Orki et al., 2012].

All variables except V and V0 should be greater than or equal to zero for stability,

given the convention that lengthening is positive. L0 is typically the initial length of

the cable, assuming the robot starts in a desirable shape. If the result is T < 0, the

controller will set T = 0. The tension setpoint is then sent to a PD controller for

low level motor control. Typical PD control values were P = 20000, D = 5. A block

diagram is shown in Figure 6.1. Typical impedance controller gains are given in the

caption of Figure 6.2.

The trajectory is controlling the velocity for three reasons. First, since I am

targeting dynamic locomotion, moving the cables is desirable, hence not setting V0 = 0

as in [Orki et al., 2012]. Second, keeping L0 constant allows for information about

the shape to be maintained in the controller, oscillations are then maintained around

the equilibrium of the length and tension offsets. Finally, avoiding a slack cable is

desirable for maintaining coherent sensor information. The tension offset can be used

to increase the equilibrium point of oscillations for this purpose, and for minor shape

changes. In practice, effective amplitudes for V0 are far larger than the motors are

capable of, thus the oscillations increase and decrease the tension in the cable.

Figure 6.2, shows how one of the top outside cables behaves while Tetraspine
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Figure 6.2: A twelve segment Tetraspine (38 cm to a rod) crawling over flat ground.
The top cable is shown responding to an impedance controller where T0 = 35 N,
K = 300 N/m, and B = 50 N/m − s. The CPG’s output specifies the impedance
controller’s trajectory (V0). The difference between actual length (L) and rest length
(L0) is the stretch in the cable, which correlates with the tension. The cables take
about four seconds to reach the desired length as specified by the impedance con-
troller’s parameters. The tension offset is high enough to prevent the cable from
going slack, and the high amplitude of the velocity causes a 6.5 cm oscillation in the
length of the cable.
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Figure 6.3: Tetraspine (38 cm to a rod) crawling over 5 cm bumps. The impedance
controller adapts the length of the cable (top) to the terrain (visible in the height
of the segment, bottom), while still tracking the signal provided by the CPG and
producing locomotion. On the hills, this robot travels at 0.79 cm/s or 0.2 body
lengths per minute.

crawls across flat ground. The hand tuned, sine wave input simulates the output of

a CPG, and is sufficient for forward locomotion on flat ground and 5 cm hills (15%

of the segment height). The ‘step height’ (amount each segment is raised during

locomotion) is about 1 cm, so whole body adaptations are required for this obstacle.

The impedance controller is capable of making the required adjustments for the 5

cm hills, as shown in Figure 6.3. As the robot crawls over the hills, the rest lengths

around which the oscillations occur conforms to the terrain. For more complex terrain

types we have to add adaptations to the trajectory as well.

In my initial work on Tetraspine, I used the tension setpoint in order to change

the shape of the robot for turning and rearing, shown in Figure 6.4. If the impedance

controller’s tension offset T0 is higher on the left inside and outside cables than on

the right side, we get a curve similar to the top picture in Figure 6.4. Tetraspine will

then start turning toward the left. That approach can be reversed for right turns.
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Similarly, we can increase the tension in the top outside cables to produce rearing

behaviour, which is useful to prepare to ascend an obstacle.

Figure 6.4: Overall body shape is controlled controlled by adjusting cable tensions.
Top: Tetraspine executing a left turn. Bottom: The simulated robot rearing before
climbing a wall. From [Tietz et al., 2013].

6.2 Central Pattern Generators

As discussed in the preceding section, I used central pattern generators to generate

adaptive trajectories for the impedance controller. Due to their relative simplicity

and physical meaning of their parameters, the specific CPG equations we chose are

amplitude controlled phase coupled oscillators, also used in Ijspeert et al.’s salamander
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robot [Ijspeert et al., 2007]:

θ̇i = 2πvi +
∑
j

rjwijsin(θj − θi − φij) (6.2)

r̈i = ai(
ai
4

(Ri − ri)− ṙi) (6.3)

Vi = ri(cos(θi)) (6.4)

The phase of the CPG is determined by equation 6.2, where vi is a frequency term,

and coupling is determined by rj, the amplitude of the coupled node, a coupling weight

wij, and the phase difference between nodes, and a phase offset φij. The amplitude

is determined by equation 6.3, and is constant after it reaches the setpoint Ri. ai is

a positive constant. The final output is on the velocity of the impedance controller,

as determined by equation 6.4. vi and Ri can be specified as one parameter each, or

as the combination of an offset, a gain on a descending command, and the command

itself [Ijspeert et al., 2007]. Equations were integrated using ODEInt, part of the

Boost C++ libraries [Ahnert and Mulansky, 2011].

6.2.1 Hand Tuned Results

Prior to setting up the machine learning architecure, I hand tuned controllers for

the tensegrity spines. These fell into two categories: (1) tuning the parameters of

the CPG directly, or (2) tuning a set of sine waves (amplitude, frequency, phase

differences) as an approximation. The data in Figures 6.2, 6.3, and 6.5 are from a set

of sine waves. This gait, with the adaptability provided by the impedance controllers,

is sufficient for Tetraspine to slowly traverse hills.

The CPG parameters in [Tietz et al., 2013] were hand tuned. The connectivity of

the CPG used each outside cable as a node, and connected the cables to equivalent

nodes on other segments. Each node was connected to five other nodes. Inside cables
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Figure 6.5: A sine wave controller for Tetraspine making slow progress over hills (0.2
body lengths per minute). This is the same controller as Figures 6.2 and 6.3.
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had V0 set to zero. Machine learning determined a sidewinding gait for Tetraspine

that was 43% faster than the hand tuned gait with the same CPG morphology, even

allowing the unrealistic cables. Thus all subsequent gaits have been determined by

machine learning.

6.3 Automated CPG Morphologies

While Tetraspine’s morphology had obvious directions for actuation and control, the

other morphologies I investigated did not. Since I had already seen that machine

learned gaits could be better than hand tuned, I decided to use machine learning to

determine the coupling of the CPGs, in addition to the parameters. The coupling of

the CPGs (wij and φij from equation 6.2) determine how the oscillations coverage to

a steady state oscillation, specifying the gait of the robot. The maximum possible

coupling would be “all to all,” where every node is connected to every other node

in the CPG. However, letting machine learning decide the appropriate coupling out

of “all to all” quickly becomes intractable, leading to n(n − 1) couplings, where n

is the total number of nodes. If there are k segments with m nodes each, then this

becomes km(km− 1). Thus, I developed rules based on the morphology of the spine

to reduce the number of possible couplings, and reduce the corresponding machine

learning time.

As a starting set of coupling rules, I decided that each node (actuator) would

be coupled to nodes (actuators) with shared rigid bodies. This is similar to nearest

neighbor coupling, which is the basis for models of swimming and walking networks

in the salamander [Bicanski et al., 2013]. Since the rigid bodies are in a chain, this

assumption means there are at most three rigid bodies worth of nodes in any repeated

coupling set. For example, in Tetraspine with the outside cables forming the CPG,

this leads to twenty four connections per segment (m(3m − 1)), as opposed to the
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twelve in the hand tuned version. Couplings are bi-directional, and can have different

sets of parameters for each direction. In the case of Tetraspine, this would lead to

forty eight parameters for the edges. Therefore, in addition, I specified that symmetric

couplings would be the same, consistent with the prior work in [Tietz et al., 2013].

This additional assumption reduces the number of possible couplings to m(3m+1)/2.

An example with a two node, three segment system is shown in Figure 6.6.
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E 7 E 7
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E 5

E 2  E 2 

E 1 

Figure 6.6: The coupling rules used on the CPGs, as applied to a hypothetical two
dimensional tensegrity spine with four rigid bars, and six cables connecting them
(two per segment). This gives the CPG two nodes per segment, with three segments.
When scaled up, this system leads to m(3m + 1)/2 possible couplings, where m is
the number of nodes. In this case, there are a total of ten edges per node, but the
edges are sorted by geometry into seven possible edges. These rules reduce the rate of
scaling to half of that for specifying each coupling separately. [Mirletz et al., 2014].

Given the CPGs morphologies, I then used the Monte Carlo method for parameter

estimation. Trials were scored by the distance the center of mass of the tensegrity

spine moved in 30 or 60 seconds of simulation time, depending on computational

intensity. After 10,000 - 20,000 trials we took the best sets of parameters and ran

Gaussian sampling on them with a standard deviation of 0.005. If a better set of

parameters was found, sampling continued around the new best set. The resulting

best parameters are discussed below. On a desktop computer purchased in 2011 (Intel

CoreTMi7 at 3.4 GHz), this search procedure takes 24 - 48 hours.
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0.00 0.42 1.00 1.42 2.08 2.42

Figure 6.7: Tetraspine executing a form of sidewinding, determined by machine learn-
ing. The vertex of the rear segment functions as a tail pushing the robot to the right,
unlike my hand tuned initial work where we treated it as the head [Tietz et al., 2013].
Only the outside cables were included in the CPG, the velocity setpoint for the inside
cables was zero. The time in seconds at each step is shown in the upper left corner.
From [Mirletz et al., 2014].

6.3.1 Results on Various Morphologies

For each morphology from Chapter 5 we recorded the best machine learned gait, its

speed, and its cost of transport (COT). Note that these gaits have been exclusively

optimized for speed, COT is currently only for comparison.

Our first attempt with this parameter estimation paradigm used the same CPG

as our initial Tetraspine work, with four connections per segment. We also main-

tained the original coupling weights (0.5). This CPG morphology resulted in nine

total parameters for estimation, as we left amplitude and frequency offsets and gains

separate in this case since the equations were set up for descending commands, as in

[Ijspeert et al., 2007]. However, commands were held constant throughout the trials.

The resulting sidewinding gait1 travels at 9.46 centimeters per second with a

COT of 3.2. Scaling our prior results, this is 43% faster than the hand tuned gait of

[Tietz et al., 2013] (6.6 cm/s).

Six key frames of video for this gait are shown in Figure 6.7. A second gait,

similar to the hand tuned gait in [Tietz et al., 2013] but traveling in the opposite

direction, traveled at 7.78 cm/s with a COT of 2.4. Both of these gaits contradicted

1Video of the tetraspine sidewinding is available at https://www.youtube.com/watch?v=

I-7jCGT-WKk
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Figure 6.8: The tetrahedral complex based spine also learned a gait similar to
sidewinding. Large twists of the body are possible since all eight cables are actu-
ated, moving the robot to the right and down. Other gaits (not shown) included
rolling. From [Mirletz et al., 2014].

our intuition for hand tuning the robot, where we assumed based on the shape, that

the end segment with the extra vertex would function as a head. Machine learning

indicates it is more effective as a tail.

As simulated, one rod of the tetrahedral complex measured 17.3 cm. The best

gait for the ‘tetrahedral complex’ spine, shown in Figure 6.8, was another form of

sidewinding2, and is the first to use the automated morphology algorithm (all follow-

ing controllers use it). This gait moved at 6.13 centimeters per second, with a COT of

2.13, the lowest cost of transport of all four morphologies. A lower COT for sidewind-

ing relative to other gaits matches results from biological snakes [Secor et al., 1992].

For the Octahedral Complex, the gait in Figure 6.9 utilizes one rod of each segment

as a leg in a walking like gait with a speed of 4.6 centimeters per second, and a cost

of transport of 3.4. A similar gait3 which was slightly slower (3.2 cm/sec) had a cost

of transport of 2.6. These differences illustrate the common tradeoff between speed

and efficiency in locomotor systems.

Parameter estimation for the ribbed spine returned two gaits of interest. One,

pictured in Figure 6.10 is a crawling motion similar to slithering. The fastest gait4

2Video of the tetrahedral complex sidewinding is available at https://www.youtube.com/watch?
v=Wyt7B7-OebI

3Video of the lowest COT gait for the octahedral complex based spine is available at https:

//www.youtube.com/watch?v=Wk9x_40xWjM
4Video of the gait pictured in Figure 6.10 is available at https://www.youtube.com/watch?v=
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Figure 6.9: When on a flat surface, the octahedral complexes have one contact per
vertebrae. The learned gait uses these contacting rods as legs and alternates sides
in a walking pattern. While the robot mostly moves to the left, the motion is not
purely two dimensional, the segments alternate slightly away from the central axis.
In this plot phase of the CPG can be seen in the color of the cables, red indicates
high tension cables, blue indicates low tension. This is also true in the previous plots,
but the cables were typically too small to see. The time in seconds at each step is
shown in the lower right corner From [Mirletz et al., 2014].

traveled at 5.37 centimeters per second, with a cost of transport of 6.0. While this

gait is neither the fastest, nor most efficient, it has the advantage that the ‘head’

segment stays relatively stable during locomotion. This stability provides a potential

advantage for sensors such as cameras or laser range finders, used in higher level

navigation behaviors.

j0UXr59C9mY. The fastest gait can be viewed at https://www.youtube.com/watch?v=PL22dswN2RA
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0.0 0.23 0.35

0.45 0.62 0.88

Figure 6.10: The second fastest gait of the ribbed tensegrity is shown. This gait
exploits turning the body left and right to move forward (down on the page), similar
to lateral undulation.
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6.4 Feedback for CPGs

Once I developed the contact dynamic modules for the cables, I was able to test

the spines on rough terrain. In order to make things realistically difficult, I also

added the brushless DC motor model at this point. As expected, the spines quickly

became stuck in some terrains, particularly the block field. While the impedance

controllers can generate some adaptations (as in Figure 6.3), the resulting gaits are

extremely slow. Thus, I looked for ways to incorporate environmental feedback into

the CPG as well, so the trajectory can be adapted to rough terrain. Additionally,

properly specified feedback allows the oscillations of the CPG to synchronize with the

structure and the environment.

The specific CPG equations we use are a combination of the adaptive phase-

coupled oscillator equations of Righetti et al. [Righetti et al., 2006] (feedback on the

frequency) and Gay et al. [Gay et al., 2013] (feedback on the amplitude and phase):

ṙi = γ(Ri + krFr − r2i )ri (6.5)

θ̇i = ωi + kθFθ +
∑
j

rjwijsin(θj − θi − φij) (6.6)

ω̇i = kωFωsin(θi) (6.7)

Vi = ri(cos(θi)) (6.8)

where ri is the amplitude of the wave, ωi is the frequency, θi is the phase, and

Vi is the input to the impedance controller. The amplitude (equation 6.2) is set by

convergence parameter γ, and setpoint Ri. The phase relates to connected nodes

through weight wij, phase offset φij, and the other node’s amplitude rj in equation

6.3. The terms kr, kθ, kω are scalar gains on feedback functions Fr, Fθ, and Fω,

which, similar to [Gay et al., 2013], are the outputs of an artificial neural network.

The network contains two inputs (tension and length), four hidden nodes, and the
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three output functions to the CPG. Each neuron contains a sigmoid function, and is

the weighted sum of nodes in higher layers. The same network weights are used for

each cable’s feedback function. An updated control diagram is shown in Figure 6.11.

Note that due to differences in r and ω, parameters need some additional tuning to

transfer from the previous CPG implementation.
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Figure 6.11: Feedback to the CPG is provided through an artificial neural network
(center). The same network is re-used at each cable.

In order to determine a controller for rough terrain, we tuned and tested the

tensegrity spine on three types of terrain: flat ground, sinusoidal hills with an am-
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plitude of 2 cm, and a field of 500 randomly placed blocks as described in Chapter

4. Imagining the length of one rod as a ‘leg’ this means the hills are 20% of the leg

height (blocks are 5%), and 98% of the flat ground step height. Trials were evaluated

according to distance traveled in 60 simulation seconds. If multiple terrains were

used, scores were averaged.

Given the large number of parameters, we started tuning our system by selecting

the best gaits for an open loop CPG on flat ground from 24,000 Monte Carlo trials,

with the new equations and a shorter spine (6 segments for computational efficiency).

The eight best were selected for a Gaussian sampling hill climbing optimization on all

three terrains. The hill climbing step improved the results between 100% and 200%

over Monte Carlo, but most of the improvement was on flat ground, indicating the

need for feedback to the CPG (the feedback gains were zero during the preceding

steps).

To parameterize the artificial neural network, we used a genetic algorithm with

crossover, mutation, and elitism. The population consisted of 60 members, the best

15 of which survived to the next generation. Fitness was again determined by average

score between the three terrain types (hills, blocks, flat ground). Evolution for the

feedback parameters ran for 14 generations (1,935 trials), the CPG parameters were

held constant during these trials.

6.4.1 Improvements on Rough Terrain

Once the feedback functions were tuned, we compared the performance of the closed

loop CPG controller to our previous open loop configuration, impedance control was

used in both cases. The differences between the two CPG signals are shown in 6.12

when the feedback function is activated mid trial (10 seconds). The feedback decreases

the frequency and increases the amplitude of the signal. Flat ground and hilly terrain

results were both deterministic, and are summarized in Table 6.1, block field results
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Figure 6.12: The feedback functions are activated at 10 s while a six segment tetrahe-
dral complex spine craws across flat ground. The CPG equations are able to smoothly
integrate this new information. The result is a lowered frequency but increased am-
plitude.

are summarized in Figure 6.14. While for this gait, feedback slows locomotion on flat

ground by about 1%, the robot’s ability to handle rough terrain improves significantly.

This morphology and controller move 7 times faster on hills than Tetraspine with

sine wave inputs and impedance controllers, relative to its size (1.36 body lengths per

minute).

Table 6.1: Distance traveled in 60 seconds with deterministic terrain types

Terrain Without Feedback With Feedback

Flat Ground 492.8 [cm] 487.1 [cm]

2 cm Hills 30.4 [cm] 105.3 [cm]

To determine the robustness of these results, we set up twenty different block

fields and tested the robot’s performance with and without feedback, using the same

random seed for each controller5. Motion on the blocks is shown in Figure 6.13. Since

the robot starts at the center of the square block field, if it traveled at least 150 cm,

it is guaranteed to have ‘escaped’ the block field. The controller with feedback moved

5Video: https://www.youtube.com/watch?v=94yqYPUYjH0
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0.0 0.2 0.4

0.6 0.8 1.0

Figure 6.13: A motion sequence of the tetrahedral complex crawling over blocks with
the feedback control system. This spine is 77.5 cm long.

further than the open loop controller in all cases, and ‘escaped’ in 17 out of 20 trials.

Performance details are shown in Figure 6.14.

67



CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

Trial

0 5 10 15 20D
is

ta
n

c
e

 T
ra

v
e

le
d

 i
n

 6
0

 s
e

c
o

n
d

s
 (

c
m

)

0

50

100

150

200

250

300

350
Performance in Block Field

Open loop CPG

Feedback to CPG

Figure 6.14: Tests of locomotion on a random block field with and without feedback
at the CPG level, using the same random seed. From [Mirletz et al., 2015b].

6.5 Goal Directed Controllers

Up to this point in the work, the controllers have been scored by their distance

traveled in any direction. However, the ideal robot can be sent in a specific direction

with simple descending commands. Thus, I investigated methods for steering the

robot towards a goal location.

Figure 6.15 shows results from the final controller with only the feedback controller

from the previous section, no goal direction. The robot tends to move perpendicular

to its length, in a clockwise arc. The robot’s path changes on each terrain type (flat

ground, block field, and hills). Thus, the ideal controller will be able to direct the

robot to the same locations across multiple terrains.
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Figure 6.15: The final controller on three terrain types without goal direction input.
The three square blocks indicate the possible goal positions during training (the CPG,
feedback function, and impedance controller were all optimized for this task during
learning). The small lines indicate the positions of the center of mass of each segment
of the robot. Color indicates the timestep, with blue at 0 s, fading to red by the
end of the trial at 120 s. With no goal direction, the robot finishes in three different
positions after 120 s.

One of the challenges for learning a goal directed controller is the choice of ob-

jective function. I used the objective function of distance moved towards the goal.

The goal was represented by a large rigid body in the simulation, so I could compare

the center of mass of the robot’s ‘head’ with the goal position. This means that not

moving is better than moving away from the goal, which can cause CPGs that don’t

move to be favored over those that do. Machine learning required careful control over

the seeding of controllers, the choice of initial goal location, and the complexity of

trials.

My first attempt was to use a neural network mapped from the goal direction to the

same CPG feedback functions as the feedback network. I used the same network for

each segment, so this network had two inputs, 24 hidden neurons and 24 outputs. This

worked for a single goal, but had trouble generalizing to multiple goals and multiple
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orientations of the robot. Thus, I added two more inputs for the robot’s orientation

(4 total). In essence, this is similar to having a compass heading, and a compass

heading of your destination, both of which update over time. In hardware, a compass

and GPS could provide this information, or any high level mapping controller.

While this was successful on flat ground, interference between the two types of

feedback equations prevented it from being successful on rough terrain. Thus, using

inspiration from the early work on Tetraspine, I changed the goal direction network

to map from the existing inputs to the tension gain on the impedance controller. In

essence, this technique uses the neural network to generalize the modifications I was

making to Tetraspine’s tension setpoints by hand (as in Figure 6.4). The resulting

network has four inputs, eight hidden layer neurons, and eight outputs.

The ‘seed’ for the goal directed controller was the rough terrain controller from

section 6.4. Based on the natural direction of motion of the rough terrain controller,

I trained the goal directed controller to move toward a goal roughly straight to the

left, 350 cm away (-x in Bullet’s coordinates, location B in Figure 6.15). I started

evolution just tuning the goal direction controllers from a random seed, with a pop-

ulation of 80, running each trial for 120 sec to give the robot sufficient time to get

to the goal on hilly terrain. After running this overnight (15 generations), I took

the best controllers and attempted to co-evolve a full system. Ultimately, for this

particular controller, centralized evolution of the full system proved more effective,

and a controller capable of a single goal on hills and flat ground (only trained on hills)

was trained in 45 generations. Generalization to multiple goals (A, B, and C) took

an additional 26 generations of training on two additional goal positions, placed 350

cm away in different directions. The controller also trained on flat ground with the

same locations in this final stage, scores were averaged across these six trials.

Figure 6.17 shows the results on hills for the three trained positions. Due to the

geometry of the goal block and the robot, if the center of mass of one of the robot’s
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Figure 6.16: The final control system for a single cable. The new component is an
artificial neural network on the left side of the figure which maps the goal location
and the robot’s orientation to the tension input of the impedance controller. The
network has four inputs, eight hidden nodes, and eight outputs: the tension setpoint
of each cable’s impedance controller. Connections between nodes are weighted linear
functions, which sum into a sigmoid function. Each final output node is another
sigmoid, which combines the outputs of the hidden nodes. The same network is used
for each segment, resulting in the goal directed feedback providing commands like
‘tense all of the top cables.’
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Figure 6.17: Goal directed motion on hilly terrain. The goal position is indicated
with the large blue box, and the center of mass of each of the robot’s segments is
indicated with the colored lines. The color fade again occurs from 0 to 120 seconds.

segments passes within 20 cm of the goal block’s center of mass, the robot will contact

the goal block and achieve the maximum score. This distance is slightly larger on

the hills, since the goal block falls over. The robot reaches the goal at the location

B (center) on the hilly terrain, for location A the robot comes within 20 cm, and for

the location C it ‘misses’ by 60 cm.

The geometry of the hills forces the robot to move differently than it would on

flat ground. This is because moving perpendicular to the robot’s length causes it

to cross the hills. In particular, with the goal at location C, the robot spends a

noticeable portion of the trial moving along its length, rather than perpendicular

to its length. The goal directed controller is just under two times faster than the

undirected controller of the prior section, covering 201.9 cm in the first 60 seconds of

the middle trial.

The goal direction is more precise on flat ground. Comparing Figure 6.15 with

Figure 6.18, the shape changes yielded by the goal direction network change the radius

of the arced path taken. For flat ground and on the blocks, the robot was tested on an
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Figure 6.18: Goal directed motion on flat ground. I tested on three additional un-
trained locations (D, E, and F) for flat ground and the blocks. For the first five plots
(A through E), blue is 0 s, and red is 82 s. For location F (lower right, red is 267
seconds. The robot contacts the goal block in four out of six locations, two of which
were untrained.

additional three goal locations on which it was not trained (locations D through F).

In these trials, it hit the goal block in two trained locations (A, B) and two untrained

locations (D, E). Some of the time the robot will hit the goal block before the end

of the trial. The goal block is heavy enough that hitting the block stops the robot’s

continued motion, as in the trial with location B in Figure 6.18 (middle left) and

location A (top left) in Figure 6.21. While the robot misses the goal in the bottom

two trials (C and F), the longer run time of location F’s trial (bottom right) shows

that with the proper inputs, the goal direction controller can also produce counter

clockwise turns. This controller displays its fastest motion on flat ground, moving up

73



CHAPTER 6. CONTROL METHODS AND SIMULATION RESULTS

X Position, cm

Z
 P

o
st

io
n
, 
cm

Goal Directed Motion on Block Field

-400 -300 -200 -100 0 100
-200

0

200

400

-400 -300 -200 -100 0 100
-200

-100

0

100

200

-400 -200 0 200
-200

0

200

400

600

-600 -400 -200 0 200
-400

-200

0

200

-600 -400 -200 0 200
-300

-200

-100

0

100

-300 -200 -100 0 100
-200

0

200

400

600

A

B

C

D

E

F

Figure 6.19: Goal directed motion on a block field. All six trials used a block field
with the same random seed. The robot contacts the goal in three out of six trials.
The trial length was 100 seconds in all cases.

to 501.34 cm in 60 seconds. However, the behaviors designed for rough terrain led to

a high cost of transport of 11.2. Note that the DC motor model makes more accurate

assumptions about energy use than prior work, such as including the applied torque

when lengthening.

The block field was particularly difficult due to the random placement on the

blocks. To avoid over-fitting to a particular block field I left them out of the learning

entirely, as deterministic objective functions converge more quickly. My hope was

since the hills were larger than the blocks, if the robot was capable of performing

passably precise paths, it would be able to move off blocks and then to the goals.

Between the training for motion over rough terrain, and training in the block field

in section 6.4, the robot was able to ‘escape’ in all twelve tests of the goal directed

controller (six locations, two block fields). Note that using the goal direction network

enables the robot to ‘escape’ the block field 28 seconds faster than the controller with
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25.0 s 26.0 s 27.0 s

30.0 s29.0 s28.0 s

Figure 6.20: Images from 25 s to 30 s of the trial with location A on the blocks (top
left of 6.19). The robot successfully departs the blocks, and then crawls on flat ground
to the goal (the large block in the upper right corner of each image).

no goal information. Six locations with a single block field are shown in Figure 6.19,

and the same six locations with a different block field are shown in Figure 6.21. The

robot contacts the goal block in six out of twleve trials. Each goal block set produces

a success in one of the two cases where the controller missed on flat ground (C and

F). Thus, the controller reaches all six goal locations in at least one trial.

Tests on sloped terrains (global ramps) showed that with this controller the sim-

ulated robot was capable of climbing up to 7.5 degree slopes, and can reach the goal

on small slopes of 2 degrees.
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Figure 6.21: Goal directed motion on a second block field. All six trials use the same
random seed, which was different from Figure 6.19. The robot reaches the location
A again, as well as locations B and C (left side).
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Chapter 7

Robot Hardware and Simulator

Verification

In order to ensure the prior results could be realized in robotic hardware, I con-

ducted hardware trials on two versions of Tetraspine, each of which consisted of three

segments. The original version of Tetraspine was constructed by the senior project

team at the University of Idaho in 2012. Dr. In-Won Park upgraded this robot

to make it capable of locomotion during 2013, but due to a lack of force sensors it

was only capable of position control. I constructed my first version in the CWRU

Biorobotics Laboratory with assistance from Ross Carnahan and Richard Bachmann

[Tietz et al., 2013]. Based on his experience with the University of Idaho Tetraspine,

Dr. In-Won Park designed a new implementation and built Tetraspine 3 at NASA

Ames, and we performed validation tests together using its high quality load cells

as force sensors [Mirletz et al., 2015a]. These validation tests complement those per-

formed in [Caluwaerts et al., 2014], where the positions of an icosahedron tensegrity

robot (a prototype planetary lander) were validated for one step of a rolling motion to

be within 15 mm on a robot with 1 m struts. This section discusses the construction

of each Tetraspine prototype, followed by the validation trials that showed NTRT can
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be used to design future robots with reasonable safety factors.

7.1 Carbon Fiber Spine

Figure 7.1: The three segment carbon fiber Tetraspine robot, circa April 2013. One
Arduino Mega microcontroller controls each segment. Four out of the twelve strings
are visible; the units on the ruler are inches.

The version of Tetraspine Ross Carnahan and I constructed in the biorobotics

lab provided a proof of concept for the controller I developed in simulation, but was

not able to provide sufficiently accurate data for simulator verification. The robot is

pictured in Figure 7.1. The carbon fiber segments of the robot measure 28 cm to a

‘rod’ (along the diagonal from the front to the rear veracities) and were manufactured

in the CWRU Biorobotics Additive Manufacturing Lab. Ross constructed a wooden

mold of the appropriate dimensions, and then wrapped it with Teflon, carbon fiber,

perforated Teflon, and finally a cotton outer layer, before placing everything in a

vacuum bag and baking it in the carbon fiber oven for two hours. After the piece

cooled and was removed from the mold, we drilled holes in the resulting shell and
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mounted the motors and electronics using screws and nuts. I later sealed the edges

of these holes with superglue, as carbon fiber is conductive.

The segments are connected with strings that are spooled and unspooled with

Pololu 12V 50:1 DC motors with encoders. The inside cables were routed through

nylon fisheye screws1 to bring their line of action closer to the tip of the robot.

Each segment of the prototype is controlled by an Arduino Mega R3. The outside

segments each have a mass of approximately 0.9 kg without batteries, while the middle

segment’s mass is 1.6 kg.

7.1.1 Stretch Sensors

Tension in the strings was a major piece of sensory data in the simulator. Many

off-the-shelf stretch sensors are too elastic for the forces we needed to apply through

the strings, rubber sensors will easily stretch to 50 or 100% of their rest length. More

accurate load cells were not within budget for this robot. Thus, we opted to use

in-line stretch sensors by knitting conductive thread with yarn, an example is shown

in Figure 7.2.

The sensors were constructed using a circular loom. Each end of the conductive

thread was attached to a soldered loop of wire with a knot, after the thread was

looped around the wire several times. The length of the knit portion was varied

based on the application of the stretch sensor.

This creates a resistance that changes non-linearly, for example, a 6 cm sensor

changes from 47.6 Ohms to 25.4 Ohms over a 2 cm stretch. The stiffness was also

non-linear; the first cm of stretch accumulated 0.7 N of force, while the second cm ac-

cumulated an additional 11.3 N. We placed 68 Ohm current limiting resistors between

the sensor and the ground, after burning out an Arduino by going over its current

limit. The final circuit is shown in 7.3. We ran 5 Volts over these sensors and after

1These screws would almost always bend, and occasionally break.
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Figure 7.2: A knit stretch sensor at slack length. The conductive yarn is silver, the
actuator yarn is black. Units on the ruler are centimeters. From [Tietz et al., 2013].

Figure 7.3: A diagram of the sensor and current limiting resistor.

the analog to digital conversion had a resolution of approximately 200 units over the

2 cm length change.

While these sensors were ultimately sufficient for control, they required extensive

calibration, which was never directly convertible into units of force. In addition, the

knots in the knitting would slip, changing the amount of resistance. Finally, the

conductive yarn was fairly thin and prone to breaking, meaning the sensors had to

be replaced fairly often.

7.1.2 Carbon Fiber Spine’s Performance

With proper calibration, the three segment spine demonstrated forward locomotion

at a speed of 7.6 cm per minute. Stills from a one minute video of this motion are

shown in Figure 7.4. This result provided a qualitative, visual match of simulator

behavior.
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Figure 7.4: Motion of the Carbon Fiber spine on lab carpet. These images represent
approximately one minute of motion.

Figure 7.5: The five segment version of the Carbon Fiber spine. Ultimately the forces
required for movement of this spine were beyond the strength of the knit stretch
sensors.

I attempted to extend this version of Tetraspine to five segments, but this was

ultimately unsuccessful due to the limitations in the stretch sensors, especially under

the higher forces required by the longer spine, shown in Figure 7.5.
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7.2 Tetraspine 3

In order to perform simulator validation tests, Dr. In-Won Park constructed the

Tetraspine3 hardware at NASA Ames Research Center. Figure 7.6 shows a snapshot

of the Tetraspine3 hardware, which has 12 DC motors, 12 vectran cables, and 12 load

cells. The length and diameter of Tetraspine3’s rods is to 38.10 cm and 0.64 cm,

respectively. One end of each vectran cable is connected to a DC motor (Faulhaber

1524) with a spool for rotation. The other end is attached to a 222 N (50 lb) ten-

sion and compression load cell (Load Cell Central LCC-CTD) for measuring cable

tension. For 8 out of 12 cables, a 227 N/m spring is placed before the load cell to

increase compliance. Since the other four cables (top inside and top outside) required

additional stiffness to support the weight of the robot, they did not include springs.

Figure 7.6: Snapshot of TetraSpine3 hardware (the first segment is the farthest right).
From [Mirletz et al., 2015a].

The Tetraspine 3 prototype used carbon fiber rods to form the tetrahedrons, which

simultaneously reduced the weight compared to the University of Idaho aluminum
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Figure 7.7: The load cell calibration. From [Mirletz et al., 2015a].

spine, and increased strength relative to the carbon fiber shell of the CWRU spine.

Table 7.1 compares the mass of all three prototypes. Note that middle segments have

six motors, whereas outer segments have three.

Six Arduino Nano slave boards (two per segment) control the motors via a Pololu

MC33926 motor driver, a LTC3260 voltage regulator and two instrumentation am-

plifiers. The instrumentation amplifier increases the voltage range of the load cell

before it is connected to the Arduino’s 10 bit ADC. Figure 7.7 shows the output of

the calibrated load cell, where the maximum measurable tension is 111.2 N (25 lbs).

The following linear relationship describes the resolution of the load cell in terms of

ADC bits.

f = 0.1567(ADC)− 4.9363 (7.1)

A PC and the six slave boards communicate using fast-mode I2C protocol (400

kHz) through a Devantech USB-ISS communication module. Every 10 milliseconds,

the PC broadcasts a packet to all six slave boards simultaneously, which contains

Table 7.1: Mass comparison between the three prototypes

Segment Carbon Fiber Spine TetraSpine2 TetraSpine3

First 0.9 [kg] 1.45 [kg] 0.73 [kg]

Middle 1.6 [kg] 1.54 [kg] 0.91 [kg]

Last 0.9 [kg] 1.18 [kg] 0.73 [kg]
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all 12 desired motor commands. Within 20 milliseconds, the PC then connects to

each slave board in order to receive the actual and target tension values, the motor

encoder value, and the motor PWM output value. During experiments, the process

of broadcasting the packet to all six slave boards and receiving the packet from all

six slave boards takes less than 3 milliseconds. Every 200 milliseconds, the PC also

stores all feedback values from all six slave boards and displays them in a GUI.

The microcontroller supports both position and impedance control modes, which

are selected from the PC. The communication packet contains the desired motor

angles in position control, whereas it represents the desired cable velocity during

impedance control. Position control is used initially to set the length of each cable.

When impedance control is switched on, the current length and tension values are

used as the L0 and T0 parameters in (6.1). In both control modes, the motor is

controlled with a PID controller every millisecond (1000 Hz), where the measured

loop times of position control and impedance control are 400 microseconds and 800

microseconds, respectively. Filtering the tension sensor, and calculating the cable

length and velocity add the additional time to impedance control. The tension offset,

the rest length, the stiffness gain, and the velocity gain in (6.1) can be set differently

for each cable from the PC.

7.3 Simulator Validation

With this new robot, we were now able to directly compare the forces experienced

by the robot with the simulator. We chose to focus on force for two reasons: first,

the impedance controllers’ output is force, so this provides a good test of the control

system. Second, force is a key property in the design of new structures and selection

of actuators. By ensuring the simulator’s forces are in range with the hardware, we

now have confidence in future simulated designs.
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We started by updating the simulated version of Tetraspine to match, as closely

as possible, the material properties of the robot such as cable stiffness, inertia, and

friction. To verify these properties, we used a quasi-static tests of dragging the robot

at a steady velocity and applying a 20 N force to the front segment of the robot. Once

we were confident in the match between the simulation and hardware, we tested a

trajectory, which was hand tuned on the robot, in the simulator. Finally we ran a

simulator learned trajectory for a different gait on the robot. These simulations were

run at 1000 Hz. Decreasing the timestep to 250 Hz changes the predicted force on this

test by 6% (worst case), increasing the time step to 4000 Hz changes the predicted

force by 1.3%. Since the contact cables were not necessary for this simulation, 60

simulation seconds takes between 7 and 14 seconds of real time, depending on the

simulation timestep.

7.3.1 Quasi-static

We started by attempting to calibrate the simulation to the hardware and determine

properties such as dynamic friction by measuring the force to drag the robot at a

steady velocity. We then applied a steady state disturbance of approximately 20 N

(a forward force on the front of the robot, and a restoring force on the rear two

segments), and verified that the control response was similar in both cases.

Table 7.2: Control parameters used in Fig. 7.8

Value Top Cables Other Cables

K 500 [N/m] 100 [N/m]

B 100 [N/m-s] 100 [N/m-s]

The results of this test are shown in Fig. 7.8. The overall system dynamics are

similar, with the added tension from the disturbance being split between the outside

cables. When tuning for this test, we found that even without springs in the top
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Figure 7.8: We tested the steady state responses of the control by applying a steady
load of approximately 20 N (measured using a hand-held scale) to the front segment of
the robot while holding the other two in place. The resulting displacement and added
tension causes the impedance controller to increase the tension setpoint, mostly in the
outside cables. The forces experienced in each cable are plotted, with the hardware’s
setpoint in blue, its actual tension in red, and the simulator’s predictions in black.
The simulator’s error on the system’s maximum tension is within 6.1% (top plot).
(from [Mirletz et al., 2015a])
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outside and inside cables, it was effective to model them at the same stiffness as the

rest of the system (227 N/m), we refer to this as the ‘effective stiffness’ of these cables.

7.3.2 Hand Tuned Trajectory

Subsequently, we hand tuned a sine wave as the velocity input to the impedance

controller on the hardware. The final tuning resulted in the inside cables having the

inverse sign of the outside cables, and the rear cables having a phase offset of π from

the front cables.

The velocity input in this case required some additional scaling. Amplitudes given

to the simulator were 1/10 what they were in the hardware (with identical input, the

simulated robot’s segments would slide together, causing it to topple). The results

of this test (Fig. 7.9) show some differences in the system’s pretension levels, but

similar sizes of oscillations for each cable. This confirms that some of the actuator

properties such as effective stiffness and actuation speed were sufficiently accurate.

We suspect the differences are due to the absence of perfect sticking from Bullet’s

default Coulomb friction model, as the segments tend to slide together under higher

pretension. Another difference is sensor noise, which is present in the tension readings

(red line), but not in the simulator data (black line). These experiments show the

control is robust to this level of noise.

7.3.3 Simulator Generated Trajectory

In order to ensure that we have a useful model, as opposed to a fit of existing data, we

chose to make a prediction and test it on the hardware. For our prediction, we used

our tuning methods in simulation to generate a trajectory through an open loop CPG

capable of sideways motion, similar to the side-winding gait for the twelve segment

version [Mirletz et al., 2014]. We exported these values to a text file and then used

them as the velocity input on the hardware, without additional scaling. The resulting
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Figure 7.9: A comparison of the tensions experienced by the hardware and simulation
under a hand tuned, sine wave input on the velocity term of the impedance controller.
This figure shows the full trial, with the trajectory applied to the simulation the entire
time, but on the hardware it is only active between timesteps 70 and 170 (14 and
34 s). The simulated maximum system tension in this case is within 7.9% of the
hardware. (from [Mirletz et al., 2015a])
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Figure 7.10: A comparison of forces experienced under a simulator-tuned CPG based
gait. Like the sine wave, this shows the full trial, with the hardware’s trajectory
activated later than the simulator’s. The maximum tension experienced by the robot
is within 1.6% of what was predicted by the simulator. (from [Mirletz et al., 2015a])
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forces are shown in Fig. 7.10.

The gait produced successful locomotion on the hardware implementation2. Note

how the amplitude of the CPG’s velocity trajectory forces the inside cables to a

more saturated triangle-wave like oscillation in both cables (sharper peaks), while the

outside cables are more sinusoidal, verifying the output of the impedance controllers

to this input. Again, the pretension is lower in the outside cables, and the speed

of locomotion in hardware is slower due to additional static friction and unmodeled

cable friction, but the overall direction of locomotion is similar.

We found that the forces predicted by the NASA Tensegrity Robotics Toolkit

were within expected errors for robotic design, and that the accuracy extended from

a single motion caused by a single actuator to the continuous coordinated motion of

twelve actuators. Due to the nature of our cable implementation (applying impulses

directly) changing Bullet constraint parameters such as the error reduction parameter

(by a factor of 4) changes our results by less than 0.3%. We expect improving the

friction models, both in actuators and within collisions will be the most effective way

to improving the accuracy of this work. The accuracy of the work presented here

could also be improved with more formal, automated system identification methods,

especially if motion capture is used along with the force results. The errors as dis-

cussed would allow for designs with a safety factor of 1.15, whereas the actual safety

factor we used in Tetraspine3’s design was close to 2. These results confirm that we

can continue to use NTRT for the design of new robots, with reasonable safety factors

on parameters.

2Video available at: .https://www.youtube.com/watch?v=VRdKwPsjmcI
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Chapter 8

Conclusions

8.1 Contributions

The contributions of this dissertation to the field of tensegrity robotics are algorithms

that control adaptive tensegrity spines with many degrees of freedom, and simula-

tion tools such as cable models with realistic forces and contact dynamics that are

implemented in the open source NASA Tensegrity Robotics Toolkit. Use of CPGs

coupled with impedance controllers was proven in two hardware implementations,

one of which validated the forces predicted by the NASA Tensegrity Robotics Toolkit

Simulator, and demonstrated locomotion of a machine learned controller. The final

algorithms produced locomotion on a 72 degree of freedom spine with 88 actuators,

and directed a six segment spine to multiple goal locations over three types of terrain.

In doing so, this work also contributed to the field of biologically inspired robotic con-

trol, demonstrating the first CPG based robotic controller capable of goal directed

locomotion on rough terrain.
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8.2 Future Work: Methods and Details

8.2.1 Machine Learning

Though machine learning has enabled the tuning of controllers far faster and more

efficiently than hand tuning, there is still room for improvement here. A logical

extension of our current approach would be to conduct ‘meta-learning,’ where the

algorithm automatically chooses when and how to make the problem more difficult.

These algorithms exist in artificial intelligence applications [Vilalta and Drissi, 2002],

and may benefit robotics.

Another approach would be to find online methods for tuning CPGs. This

has already been attempted for a small, modular system using Powell’s method

[Sproewitz et al., 2008]. In order to scale up to the types of systems presented here,

a more stochastic approach may be necessary. Work on using chaos to explore lo-

comotion behaviors looks promising for online tuning [Shim and Husbands, 2012]. If

properly designed, these methods could also tune parameters on hardware.

Finally, if tuning the controller is sped up or automated sufficiently, applying ma-

chine learning techniques could optimize the structures. Since most existing tenseg-

rities have been designed as static structures, this could lead to the first tensegrity

structures specifically designed for their dynamic motion. Additional components to

optimize would be the placement of cables, and adding cables that span multiple

segments.

8.2.2 Cable Models

As of this writing, the cables in NTRT do not interact with each other. Adding

a collision resolution algorithm between cables would allow for more accurate sim-

ulation of nested tensegrity structures, meshes, and soft terrain features. This

may require adding three dimensional internal dynamics, and mass, to the ca-
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ble. One possible model, Corde, has already been partially implemented in NTRT

[Spillmann and Teschner, 2007], but has not yet been used outside of simple test

cases. The collision dynamics as currently implemented for this model (based on

Spillman’s dissertation) need improvement. The collision resolution algorithm that

is being used for the massless cables (Section 3.2) would be a suitable replacement.

Implementing the Corde model would also improve motor models, since this would

better approximate friction between the cable and the spool.

8.2.3 Sensors

Tension and length sensors are certainly not the only sensors available to robots.

Future work could consider how to incorporate additional sensors, such as ground

contact sensors into the CPG for better performance on rough terrain. The goal

directed motion on rough terrain could be improved by adding exteroceptive sensors

such as vision or a laser range finder for planning or other high level control. Humans

and animals are good at determining the path of least resistance, and adjusting the

path given the terrain. Ideally, this sort of planning will be part of an autonomous

controller. Incorporating sensor noise would also be a good way to improve the

robustness of the control algorithms.

8.3 Future Work: High Level Research Directions

8.3.1 Tensegrity Quadruped

As may be obvious from the Chapters 1 and 2, the next high level work for tensegrity

spines may be integrating them with a legged robot. There are two possible directions

for this: either placing the spine as a component with traditional legs, or constructing

an entire tensegrity quadruped. The latter is currently underway at UC Santa Cruz,

pictured in Figure 8.1. A quadrupedal design should enable a tensegrity system to
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Figure 8.1: A prototype tensegrity quadruped ‘big puppy’ implemented in NTRT,
inspired by a passive design by Tom Flemons. Printed with permission of Dawn
Hustig-Schultz.

handle larger perturbations in the terrain more easily than the spine models.

In addition to the features of the NTRT simulator, the automatically gener-

ated CPG morphologies will be particularly valuable to designing controllers for the

quadruped. Additionally, the concept of tension offsets and shape control as a steer-

ing mechanism from the goal direction work could inform whole body behaviors for

this type of robot.

Cable routing and good design of tensegrity ‘joints’ will be important features

in this work. In the spine work, the velocity of the robot never exceeded 150% of

the actuator’s maximum velocity. This is because the structures in this work never

featured cables that spanned multiple segments. By creating properly constrained

joints with actuators working in parallel, a quadruped robot should be able to exceed

this speed limitation and maintain whole body compliance.
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8.3.2 Tensegrity Biomechanics

It is worth asking whether a bio-inspired robotics effort can contribute to knowledge to

biology, or in this case, biomechanics. While qualitative theories of tensegrity biome-

chanics are already being discussed, particularly by bodyworkers such as massage

therapists and chiropractors (referred to by Myers as spatial medicine [Myers, 2014]),

more work is necessary to quantify the tensegrity model relative to biomechanical

data. The insight of tension holding bones apart, as opposed to traditional ball

and socket joints, seems sufficiently valuable to merit further investigation, especially

given recent advances in computing power. It is not clear whether tensegrities as

simulated in this dissertation would have distinct advantages over tensegrity inspired

finite element models in this respect, as the finite element models would be able to

include more detailed material properties in their meshes.

8.4 Conclusions

This work will hopefully inform and encourage future work in compliant, adaptive

robotic systems with many degrees of freedom, particularly robots with flexible spines

and torsos. Future robots with flexible spines and torsos will be better able to perform

in situations such as search and rescue, planetary exploration, and environments

dangerous to humans.
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Appendix A

Parameters Used In Simulation

The goal of this appendix is to capture a full set of parameters in one place so they

do not have to be pieced together from disparate sections of code. This appendix will

focus on hard coded or configuration based parameters, learned parameters can be

found on Github (see Appendix B).

A.1 Learning Parameters

The following are from the final learning step that produced the goal directed con-

troller. These are associated with the ‘node’ values of the CPG (radius, frequency,

feedback gains).

’ ’ l e a r n i n g ” : true ,

” s t a r t i n g C o n t r o l l e r s ” : 25 ,

”monteCarlo” : f a l s e ,

”numberOfStates” : 0 ,

”numberOfOutputs” : 5 ,

” numberOfInstances ” : 1 ,

” popu la t i onS i z e ” : 50 ,
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” useAverage ” : true ,

”numberToMutate” : 15 ,

”numberOfChildren” : 10 ,

”mutationChance” : 0 . 5 ,

”mutationDev” : 0 . 01 ,

”paramMax” : 1 . 0 ,

”paramMin ” : 0 . 0 ,

” childMutationChance ” : 0 . 5

The previous trials had 25 elite controllers, so it made sense to start with the

controllers that had already been tested. This could be increased to 50 if the trial

needed to be restarted in exactly the same place (depending on the random seed). 50

trials were run per generation, meaning that controllers were run together in groups

(no co-evolution). Number of states would indicate the number of inputs to a neural

network. numberOfChildren indicates the output of crossover. mutationDev was

often run at 0.03, this was finer tuning. Neural network weights were ±1, note that

scaling for individual parameters typically occurs in the C++ main application file,

where controllers are declared.

A.2 Structure and actuator parameters

Note that this simulation was run at cm scale. Units of force are centi-Newtons

(cm− kg/s2)

Rods :

const double dens i ty = 4 .2/300 . 0 kg/cmˆ3

const double rad iu s = 0 .5 cm

const double f r i c t i o n = 0 . 5 ;
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const double r o l l F r i c t i o n = 0 . 0 ;

const double r e s t i t u t i o n = 0 . 0 ;

const double e l a s t i c i t y = 1000.0 kg/ s ˆ2

const double damping = 10 .0 kg/ s

const double p r e t en s i on = 0 .0 cent i−Newtons

const bool h i s t o r y = f a l s e ;

const double maxTens = 7000.0 cent i−Newtons

const double maxSpeed = 12 .0 cm/ s

const double mRad = 1 .0 cm

const double motorFr ic t ion = 10 .0 cmˆ2 kg / s

const double motor Ine r t i a = 1 .0 cmˆ2 kg

const bool backDrivable = f a l s e ;
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NTRT Implementation Details

This appendix highlights how the controllers and algorithms discussed in this disserta-

tion were implemented in the NASA Tensegrity Robotics Toolkit. The main project

page for NTRT is: http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/

tensegrity/ntrt/. Current documentation detailing how to use the code can be

found at http://ntrt.perryb.ca/doxygen. Each section of this appendix provides

the relevant classes to look up within NTRT, with links that will help readers track

the current code. If you wish to see the exact code that was used for the data

presented here, look at commit c274e296f86ee640e6506155850df2b7bc7dccf9. This

requires replacing the text in the link with the string of that commit number. For

example:

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/

blob/master/src/core/tgBulletSpringCable.cpp points to the most re-

cent version of tgBulletSpringCable in the master (main) branch, while

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/

c274e296f86ee640e6506155850df2b7bc7dccf9/src/core/tgBulletSpringCable.

cpp points to the specific version written about here. Note that as of this writing

that particular file has not changed since December 12, 2014, so those two links
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should be identical.

B.1 Reference dates

Below lists the dates when data for this dissertation was taken. If use of features is

not explicitly stated, this will provide a reference relative to implementation dates.

Jan. 2013 Data for [Tietz et al., 2013]

May 2013 Videos of Carbon Fiber Tetraspine

April 2014 Multiple spines for [Mirletz et al., 2014]

June 2014 NTRT’s open source release on Github

September 2014 Data taken from Tetraspine 3 for simulator validation

December 2014 Contact cables and brushless motor model finalized

January 2015 NTRT version 1.1 released, data for CPG feedback

[Mirletz et al., 2015b]

February 2015 Data for simulator validation updated to V 1.1

[Mirletz et al., 2015a]

April 2015 Controllers transitioned to JSON interface

June 2015 Goal directed motion

B.2 Chapter 3: NTRT Core and Cable Models

This section primarily deals with code located in src/core. Classes that are expected

to be used by multiple applications are prefixed with ‘tg’.
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B.2.1 Bullet Simulation Core

The Bullet Physics Engine is primarily designed for collision detection and

then solving the resulting linear complimentary problem for contact dynam-

ics [Coumans, 2014]. Bullet includes several solvers for doing this, we found

the best results with the Projected Gauss Seidel solver. Our interface

for this (including collision detection algorithms) are included in tgWorld-

BulletPhysicsImpl: https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/core/tgWorldBulletPhysicsImpl.cpp This class also

includes some enabling components for the cables with contact dynamics. This was

last updated December, 12, 2014.

B.2.2 Cable Internal Dynamics

Due to the assumption of a cable being in line with a spring for each actuator, the

base class for cables and actuators is a tgSpringCable. This defines the interface,

the details of equation 3.1 are Bullet specific, and are therefore implemented in

tgBulletSpringCable https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/core/tgBulletSpringCable.cpp Note the use of the

applyImpulse function. I found that the friction behavior was more ac-

curate with this function than with applyForce, since applyImpulse allows

the actuator forces to be accurately considered when friction is applied.

The cables interface with Bullet’s rigid bodies via tgBulletSpringCableAn-

chor https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/

master/src/core/tgBulletSpringCableAnchor.h The type of contact specified by

the anchor (fixed or sliding for the contact cables) is specified in its configuration.
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B.2.3 Cable Contact Dynamics

Contact dynamics are handled by tgBulletContactSpringCable,

which is a child class of tgBulletSpringCable https://github.com/

NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/core/

tgBulletContactSpringCable.cpp The high level interface is identical to other

spring cables, but the low level maintains a Bullet collision object: mghostOb-

ject. This class maintains vectors of tgBulletSpringCableAnchors, which are then

related to Bullet’s btPersistentManifold for collision detection. This pointer is

somewhat problematic, as Bullet can update it without notifying NTRT. Thus

tgBulletContactSpringCable::updateManifolds tries to rectify this. Problems

with the anchors and the contact dynamics are being discussed here: https:

//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/issues/119

B.2.4 Motor models

NTRT contains two models for actuating the cables. The base of both

of these classes is tgSpringCableActuator. The basic behavior for chang-

ing the rest length of the system exists in tgBasicActuator: https:

//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/

src/core/tgBasicActuator.h. As long as you dont exceed the force or speed

constraints set by the config (from tgSpringCable) then it will make your desired

changes to the cables rest length.

tgKinematicActuator is the implementation of equation 3.3. This adds four addi-

tional parameters to the configuration, the motor’s radius, the rotor’s inertia, a fric-

tion value, and a Boolean indicating whether the motor is backdrivable. This model

also implements a linear torque speed curve, and accounts for the external force when

actuation is desired. PID control adjusts the desired applied tension. Numerical inte-

gration for the motor’s acceleration and speed is handled internally with semi-implicit
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Euler integration. https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/core/tgKinematicActuator.h

B.3 Chapter 4: Machine Learning

Many of the details of this chapter are available in src/learning. An updated Python

implementation is available in scripts (this will change shortly to scripts/src/learn-

ing). https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/

master/scripts. The Python scripts include code to translate parameters from the

C++ specification (.nnw comma delimited text files) to JSON.

Rather than implementing each method in a separate file, we imple-

mented the methods in the same class and switched between them us-

ing configuration files. A summary of the options is available here:

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/

master/doc/source/learning-library-walkthrough.rst

B.4 Chapter 5: Structures

Each of the spines discussed in Chapter 5 is implemented in src/examples/learn-

ingSpines. The design is specified as nodes in cartesian coordinates, pairs of nodes,

and tags according to what should be created for each pair. This code utilizes the

builder library in src/tgcreator in order to translate this structure specification into

objects in the Bullet physics world. The procedure is as follows:

1. Declare a tgStructure - the container for a structural specification

2. Add nodes to this structure, as a point in three dimensions

3. Pair these points as rigid bodies and cables by node numbers, and tag them

accordingly using words
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4. Duplicate these structures, move them around, and place them in a super struc-

ture as you desire (for spines this is done inside of a for loop, since they are a

linear chain)

5. Repeat steps 2 - 4 as desired

6. Declare the physical properties of your structure in a tgBuildSpec. This relates

tags to ’info’ classes which contain construction details, such as tgBasicActua-

torInfo

7. Create a structure info (tgStructureInfo) and add the build spec and the tgStruc-

ture to that

8. Specify the model and the world that is being built into (typically a pointer to

the class that is currently being setup)

9. Notify any controllers that setup is finished

The spines are implemented in the following classes:

Tetraspine https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/examples/learningSpines/TetraSpine/

TetraSpineLearningModel.cpp

Tetrahedral Complex https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/examples/learningSpines/

TetrahedralComplex/FlemonsSpineModelLearning.cpp

Octaheadral Complex https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/examples/learningSpines/

OctahedralComplex/FlemonsSpineModelLearningCL.cpp
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Ribbed Spine https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/examples/learningSpines/ribDemo/RibModel.

cpp

B.5 Chapter 6: Control

B.5.1 Impedance Control

Common control classes are located under src/controllers. tgImpedance-

Controller can be used with either motor model: https://github.com/

NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/controllers/

tgImpedanceController.cpp

B.5.2 CPG Implementation

The initial CPG implementation is located in src/util. The numerical

integration is handled with the CPGEquations: https://github.com/

NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/util/

CPGEquations.h The value of any node can be pulled from this using the [ ]

operator, as used by tgBaseCPGNode. Equations for each node are determined by

the CPGNode class https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/master/src/util/CPGNode.cpp. Implementations for these

equations can be found in BaseSpineCPGControl https://github.com/

NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/src/examples/

learningSpines/BaseSpineCPGControl.h and JSONCPGControl https:

//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/

src/dev/btietz/JSONTests/JSONCPGControl.h
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B.5.3 CPG Morphology Determination

The high level behavior here is dictated by the controller, the most basic of which

is BaseSpineCPGControl’s setupCPGs method. This requires the structure, and the

parameters from learning or a configuration file. The method assigns nodes to each

of the structure’s cables, which associates that cable’s controller with a pointer to the

CPG class (both of which are owned by BaseSpineCPGControl). Then setupCPGs

calls each cable’s setConnectivity method, and passes it a vector of all the cables

in the structure. This method searches through all of the cables, and checks if it

shares a rigid body. If it does, it gets the correct parameter from a four dimen-

sional vector, based on whether the segment is in front of, behind, or the same as

this cable, the cable’s number within the segment (the remainder after dividing by

the number of cables per segment), the other cable’s number, and the parameter

list. https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/

master/src/examples/learningSpines/tgCPGActuatorControl.cpp

The data from [Mirletz et al., 2014] uses this control code and the applications

associated with the spines as indicated in the previous section. Updates since that

data was taken include adding the kinematic cables, the contact cables, and changes

that occured during the validation work. An integration test ensures that performance

never degrades without a good reason (and, has in fact upgraded since that paper was

published): https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/

blob/master/test_integration/SpineTests/WorldConf_Spines_test.cpp

B.5.4 Feedback Code

The feedback code requires a separate set of CPG equations. These

are implemented in CPGEquationsFB, CPGNodeFB, which are located

in: https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/

tree/master/src/dev/CPG_feedback This folder also includes structure
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level and cable level controllers for this class. It is used in the multi-

Terrain application, which generated the data for [Mirletz et al., 2015b]:

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/

master/src/dev/btietz/multiTerrain That application can adjust terrain,

robot, and controller features from the command line. This required an

implementation of the tetrahedral complex spine with kinematic contact ca-

bles: https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/

blob/master/src/dev/btietz/TCContact/FlemonsSpineModelContact.cpp

This behavior has been reproduced with a JSON based controller: https:

//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/master/

src/dev/btietz/JSONTests/JSONFeedbackControl.cpp

B.5.5 Goal Direction

In addition to the controller, goal directed spines needed to add the

goal box to the simulation. This is done through BaseSpineModelGoal:

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/

master/src/dev/btietz/TC_goal/BaseSpineModelGoal.h The final goal di-

rected controller is called JSONGoalTensionNNW: https://github.com/

NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/

dev/btietz/TC_nn_Tension/JSONGoalTensionNNW.cpp

B.6 Chapter 7: Hardware

Each plot in Chapter 7 used a different controller, so for simplicity they were each im-

plemented in a different application. They all use common hardware, implemented in:

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_

Tension_length/src/dev/btietz/TetraSpineStatic/TetraSpineStaticModel_
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hf.cpp Note that in addition to the standard build process, this places several

spheres at locations around the structure to more accurately model heavy com-

ponents. The static test (Figure 7.8) uses the following controller: https://

github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_

length/src/dev/btietz/TetraSpineStatic/SerializedSpineControl.cpp Note

that that controller directly applies forces to the rigid body via abstract mark-

ers. This is not recommended behavior, and we are working on alternative

solutions. An integration test has been implemented to preserve this behav-

ior: https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/

master/test_integration/ICRA2015Tests/ICRA2015_test.cpp

Figure 7.9 utilizes: https://github.com/NASA-Tensegrity-Robotics-Toolkit/

NTRTsim/blob/TC_Tension_length/src/dev/btietz/handTunedSineWaves/

htSpineSine.cpp and Figure 7.10 uses: https://github.com/

NASA-Tensegrity-Robotics-Toolkit/NTRTsim/blob/TC_Tension_length/src/

dev/btietz/hardwareLearning/LearningSpineJSON.cpp Raw robot data will be

posted online and linked to NTRT after publication of the paper.

B.6.1 Arduino Code for Carbon Fiber Spine

Below is the full Arduino code for one segment of the carbon fiber Tetraspine:

#inc lude <Encoder . h>

#inc lude <PID v1 . h>

#inc lude ”DualMC33926MotorShield . h”

i n t k =0;
const f l o a t p i = 3 .141592654 ;
long time ;
long prevTime ;
long tempTime ;

//IT , IR , IL , OT, OR, OL
const i n t ana logInPins [ 6 ] = {
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A2 , A3 , A4 , A5 , A6 , A7} ;
const i n t motorSensorPins [ 6 ] = {

A8 , A9 , A10 , A11 , A12 , A13} ;
double sensorValue [ 6 ] ;
double prevSensorValue [ 6 ] ;
double sensorMin [ 6 ] = {

220 , 180 , 160 , 100 , 280 , 280} ;
double sensorMax [ 6 ] = {

290 , 215 , 250 , 130 , 350 , 350} ;

double motorOutputs [ 6 ] ;
double s e tPo in t s [ 6 ] = {

730 , 730 , 730 , 780 , 730 , 670} ;
double o f f S e t s [ 6 ] = {

430 , 335 , 370 , 250 , 470 , 470} ;
// double s e tPo in t s [ 6 ] = {200 , 340 , 466 , 356 , 158 , 251} ;
double f ina lOutputs [ 6 ] ;

long enc va lue [ 6 ] ;
long prev enc [ 6 ] ;

DualMC33926MotorShield md OL OR(22 , 4 , A13 , 24 , 5 , A12 , 12 , 5 3 ) ;
DualMC33926MotorShield md OT IR(26 , 6 , A11 , 30 , 8 , A9 , 12 , 4 9 ) ;
DualMC33926MotorShield md IL IT (28 , 7 , A10 , 32 , 9 , A8 , 12 , 4 3 ) ;
i n t o t h e r I n t e r r u p t s [ 3 ] = {

45 , 47 , 41} ;
//M1DIR, M1PWM, M1FB, M2DIR, M2PWM, M2FB, nD2 , nSF)

PID s t r i ngCont ro l IT (&sensorValue [ 0 ] , &motorOutputs [ 0 ] ,
&se tPo in t s [ 0 ] , 1 , 0 , 0 , DIRECT) ;

PID s t r i ngCont ro l IR (&sensorValue [ 1 ] , &motorOutputs [ 1 ] ,
&se tPo in t s [ 1 ] , 1 , 0 , 0 , DIRECT) ;

PID s t r i n g C o n t r o l I L (&sensorValue [ 2 ] , &motorOutputs [ 2 ] ,
&se tPo in t s [ 2 ] , 1 , 0 , 0 , DIRECT) ;

PID str ingControl OT(&sensorValue [ 3 ] , &motorOutputs [ 3 ] ,
&se tPo in t s [ 3 ] , 1 , 0 , 0 , DIRECT) ;

PID str ingControl OR(&sensorValue [ 4 ] , &motorOutputs [ 4 ] ,
&se tPo in t s [ 4 ] , 1 , 0 , 0 , DIRECT) ;

PID str ingContro l OL(&sensorValue [ 5 ] , &motorOutputs [ 5 ] ,
&se tPo in t s [ 5 ] , 1 , 0 , 0 , DIRECT) ;

Encoder enc OL ( 3 , 2 3 ) ;
Encoder enc OR ( 1 8 , 2 5 ) ;
Encoder enc OT ( 2 , 2 7 ) ;
Encoder enc IL ( 1 9 , 2 9 ) ;

109



APPENDIX B. NTRT IMPLEMENTATION DETAILS

Encoder enc IR ( 2 0 , 3 1 ) ;
Encoder enc IT ( 2 1 , 3 3 ) ;

boolean fau l tVa lue ;

i n t encD i f f ;
f l o a t s e n s o r D i f f ;

i n t l ed = 13 ;

s t a t i c i n l i n e i n t sgn ( f l o a t va l ) {
i f ( va l < 0) re turn −1;
i f ( va l==0) re turn 0 ;
r e turn 1 ;

}

void s t o p I f F a u l t ( )
{

f au l tVa lue = f a l s e ;
f o r ( i n t j = 0 ; j< 3 ; j++){

i f ( ! d i g i t a lRead ( o t h e r I n t e r r u p t s [ j ] ) ) {
S e r i a l . p r i n t l n ( j ) ;
f au l tVa lue=true ;

}
}
f o r ( i n t j =0; j <6; j++){

i f ( time>10&&(sensorValue [ j ] <25 | | sensorValue [ j ]>1020)){
S e r i a l . p r i n t l n ( j ) ;
S e r i a l . p r i n t l n ( time ) ;
S e r i a l . p r i n t l n ( sensorValue [ j ] ) ;
f au l tVa lue=true ;

}
encD i f f = enc va lue [ j ]−prev enc [ j ] ;
s e n s o r D i f f = sensorValue [ j ]−prevSensorValue [ j ] ;
i f ( ( sgn ( s e n s o r D i f f )!=−sgn ( encD i f f ) )

&&(s e n s o r D i f f ∗ encD i f f !=0)&&(abs ( s e n s o r D i f f )>=15)
&&abs ( encD i f f )>20&&(abs ( f ina lOutput s [ j ] )>150))

{
S e r i a l . p r i n t l n ( j ) ;
S e r i a l . p r i n t (” Vel : ” ) ;
S e r i a l . p r i n t ( s e n s o r D i f f ) ;
S e r i a l . p r i n t (” Command ” ) ;
S e r i a l . p r i n t l n ( f ina lOutput s [ j ] ) ;
// fau l tVa lue=true ;
}
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}

i f (md OL OR. getFaul t ( ) | |md OT IR . getFaul t ( )
| | md IL IT . getFaul t ( ) | | f au l tVa lue )
{

i f (md OL OR. getFaul t ( ) ){
S e r i a l . p r i n t l n (” Pin 53” ) ;

}
i f (md OT IR . getFaul t ( ) ){

S e r i a l . p r i n t l n (” Pin 49” ) ;
}
i f ( md IL IT . getFaul t ( ) ){

S e r i a l . p r i n t l n (” Pin 43” ) ;
}
S e r i a l . p r i n t l n (” f a u l t ” ) ;
md OL OR. setSpeeds (0 , 0 ) ;
md OT IR . setSpeeds (0 , 0 ) ;
md IL IT . setSpeeds (0 , 0 ) ;

whi l e ( 1 ) ;
}

}

void setup ( )
{

ana logReference (EXTERNAL) ;
S e r i a l . begin (115200 ) ;
S e r i a l 2 . begin ( 9 6 0 0 ) ;
S e r i a l 3 . begin ( 9 6 0 0 ) ;
S e r i a l . p r i n t l n (” Dual MC33926 Motor Sh i e ld ” ) ;

f o r ( i n t i =0; i <3; i ++){
pinMode ( o t h e r I n t e r r u p t s [ i ] , INPUT) ;

}

md OL OR. i n i t ( ) ;
md OT IR . i n i t ( ) ;
md IL IT . i n i t ( ) ;
md OL OR. setSpeeds (0 , 0 ) ;
md OT IR . setSpeeds (0 , 0 ) ;
md IL IT . setSpeeds (0 , 0 ) ;
s t r ingContro l OL . SetMode (AUTOMATIC) ;
str ingControl OR . SetMode (AUTOMATIC) ;
str ingContro l OT . SetMode (AUTOMATIC) ;
s t r i n g C o n t r o l I L . SetMode (AUTOMATIC) ;
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s t r i ngCont ro l IR . SetMode (AUTOMATIC) ;
s t r i ngCont ro l IT . SetMode (AUTOMATIC) ;

f o r ( i n t i =0; i <6; i ++){
prev enc [ i ]=0;
prevSensorValue [ i ]=analogRead ( ana logInPins [ i ] ) ;

}
pinMode ( led , OUTPUT) ;
time= m i l l i s ( ) ;
prevTime = m i l l i s ( ) ;

}

void loop ( )
{

time= m i l l i s ( ) ;
// s t o p I f F a u l t ( ) ;
enc va lue [ 5 ] = enc OL . read ( ) ;
enc va lue [ 4 ] = enc OR . read ( ) ;
enc va lue [ 3 ] = enc OT . read ( ) ;
enc va lue [ 2 ] = enc IL . read ( ) ;
enc va lue [ 1 ] = enc IR . read ( ) ;
enc va lue [ 0 ] = enc IT . read ( ) ;
// S e r i a l . p r i n t l n ( time−prevTime ) ;

f o r ( i n t i =0; i <6; i ++){
// s t o p I f F a u l t ( ) ;

sensorValue [ i ] = analogRead ( ana logInPins [ i ] ) ;
// sensorValue [ i ] = s t r e t chVa lue [ i ] ;
i f ( i >3){ // Set 2 out s id e bottom

se tPo in t s [ i ] = o f f S e t s [ i ] + enc va lue [ i ] / 7 5 . 0
+( enc va lue [ i ]−prev enc [ i ] ) / ( time−prevTime )/1000 .0
+100.0∗ s i n ( p i /1250∗ time+pi / 2 ) ;

}
e l s e i f ( i >2){ // Set 2 out s id e top

s e tPo in t s [ i ] = o f f S e t s [ i ] + enc va lue [ i ] / 7 5 . 0
+( enc va lue [ i ]−prev enc [ i ] ) / ( time−prevTime )/1000 .0
+100.0∗ s i n ( p i /1250∗ time+pi / 2 ) ;

}
e l s e i f ( i >0){ // s e t 1 i n s i d e bottom

se tPo in t s [ i ] = o f f S e t s [ i ] + enc va lue [ i ] / 1 0 . 0
+( enc va lue [ i ]−prev enc [ i ] ) / ( time−prevTime )/1000 .0
−100.0∗ s i n ( p i /1250∗ time ) ;

}
e l s e { // Set 1 i n s i d e top
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s e tPo in t s [ i ] = o f f S e t s [ i ] + enc va lue [ i ] / 1 0 . 0
+( enc va lue [ i ]−prev enc [ i ] ) / ( time−prevTime )/1000 .0
−100.0∗ s i n ( p i /1250∗ time ) ;

}
}
s t o p I f F a u l t ( ) ;

// S e r i a l . p r i n t (” Encoder : ” ) ;
// S e r i a l . p r i n t l n ( newLong / 2 5 0 . 0 ) ;

// S e r i a l . p r i n t (”PID In : ” ) ;
// S e r i a l . p r i n t l n ( sensorValue ) ;

s t r i ngCont ro l IT . Compute ( ) ;
s t r i ngCont ro l IR . Compute ( ) ;
s t r i n g C o n t r o l I L . Compute ( ) ;
str ingContro l OT . Compute ( ) ;
str ingControl OR . Compute ( ) ;
s t r ingContro l OL . Compute ( ) ;

f o r ( i n t i =0; i <6; i ++){
// s t o p I f F a u l t ( ) ;
// motorOutputs [ i ] = ( s e tPo in t s [ i ]− sensorValue [ i ] ) ;
// f ina lOutput s [ i ] = 3∗motorOutputs [ i ] ;
i f ( i >2){

f i na lOutput s [ i ] = 3∗( motorOutputs [ i ]−128);
}
e l s e {

f i na lOutput s [ i ] = 3∗( motorOutputs [ i ]−128);
}

i f ( ( ( sensorValue [ i ]< sensorMin [ i ])&&( f ina lOutput s [ i ]<0))
| | ( ( sensorValue [ i ]>sensorMax [ i ])&&( f ina lOutput s [ i ]>0))){

f i na lOutput s [ i ]=0;
}

i f (k>500&&S e r i a l ){
S e r i a l . p r i n t (”Time : ” ) ;
S e r i a l . p r i n t ( time ) ;
S e r i a l . p r i n t (” Out : ” ) ;
S e r i a l . p r i n t ( i ) ;
S e r i a l . p r i n t (” enc : ” ) ;
S e r i a l . p r i n t ( enc va lue [ i ] / 1 2 5 . 0 ) ;
S e r i a l . p r i n t (” s enso r : ” ) ;
S e r i a l . p r i n t ( sensorValue [ i ] ) ;
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S e r i a l . p r i n t (” PID ” ) ;
S e r i a l . p r i n t ( f ina lOutputs [ i ] ) ;
S e r i a l . p r i n t (” d e s i r e d : ” ) ;
S e r i a l . p r i n t ( s e tPo in t s [ i ] ) ;
S e r i a l . p r i n t (” Curr ” ) ;
S e r i a l . p r i n t l n ( analogRead ( motorSensorPins [ i ] ) ) ;

}
}

i f (k>500){
// S e r i a l . p r i n t l n ( analogRead (A0 ) ) ;

k=0;
}
//Get Base Voltage

md OL OR. setSpeeds (0∗ f i na lOutput s [ 5 ] , 0∗ f i na lOutput s [ 4 ] ) ;
md OT IR . setSpeeds (0∗ f i na lOutput s [ 3 ] , 0∗ f i na lOutput s [ 1 ] ) ;
md IL IT . setSpeeds (0∗ f i na lOutput s [ 2 ] , 0∗ f i na lOutput s [ 0 ] ) ;
k++;

i f ( m i l l i s ()%1000>900){
d i g i t a l W r i t e ( led , HIGH) ;

}
e l s e {

d i g i t a l W r i t e ( led , LOW) ;
}

f o r ( i n t i =0; i <6; i ++){
prev enc [ i ]= enc va lue [ i ] ;
prevSensorValue [ i ] = sensorValue [ i ] ;

}
prevTime = time ;

}
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