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Abstract
The goal of this Master Project was to imple-
ment biologically-inspired control techniques for
a tensegrity robot that will be used for plane-
tary landing and exploration. Indeed, tensegrity
structures are becoming increasingly popular as
a dynamic architecture for robotics. As they are
only composed of compressive elements and ten-
sile elements, they have the potential of being
lightweight, low-cost and more importantly, ro-
bust against impacts.

For these reasons these designs are being cur-
rently explored in the aerospace industry. Outer
space missions require robots that would be ca-
pable of handling very harsh environments, and
being able to reduce costs in what is a very costly
industry is certainly of interest.

Thus, one could imagine using tensegrities as
systems capable of Entry, Descent and Landing
(EDL), as well as mobile systems once they are
on the ground. What’s more, the structure could
be used as a protective cage for a scientific pay-
load which would be safely secured within the
structure.

The author of this report has had the extraor-
dinary opportunity to work on such tensegrity
systems at NASA Ames Research Center, specif-
ically on the new version of the Spherical Under-
actuated Planetary Exploration Rover ball (SU-
PERball). This tensegrity robot is a tensegrity
icosahedron composed of 6 rigid rods and 24 ac-
tuated cables.

SUPERball v2.0 prototype

However, previous versions of the robot only had
12 of its cables being actuated, the remaining 12
being passive. By having more actuators, it was
thought that newer and more e�cient locomo-
tion control algorithms might be possible.

Central Pattern Generators (CPGs) and bio-
inspired controls in general have proven to be

simple models capable of generating very com-
plex gaits in other types of robots, all thanks to
their inherent robustness and modulation capa-
bilities.

Trying to obtain locomotion out of the tenseg-
rity icosahedra was the main research focus of
this project. However, as there is currently no
general methodology as to how one should im-
plement these control algorithms into a physical
system, di↵erent approaches were taken.

Firstly, a double chain of phase oscillators was
implemented and tested thanks to the physical
simulator known as NASA Tensegrity Robotics
Toolkit (NTRT). Though some issues with the
software collection were discovered, corrections
were brought to the simulator. Nevertheless,
some improvements are still required and are cur-
rently underway.

Secondly, a di↵erent approach was taken. By
using Arbitrary Waveform Oscillators (AWOs)
and amplitude-controlled CPGs, a framework to
use CPGs as signal-learners was implemented
and tested with locomotion algorithms obtained
thanks to Reinforcement Learning with the 12-
actuator version of SUPERball.

Finally, an implementation in Matlab was ex-
plored. It incorporates feedback elements into
the CPGs thanks to the Tegotae rule, a Japanese
concept which describes the extent to which a
perceived reaction matches an expectation.

Parallel activities were also done throughout the
project, such as contributing to the manufactur-
ing of mockup models of the robot, testing of
some of the mechanical components, and assem-
bly of the final prototype of SUPERball v2.0.

Due to time constraints and hardware limitations
with the current prototype, only some of the ob-
tained locomotion algorithms could be tested on
the physical prototype of the robot. Future works
will include a comprehensive study of these algo-
rithms in di�cult terrain, as it is believed that
the CPGs will be performant. Dynamic tenseg-
rity structures are a relatively new field in re-
search, but there is no doubt that new applica-
tions will be created in the very near future for
these puzzling, yet compelling structures.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivations

Since ancient times, mankind has always aspired to explore the Universe out of our earthly
bounds. Why are we here? What is our purpose? What should we accomplish in our lifetime?
These are all questions that we believe could be answered (at least in part) thanks to outer
space exploration, which finally started a few decades ago thanks to the hard work of engineers
and scientists alike.

However, though many robotic missions on other celestial bodies have been successful, they
all share one common factor: the robots used for planetary exploration are generally wheeled
rovers, which are relatively simple to control, but not necessarily extremely robust to rough
terrain and perturbations. In order to have robust locomotion, they need very large wheels that
require greater torque or reduction gears, thus increasing the overall weight of the robot (as well
as the cost of the mission). Moreover, this wouldn’t prevent the robot from becoming stuck in
soil, as was the case with the Spirit rover in Mars in 2009.

Human bipeds and other animals on the other hand are capable of extremely complex gaits,
allowing them to achieve incredible locomotion, whether they’re vertebrates or invertebrates.
Why shouldn’t we take more inspiration from ourselves when designing robots? Surely, taking
inspiration from Nature itself would correspond to learning from millions of years of evolution
and adaptation to harsh environments, which would surely be more than useful when exploring
celestial bodies extremely inhospitable and di�erent from our small Earth.

Ultimately, the goal of this Master Project was to contribute to the development of a novel type
of robot for planetary landing and exploration, whose locomotion principles would be completely
unusual in the development of space robotics.

What’s more, the possibility of contributing to such a project within NASA Ames Research
Center (NASA ARC) has truly been a once in a lifetime experience. Being able to help in the
development of tools that will be used by the same agency that has had multiple historical
achievements, such as the first human landing on another celestial body, and taking the first
images from outside our Solar System, is something that the author of this report would like to
show his unending gratitude towards those that have made this possible.
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1.2 Goals

The author of this report has had the opportunity of carrying out his research within the
Dynamic Tensegrity Robotics Lab (DTRL) of NASA ARC. Tensegrity robots, which will be
properly presented in subsection 2.1.2, mimic structures similar to our own muscles and bones,
thus creating robust skeletal structures able to adapt to di�erent environments.

Tensegrity robots would o�er a new approach into how rovers are designed, thanks to their
inherent flexibility and large strength-to-weight ratio [1]. This is the reason why the Spheri-
cal Underactuated Planetary Exploration Rover ball (SUPERball) project has started in 2012
thanks to the funding awarded from NASA’s O�ce of Chief Technologist for the NASA Inno-
vative Advanced Concept1 (NIAC).

In early 2017, the second physical prototype was being developed. The most significant change
from the first one is that the second version has all 24 of its cables actuated, whereas the first
one only had 12; the remaining 12 being passive. SUPERball v2.0 relies on motors that reel
the cables in or out.

Thus, the primary goal of this report’s author was to implement robust locomotion control
algorithms by taking into consideration the unusual design of SUPERball. Then, if time allowed,
map those commands into the full prototype, and test them.

The author was also able to help other researchers in minor tasks, such as prototyping and
testing phases. This report focuses then on the main task and references some aspects and
results of those minor tasks that were obtained between the months of February and August of
2017.

1.3 Contributions of this Master Project

Tensegrity structures being closely related to biological ones, it was of interest to experiment
if Central Pattern Generators (CPGs) would allow to generate locomotion for a tensegrity
icosahedron.

In the scope of the SUPERball project of the DTRL at NASA ARC, three di�erent control
architectures were implemented and tested to carry out this research:

• Using a double chain of phase oscillators (section 5.1);

• Using an arbitrary signal learner (section 5.2);

• Using a Tegotae-based approach (section 5.3).

Each one of these contributions shall be detailed in their respective sections. Other minor
contributions were also done for the manufacturing of scaled mockup models, as well as the
mechanical assembly and testing of the robot (chapter 6).
1
https://www.nasa.gov/directorates/spacetech/niac/2012_phase_I_fellows_agogino.html
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Chapter 2

State of the art

2.1 Tensegrity structures

2.1.1 Tensegrity structures’ definition

As it is stated in the title of this report, the robot being developed in the DTRL is a tensegrity
robot. A short explanation of their principle is presented in this section, as not many people
are familiar with what it implies.

The term tensegrity has first been coined by the American architect Buckminster Fuller in the
1960s, whose meaning is “tensional integrity”. Indeed, this design principle is characterized by
combining compressive and tensional elements such that the di�erent forces and moments are
distributed along the whole structure, and not localized for example at joints, as is generally
the case for rigid structures.

A simple method of creating a tensegrity structure is to have members whose load is purely
(up to a certain extent) compressive or tensional, such as rigid rods and elastic cables. Thus,
the only way the structure would be capable of failing would be if the cables yielded or if the
rods buckled beyond repair. What’s more, the cables are generally preloaded, such that they
are rigid in tension.

Thanks to the specific arrangement of the structure’s members that is generally used, only axial
forces act upon it. There are indeed no bending nor shearing forces.

In order to illustrate this concept, the simplest tensegrity structure may be shown, namely the
3-rod prism, which as the name implies, is composed of three rigid rods, connected by six tensile
cables, as it is shown in Figure 2.1. It can also be seen that the prism can rest on a stable
position if three nodes are touching the ground.

There are theoretically no limitations as to how many rods or cables one uses when creating
a tensegrity structure. There are however di�erent classes of tensegrity structures. The 3-rod
prism shown in Figure 2.1 for example is a Class-1 structure, as it corresponds to a structure
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Fig. 2.1: 3-rod prism tensegrity structure

with only one rod connected to a given node without any additional constraint. Should there
have been nodes where there are more than a single rod connected, or any additional constraints
are characterized, then the class number increases. Figure 2.2 illustrates an example of a Class-2
tensegrity, as in some of the nodes there are two rods connected together.

Fig. 2.2: Class-2 tensegrity example, a concept for an actuated tensegrity worm, taken from [2]

Tensegrity structures have steadily been gaining popularity as static constructions ever since
the 1960s, but with recent advancements in control systems and actuator technologies, it is safe
to assume that they are about to become more and more present in academia and industry as
dynamic forms.

2.1.2 Advantages of tensegrity structures

Tensegrity structures being composed of rigid rods connected through a network of elastic
cables, their main advantages compared to other rigid, “traditional” robot structures are their
light weight, low cost, and inherent robustness to impacts thanks to their ability to deform and
distribute forces across the entire structure.

What’s more, tensegrities are largely present throughout Nature, which leads us to assume that
they are the result of millions of years of evolution, and are thus a robust and e�cient type of
structure.

One example of such presence would be in living cells. It has been demonstrated that tenseg-
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rities can explain much of the complexity of pattern and structure that is observed within the
cytoskeleton [3]. Alternatively, tensegrities can also model the interaction between our bones
and fascia, which is the collection of connective tissues (muscles, tendons, ligaments, etc.) in
our bodies. Figure 2.3 shows for example a tensegrity model of a human spine, showing how
the vertebrae are able to “float” without touching, all thanks to the tensile network holding
everything together.

Fig. 2.3: (Left) Traditional skeleton model of the human spine, which incorrectly uses rigid hinge joints to connect
vertebrae. (Center and right) Human spine models using the tensegrity principle where vertebrae are held together by soft
elements (fascia), taken from [4]

This is also the reason why they are being studied as a new means to design robots, in particular
space robots. Having a robot with a controllable tension network would allow it to be in a
compact configuration, thus allowing tight stowage for launch, which would then be unpacked
for landing once it arrives at its destination. In addition to it, a scientific payload would be
protected, as the robot would act as an airbag by absorbing and distributing impact forces
throughout the network of tensile elements. Along with the fact that locomotion could be
achievable with dynamic tensegrity structures, the robot would continue being a protective
cage for the payload throughout the scientific mission.

Having a robot that integrates Entry, Descent and Landing (EDL), as well as locomotion would
largely decrease the mission’s mass and cost budgets. This is what makes tensegrities particularly
attractive to the aerospace industry.

2.2 SUPERball state of the art

As the author of this report arrived at NASA’s lab a few years after the start of the SUPERball
project, there was already a first prototype that had been built and preliminarily tested.

As the “U” in the acronym suggests, the first version of SUPERball was particularly underac-
tuated, as only 12 of its 24 cables were actuated; the remaining 12 were passive. This would
not only allow to simplify the model and the control aspect of the robot, but also serve as a
proof of concept for moving tensegrity robots with the initial tests that would be carried out.

Figure 2.4 shows a picture of that first prototype. Actuation was done using a single motor
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Fig. 2.4: SUPERball v1.0 prototype picture

per end cap, which was directly connected to a single string. By changing the cables’ e�ective
lengths, the tension in the corresponding cable would be changed. Springs contained within the
rods provided additional compliance in the tension network.

Locomotion in v1.0 was achieved thanks to di�erent control strategies, most notably after im-
plementing deep reinforcement learning algorithms, which allowed the robot to achieve periodic
gaits [5]. Results seemed very promising, as experiments demonstrated that it was possible to
achieve a continuous locomotion gait for SUPERball v1.0’s physical prototype.

However, as of spring of 2017, after many design reviews, SUPERball was being upgraded and
it became possible to actuate all 24 of the structure’s cables. This would surely allow new
experiments in locomotion strategies, as well as e�ciency. What’s more, should there be any
reason we would want to recreate scenarios from v1.0, turning o� 12 of the actuators would
make SUPERball v2.0 mostly similar to its predecessor. The physical prototype of v2.0 is shown
in Figure 2.5.

Fig. 2.5: SUPERball v2.0 physical prototype

The actuation in v2.0 will be done thanks to HEBI Robotics© X8-3 motors1, which are torque-
1
http://hebirobotics.com/products/
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controlled BLDC motors. Each of the 24 motors is connected to a single cable in the structure.
Subsequently, a torque input from the motor would generate a change in the cable’s tension,
which would correspond to a change in the e�ective length of the cable. Therefore, in simulation,
one could model these control inputs either as motor torques or as changes in the cables’ lengths.

It is assumed that Central Pattern Generators (CPGs) could be able to generate more e�cient,
robust and modulative locomotion capabilities for SUPERball v2.0, compared to the previously
found strategies. These shall be detailed in chapter 4.

2.3 NASA Tensegrity Robotics Toolkit (NTRT)

2.3.1 Properties of NTRT

The NASA Tensegrity Robotics Toolkit is an evolving open-source collection of mostly C++
software modules used for the modeling, simulation and control of tensegrity robots. It was
designed by the NASA ARC Intelligent Robotics Group (IRG) in order to enable rapid co-
exploration of structures and control algorithms in a physics based environment built on top of
the Bullet Physics Engine v2.822.

Much tensegrity research can be done thanks to this tool, and not only specifically to tensegrity
icosahedra. The toolkit’s architecture can indeed communicate directly with YAML files, which
thanks to the fact that it is a human-readable data serialization format with a very simple
and clean syntax, allows to create complex tensegrity structures in a considerably shorter and
simpler way than what would be required in C++. The code in section A.1 shows for example
how one would successfully implement the 3-rod prism in Figure 2.1.

Additionally, it does not require recompilation each time a modification to the structure is
made, which allows for example to easily test di�erent controllers with quite di�erent structures.
Other examples of tensegrity structures that can be built with YAML and NTRT can be found
in Figure 2.6.

(a) Snake structure (b) Quadruped structure

Fig. 2.6: Di�erent tensegrity structures deployed in NTRT

For the interested user, more information on how to install the toolkit may be found on
http://ntrtsim.readthedocs.io/en/latest/setup.html. Additional information on how
to get started with the toolkit is found on the same website, but should the new NTRT

2
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim
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user want more details, an extensive doxygen documentation can be found in http://ntrt.
perryb.ca/doxygen/index.html, whereas the NTRT’s GitHub page is https://github.com/
NASA-Tensegrity-Robotics-Toolkit/NTRTsim. All of these links have last been checked on
August 17th 2017.

2.3.2 Architecture of an NTRT app

With NTRT correctly installed, it is possible to create the actual implementation. The main file
is the app file, which is always created in a high level of abstraction and connects the tensegrity
model to a simulated environment and a controller.

A world is first created (flat ground, slopes, hills, etc.), then graphics mode can yes or no be
activated. Next, the tensegrity’s model is attached to the environment, as well as the controller.
The simulation is then finally started, and with a graphical output will continue until the user
manually stops it, or can run for a specific amount of time if the graphics are deactivated.

An example of such a file is given in Appendix B. The implementation using YAML files instead
of C++ model descriptions is the one showcased, as it was the methodology used throughout
this project.
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Chapter 3

Bio-inspired Control Theory

3.1 Dynamical systems

3.1.1 Limit cycles and their behavior

Many dynamical systems in the real world can present oscillations that can end up converging
to a closed curve in a phase diagram. These isolated closed trajectories are what are called limit
cycles. This means that all neighboring trajectories will spiral towards the limit cycle, in the
case of a stable limit cycle.

Oscillators are therefore the category of systems that present this stable limit cycle behavior.
One of the most well-known is the Van der Pol oscillator, which can have applications in electrical
circuits, biology and other fields1. It is described by Equation 3.1.

d2x(t)
dt

≠ µ · (1 ≠ x2) · dx(t)
dt

+ x(t) = 0 (3.1)

Solving this equation gives indeed a limit cycle behavior, as it can be seen in Figure 3.1.

What’s more, limit cycles are also capable of handling perturbations, as the system would return
towards the closed trajectory independently of when the perturbation happens. The fact that
some dynamical systems are capable of generating these periodic, robust oscillations indicates
that it would be possible to achieve stable gait. This could thus be useful should the model be
based on these oscillations.

Another example of well-known oscillator is the Hopf one, described by the set of equations in
Equation 3.2, where µ controls its amplitude, Ê its intrinsic frequency and r its radius.

1
http://www.scholarpedia.org/article/Van_der_Pol_oscillator
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Fig. 3.1: Van der Pol oscillator illustration for di�erent values of µ and initial conditions

Y
__]

__[

dx(t)
dt = (µ ≠ r2) · x ≠ Ê · y

dy(t)
dt = (µ ≠ r2) · y + Ê · x

r =


x2 + y2
(3.2)

In the particular case of this oscillator, the geometrical angle in the phase diagram corresponds
precisely to the oscillator’s phase, which is not generally the case for other oscillators. The
figure below illustrates the solution for this oscillator.

Fig. 3.2: Hopf oscillator solution, along with an added perturbation at time t = 20[s]

What’s more, even though perturbations along the radius direction can be rejected, those in the
phase direction are not. However, this is not necessarily harmful, as they could then be used
to “reset” the oscillator’s phase. This concept is thus the key to understanding synchronization
e�ects, as well as many coordination phenomena in biology when multiple oscillators will be
coupled in the next subsection.
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3.1.2 Systems of coupled oscillators

The previous subsection briefly introduced the notion of dynamical systems that could present
limit cycle behavior. It is widely accepted that many phenomena can be modeled thanks to
coupled oscillators, which means that instead of relying on an equation of the type dx(t)

dt = Fx(x),
as was the case in Equation 3.1, two systems become interdependent, i.e. described by the set
of equations of Equation 3.3, in the case of two coupled systems.

I
dx(t)

dt = Fx(x, y)
dy(t)

dt = Fy(x, y)
(3.3)

Coupling nonlinear dynamical systems together introduces completely new and di�erent dy-
namics, depending on the “strength” of the coupling. Still, with carefully selected couplings,
the overall system’s output may be predicted by its subsystems properties. By using “weak”
couplings, the subsystems should not change much, but obtain the added benefit of maybe
synchronizing, i.e. getting a constant phase di�erence between the oscillators.

By coupling only two Hopf oscillators, very interesting behavior may already be achieved. The
underlying general equations would be given by Equation 3.4.

Y
_____]

_____[

dx1(t)
dt = (µ1 ≠ r2

1) · x1 ≠ Ê1 · y1 + K1 · x2 + K2 · y2
dy1(t)

dt = (µ1 ≠ r2
1) · y1 + Ê1 · x1 + K3 · x2 + K4 · y2

dx2(t)
dt = (µ2 ≠ r2

2) · x2 ≠ Ê2 · y2 + K5 · x1 + K6 · y1
dy2(t)

dt = (µ2 ≠ r2
2) · y2 + Ê2 · x2 + K7 · x1 + K8 · y1

(3.4)

Rewriting these equations in polar coordinates would yield di�erential equations depending on
radius and phase. As it has been stated that synchronization can be obtained if the phase
di�erence is constant, standard fixed point analysis will be useful.

However, in order to simplify the understanding, let the chain of phase oscillators model pre-
sented in [6] be introduced in Equation 3.5, where „i is the phase of oscillator i, Êi its intrinsic
frequency and h a coupling function.

d„i(t)
dt

= Êi + h(„i≠1, „i, „i+1) (3.5)

It actually corresponds to Hopf oscillators where the e�ects of radius are not taken into consid-
eration. These have been previously used to model a chain of oscillators with exclusively nearest
neighbor coupling and allowed to find analytical conditions indicating what was necessary in
order to achieve synchronization. Indeed, Equation 3.6 presents the equations for this simplified
nearest neighbor-coupled single chain of phase oscillators, where the coupling function is a sum
of the sines of the phase di�erences, multiplied by a single common factor.
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Y
__]

__[

d„1(t)
dt = Ê1 + a · sin(„2 ≠ „1)

d„i(t)
dt = Êi + a · sin(„i+1 ≠ „i) + a · sin(„i≠1 ≠ „i)

d„N (t)
dt = ÊN + a · sin(„N≠1 ≠ „N )

(3.6)

With these equations, the actual phase di�erence defined by Âi = „i ≠ „i+1 can be introduced
in order to rewrite Equation 3.6 as Equation 3.7.

d

dt

S

WU
Â1
. . .

ÂN≠1

T

XV =

S

WU
Ê1 ≠ Ê2

. . .
ÊN≠1 ≠ ÊN

T

XV + a ·

S

WWWWWWU

≠2 1
1 ≠2 1

. . . . . . . . .
1 ≠2 1

1 ≠2

T

XXXXXXV
·

S

WU
sin Â1

. . .
sin ÂN≠1

T

XV

Ì

d
≠æ
Â

dt
= ≠æ� + A · ≠æ

S

(3.7)

Finding a phase-locking condition corresponds therefore to finding conditions such that Equa-
tion 3.7 would be equal to 0, i.e. finding the

≠æ
ÂÂ such that Equation 3.8 is satisfied.

≠æ
S = ≠A≠1 ·

≠æ� (3.8)

Still, it seems obvious that not all components of ≠æ
S will have the same magnitude. In order for

the whole chain to synchronize, the equation above simply have to be mathematically feasible,
i.e. matrix A should be invertible and all values of ≠æ

S should be within the unit circle. Thus,
the phase-locking condition is dictated by the component of ≠æ

S with the highest magnitude.

In the case of a chain of N oscillators where we would have the same couplings as in Equa-
tion 3.6 and a constant frequency di�erence (i.e. ≠æ� = [e . . . e]T , ≠æ� œ RN◊1), the system would
synchronize if Equation 3.9 is true.

I
| e
a | Æ 8

N2 , if N is even
| e
a | Æ 8

N2≠1 , if N is odd
(3.9)

Computer simulations illustrate the phase-locking behavior, as it can be seen in Figure 3.3.

It is evident that after a stabilization period the phase di�erence become constant, and the
ensuing fixed points are highlighted by the circles on the right of Figure 3.3.
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Fig. 3.3: Synchronization of single chain of phase oscillators. Circles to the right of the right figure indicate the fixed
points for each oscillator. A perturbation was also added to illustrate the robustness of the limit cycle

3.1.3 Double Chain of Oscillators

The previous subsection showed that a single chain of oscillators is capable of achieving syn-
chronization. However, some models may require higher complexity.

Biological evidence from [7] suggests that spines in vertebrates should in fact be modeled with
a double chain of oscillators, thus increasing the complexity of the interactions of the oscillators
one to another. Instead of being connected to one or two oscillators, as was the case in the
single chain of the previous subsection, each oscillator in the double chain would be connected
to either three or five other oscillators, as is illustrated in Figure 3.4.

Fig. 3.4: Portion of double chain oscillators with equal couplings for di�erent types of connections

This model is thus described by 2 · N oscillators of phases „L
i (left) and „R

i (right), with i going
from 1 to N . The illustration above also indicates that some of the model’s parameters are
set to equal values (coupling factors a, c and k), but this is only to simplify the model and
underlying governing equations, which are therefore given by Equation 3.10.
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Y
________]

________[

d„L
i

dt
= Êi + a · sin („L

i≠1 ≠ „L
i ) + a · sin („L

i+1 ≠ „L
i )

+ k · sin („R
i≠1 ≠ „L

i ) + k · sin („R
i+1 ≠ „L

i ) + c · sin („R
i ≠ „L

i )
d„R

i

dt
= Êi + a · sin („R

i≠1 ≠ „R
i ) + a · sin („R

i+1 ≠ „R
i )

+ k · sin („L
i≠1 ≠ „R

i ) + k · sin („L
i+1 ≠ „R

i ) + c · sin („L
i ≠ „R

i )

(3.10)

What’s more, Rand, Cohen, and Holmes also added to the model a constraint forcing opposing
sides of the spine to either be in-phase or out-of-phase, namely Equation 3.11.

„R
i (t) = „L

i (t) + P , P = 0 or fi (3.11)

Equation 3.11 also has the added benefit of making that both left and right phase derivatives
are equal, as indicated by Equation 3.12.

d„L
i

dt
= d„R

i

dt
(3.12)

Equation 3.13 is obtained by substituting these in Equation 3.10.

d„L
i

dt
= Êi + (a ± k) · [sin (◊L

i≠1 ≠ ◊L
i ) + sin (◊L

i+1 ≠ ◊L
i )] (3.13)

The last equation is actually of the same form as Equation 3.6. The ± sign comes from the
choice of the value of P in Equation 3.11. Subsequently, the same concepts to find phase-locking
conditions may also be used.

3.2 Central Pattern Generators

3.2.1 CPG basics

Locomotion control is a very di�cult yet fundamental problem found everywhere in Nature,
independently of which animal is trying to move. It indeed requires an e�cient coordination of
multiple degrees of freedom despite the many redundancies that may occur in the system, such
as di�erent end-point trajectories, postures, etc.

It has been shown that rythmic locomotion is achieved thanks to a central mechanism [8].
These experiments proved the existence of Central Pattern Generators (CPGs), which act as
a feedforward component to the locomotion problem. Indeed, CPGs are neural networks that
can produce rhythmic patterned outputs without rhythmic sensory or central input, observed
both in vertebrate and invertebrate animals [9], [10].
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Though CPGs could correspond to an open-loop control system, it has been shown that they
are strongly modulated by sensory feedback [11]. Coupling both of together would thus allow
us to obtain a robust closed-loop system, as illustrated in Figure 3.5.

Fig. 3.5: Illustration of the di�erent subsystems present in vertebrate locomotion2

In animal motor control this control strategy can therefore be described by four components,
namely:

• A descending modulation signal coming from the brain, which corresponds to the input
of the system;

• The CPGs, which transform the simple brain signals into the complex outputs that shall
be transmitted to the rest of the animal;

• A musculoskeletal system, corresponding to the plant model;

• And finally the reflexes due to sensory inputs, thus being the feedback loop per say.

Seeing that animals are capable of extremely complex locomotion, it was only natural and a
matter of time before robotics started to take inspiration from it. All items in the previous
list may be transposed into components for a given robot. The modulation signal would be
a driving signal generated by the robot’s controller, which would then be transformed into
di�erent complex inputs thanks to the controller’s logic, thus corresponding to the CPGs. The
robot’s mechanical structure naturally corresponds to the animal’s musculoskeletal system and
sensors embedded in the robot correspond to the sensory feedback.

Many robots have based their control strategy in CPG and sensory feedback control (e.g. [12],
[13], [14]), and have showed promising results. It is therefore only natural that such a control
strategy must be considered in the development of a mechanically and control-wise challenging
robot such as SUPERball.

Therefore, these concepts shall be explored when implementing a control strategy for SUPERball
in subsequent chapters of this report.
2
Figure adapted from Computational Motor Control class, Lecture 5, Slide 32, École Polytechnique Fédérale de

Lausanne, spring 2016
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3.2.2 CPG Implementation

Arbitrary Wave-form Oscillators

As it was stated in the previous subsection, CPGs allow to convert simple drive signals into
complex outputs. Still, there is no general methodology as to how one should implement CPGs.
The only requirement is to obtain a limit cycle with a desired shape.

Ajallooeian et al. proposed a method of obtaining oscillators with an arbitrary limit cycle
shape whose characteristics (frequency, amplitude, o�set, shape and convergence) can be mod-
ulated online [15]. A simple implementation of their findings is through Arbitrary Wave-form
Oscillators (AWOs).

Previous sections introduced the idea of a phase oscillator being a dynamical system described
by Equation 3.5. One such example, where a phase bias „ij between oscillators i and j is
introduced, would be to have:

d„i(t)
dt

= Êi +
ÿ

j

sin („j ≠ „i ≠ „ij) (3.14)

The goal of AWOs is to use the phase values obtained with the equation above to drive them
into a desired output fi(„i). This is done thanks to the following equation describing an
output xi, where the first term corresponds to the feedforward driving term, the second one the
feedback/attractor term (with “i determining the speed of convergence) and the final term Ki

a random perturbation:

dxi(t)
dt

= dfi(„i)
d„i

· d„i

dt
+ “i · (fi(„i) ≠ xi) + Ki (3.15)

An example of such a learned signal is given in Figure 3.6 and Figure 3.7. As it can be seen,
even with perturbation, the phase bias was kept, thus illustrating the inherent robustness of
the dynamic limit cycle.

In both figures, 12 signals were learned as a codyn framework was being implemented to learn
the locomotion commands for SUPERball v1.0, as it shall be stated in section 5.2.

Seeing that in that test implementation each oscillator was coupled to one another, the phase
biases „ij were not converging to the correct values; their mutual interaction modified them
into other values. This was not the case if all biases were set to zero. That is the reason why
both figures show all of them going to zero, as to overcome this issue, instead of making all
fi = cos („i), they were fi = cos („i ≠ 2 · fi · (i ≠ 1)/12).
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Fig. 3.6: AWOs learning 12 equally spaced cosine functions with frequencies equal to 1[Hz]

Fig. 3.7: AWOs learning 12 equally spaced cosine functions with frequencies equal to 1[Hz] and perturbations

Amplitude-Controlled CPGs

Another layer to the complexity of the CPG model. To ensure that smooth transitions are
obtained during amplitude modulation, a critically damped second order linear di�erential
equation may be included in the set of equations. This has indeed successfully reproduced
animal locomotion thanks to a salamander robot [16]. The set of equations used in this model
can thus be found in Equation 3.16.
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Y
________]

________[

d„i
dt = Êi +

q
j

rj · wij · sin („j ≠ „i ≠ „ij)

d2ri
dt2 = ai · (ai

4 · (Ri ≠ ri) ≠ dri
dt )

xi = fi(ri, „i)

(3.16)

The first equation is similar to Equation 3.14, though the amplitude state ri of the oscillator
and the coupling weight wij between oscillators i and j. The second one corresponds to the one
controlling the smooth transitions, where Ri is the intrinsic amplitude to which the oscillator
converges, ri the amplitude variable and ai a constant determining the speed of convergence for
ri to Ri. Finally, the third one corresponds to the arbitrary output which varies with ri and
„i , where in the case of [16] was set as xi = ri · (1 + cos(„i)) to represent the obtained burst
signal. Solving these set of equations would result in what is shown in Figure 3.8.

Fig. 3.8: Activity of the amplitude-controlled CPG model of the salamander robot in [16] when the drive signal is
progressively increased. (A) xi signals are body CPG oscillators. Units are in radians (scale bar on the top right). The red
lines illustrate the transition from standing waves (4[s] < t < 20[s]) to traveling waves (20[s] < t < 36[s]). (B) xi signals are
limb CPG oscillators. Ipsilateral fore- and hindlimbs are in antiphase. (C) Instantaneous frequencies measured as [cycles⁄s].
The variations in the instantaneous frequencies among individual oscillators at times t = 4[s] and t = 20[s] correspond to
brief accelerations and decelerations before resynchronization. (D) Linear increase of the drive d applied to all oscillators.
The horizontal red lines correspond to the lower and upper oscillation thresholds for limb and body oscillators in arbitrary
drive units, taken from [16]

This was done in order to be more closely related to the input signal coming from an animal’s
Mesencephalic Locomotor Region (MLR) of the brain [16]. This signal can indeed be modeled
by a tonic drive that is capable of modulating the frequency and amplitude of specific oscilla-
tions between a lower and an upper threshold, such that some oscillators are react di�erently
depending on the MLR’s signal strength.
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Indeed, saturation functions were also added in that robot, such that gait transitions were
possible (from swimming to walking). One could therefore imagine using something similar to
make SUPERball go smoothly from one type of gait to another, depending on which type of
terrain it is currently located.

Tegotae-based approach

As it was illustrated in Figure 3.5, the CPGs are solely the feedforward component of the
locomotion control algorithm. Though the CPG models previously discussed are inherently
robust to perturbations thanks to their coupled nature, relying solely on feedforward models
may not be enough depending on the desired application.

Owaki et al. have incorporated a feedback component within the minimal CPG model thanks
to what they called the Tegotae approach. This Japanese concept describes the extent to which
a perceived reaction matches an expectation [17]. In that article, Owaki et al. also explain
this concept through a metaphor: if you want to lean against a wall, this corresponds to the
intension of your physical controller, i.e. your nervous system; until the reaction force from
the wall supporting your body is not enough, then “bad” Tegotae is obtained, whereas if it
is su�cient, then “good” Tegotae is obtained. Subsequently, it is a connection between the
perceived reaction received from the environment and the controller’s intention.

In order to quantify this Tegotae value, their model is related to the one of Equation 3.5, but
instead of relying exclusively on neural coupling of the oscillators, a physical communication
between limbs is modeled as in Equation 3.17.

d„i(t)
dt

= Êi + fi = Êi + ˆTi(„i, N)
ˆ„i

(3.17)

In Equation 3.17, fi corresponds to the local sensory feedback component incorporated to the
oscillator model, Ti the Tegotae function per se, which is modulated by the phase/control
variable „i and N represents the sensory information obtained through the environment.

The simplicity and e�ectiveness of this model has also been showcased in [17], where it was
shown that interlimb coordination was achieved for a simple hexapod robot. Indeed, in their
investigation, they found that even a simple Tegotae function where both „i and N are sep-
arated produced nice results. The Tegotae function used by them was the one described in
Equation 3.18.

Ti(„i, N) = ‡1 · Ti,1(„i, N) + ‡2 · Ti,2(„i, N)

= ‡1 ·
1

≠ sin(„i) · NV
i

2
+ ‡2 · sin(„i) ·

A
1

nL
·

nLÿ

jœL(i)
kj · NV

j

B
(3.18)

Equation 3.18 consists of two linearly coupled Tegotae functions thanks to the coupling factors
‡1 and ‡2. What’s more, Ti,1 quantifies Tegotae on the corresponding leg thanks to vertical
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ground reaction forces (GRFs) NV
j whereas Ti,2 that on the neighboring legs. This is coded into

the equation thanks to the set L(i), with nL elements in it. Figure 3.9 illustrates this set in the
case of a hexapod robot.

Fig. 3.9: Definition of L(i), describing a set consisting of the legs neighboring the ith leg. The left, center, and right
figures show the set of left fore (L1), left middle (L2), and left hind (L3) legs, respectively; kj (ka, kp, kc Ø 0) denotes the
weight for each GRF Nj , taken from [17]

It will therefore be interesting to see if trying to do the same with SUPERball will also be able
to generate some type of periodic gait. To the best of the author’s knowledge, there is no animal
in Nature which can directly be represented by a tensegrity icosahedra. Subsequently, there is
no guarantee that this implementation shall work, but this should be tested either way.
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Chapter 4

Controller Implementation

4.1 SUPERball Nomenclature

4.1.1 Nomenclature within NTRT

As computer simulations play a large role in this project, having a well established nomenclature
that accurately distinguishes each rod and cable is of extreme importance.

Figure 4.1 contains a front view of SUPERball. Nevertheless, the YAML language would allow
for the model to be dispatched in NTRT in any rotation configuration.

(a) Rods (b) End Caps (c) Actuators

Fig. 4.1: Established nomenclature for SUPERball v2.0

Each coded number is useful as they serve di�erent purposes. Firstly, each rod is assigned to
a number. Secondly, the ones of each end cap of each rod are distinguished so the YAML file
correctly attaches a cable between two of them. Finally, each cable has its own code number as
it is better to keep independent, higher-level control for each of them, and then merge some of
them together, should we so desire.

What’s more, this nomenclature was established with the physical prototype in mind, as it shall
be explained in subsection 4.1.2.
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4.1.2 Nomenclature within the physical prototype

During the time that the robot’s controller’s implementation was being done, the physical
prototype was being built. In order to ease the transition from the simulation environment to
the actual robot, using the same nomenclature was desired.

Each rod was numbered so that in a stable position they are in pairs according to the plane in
which they are located. What’s more, as each of the six rods of the robot supports four BLDC
motors, every single one of them corresponds to one of the actuated cables within NTRT. For
simplicity, each end cap of each rod would thus be hosting consecutive motor numbers.

Therefore, if one knows what rod is the one of interest, the end caps and motors can easily be
deduced thanks to the representation given in Figure 4.2.

Fig. 4.2: Established nomenclature with physical rod of SUPERball v2.0

With this nomenclature, connection matrices can be defined, namely one representing the con-
nection between each of the actuators and one representing which actuators are connected to a
rod’s end cap. A graphical representation of both of these can be seen in Figure 4.3.

Fig. 4.3: Graphical representation of the connection matrices of SUPERball with the current nomenclature. Left
corresponds to neighboring actuators and right corresponds to actuators connected to an end cap (1 if motor at that end
cap and -1 if at another)

4.2 Preliminary Model Considerations

SUPERball being an icosahedron, the end caps at the rods’ ends are the elements that shall
generally be touching the ground. What’s more, the fact that three nodes would be on the
ground on a stable configuration makes that the formed base triangle is the one keeping the
structure static.

Di�erent methods could be explored to achieve locomotion. For example, one could try to
make two of the nodes come closer together, such that the base shape would no longer be a

Master Project | Marc Leroy - BioRob - IBI - STI - EPFL 22



4.3. Torque Control CHAPTER 4. CONTROLLER IMPLEMENTATION

triangle, but a line, thus being a non-stable configuration, which would make the robot tip over.
Alternatively, if the base triangle keeps its shape but reduces its surface area, and other ones
increase theirs, it can be imagined that the center of gravity would move over time, thus making
the less stable, smaller base triangle get o� the ground. It can easily be imagined that a triangle
with a larger surface area would go into contact with the ground. Consequently, repeating this
process should allow some type of locomotion generation.

Subsequently, SUPERball’s locomotion controller should be implemented by taking into consid-
eration these stable triangles. Not only would they serve as stable intermediate points during
its path, but it would also allow to use the controller implemented for this report in future
tensegrity robots, whether they are icosahedra or any other structure having triangular faces
(e.g. icododecahedra).

Another consideration that should not be forgotten is that the motors are not perfect. There is
indeed a limit as to how quickly they are able to turn. When the physical prototype was built,
tests with the motors showed that at maximum speed they were able to spool out approximately
5[cm] of cable in 1[s]. This was included in the control loops that were implemented for chapter 5.

4.3 Torque Control

As it was stated in section 2.2, the motors being integrated in v2.0 of SUPERball are the X8-3s
from HEBI Robotics©. Seeing that these are torque-controlled motors, it would be beneficial
if all control simulations could be done in accordance to it, such that the mapping of control
inputs into the actual prototype will be more easily done.

It was thus decided to use the tgKinematicActuator class of NTRT, thanks to its imple-
mentation of important motor characteristics, such as inertia and friction. What’s more, the
implementation is such that the control inputs sent will be directly assigned to the desired
torque value of a given actuator.

By implementing SUPERball’s controller in such a manner would surely make hardware test-
ing easier and in more accordance with what would be output by the computer simulations.
However, after some preliminary basic controller implementations within NTRT, some issues
arose.

Specifically, in the class’ functions, a motor’s acceleration was being computed thanks to its
physical characteristics and state at a specific timestamp. It would then be numerically inte-
grated in order to deduce velocity, thus changing the e�ective length of the elastic member it
was attached to in the tensegrity structure.

The problem seemed to be originating from accumulator errors, as turning o� a controller after
a few seconds released an incredible amount of tension, thus making SUPERball "jump" from
the ground, which was physically impossible.

Other users and software developers currently working on NTRT have been notified, and there
is ongoing work to correct these issues. However, as of the writing of this report, no success
has been found so far as to what exactly could be causing the problem. Still, as the simulator
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was built on top of the Bullet Physics Engine (BPE), it may be possible that it was an error
inherent to BPE, considering that it is first and foremost a video game engine. Another method
for the implementation of the controller should then be used.

4.4 Position Control

The issues with the tgKinematicActuator class presented in section 4.3 made it necessary to
revert to a simpler, less accurate model, namely the one from the tgBasicActuator class. This
class unfortunately does not provide with any sort of friction or inertia of a given motor, as
they are more closely related to the elastic members.

Still, it has the added benefit of having been used extensively in previous models built on NTRT,
and not only specifically for SUPERball. What’s more, it should also be noted that previous
research that had hardware successfully validated was based on control strategies based o� of
this class [18].

In this class, the control inputs are directly sent to the cables themselves, directly changing the
e�ective length of the member. Surely, when it would be time to map it to v2.0’s prototype,
some hand tuning would inevitably be required due to the inaccuracies of the model; but should
the controller be trained with some disturbances, it may take into account the model’s errors,
thus making the transition simulations-prototype less harsh.

4.5 Preliminary Tests

4.5.1 General considerations

SUPERball contains 24 motors actuating 24 elastic cables. The control strategy should thus be
able to coordinate all of them simultaneously. However, it is known that one of the kinematically
stable positions for SUPERball is when it is resting in one of the eight triangles formed by three
elastic cables [19]. These are illustrated in Figure 4.4.

One of the methods to be explored would then be considering that each of the robot’s triangles
is a single oscillator. This means that all three cables of the same triangle would receive the
same control inputs from each of their corresponding motors, be it for shortening the e�ective
length or to give the cables more slack. It was thought that this method could give feasible
results, as it could be programmed that if one of the triangle shrinks, the neighboring ones
extend and vice versa.

Thus, neighboring triangles should be in anti-phase. The fact that some triangles may be
increasing their area (thus their tension) means that other ones should be decreasing their
corresponding ones, in order not to create too much of a force gradient in the prototype, which
could be hazardous.

What’s more, seeing that SUPERball v2.0 is being designed such that from the resting position
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Fig. 4.4: Simplified representation of SUPERball. Combining three cables together gives one of the eight kinematically
stable triangles on top of which the robot may rest. Darker shades of green represent the triangles on the background,
whereas the lighter ones represent the ones on the foreground

each motor shall be capable of reeling in or releasing a rod-length of cable (¥ 2[m]), the
oscillations generated by the CPGs will be able to have a large amplitude, which could end
up allowing SUPERball to have greater stride lengths, thus being able to roll faster.

4.5.2 SUPERball as a double chain of phase oscillators

The biological models first presented in subsection 3.1.3 presented reliable means of modeling a
spine, which was capable of achieving phase-locked behavior. SUPERball being a rolling robot,
a regular, synchronized actuation pattern should be investigated. This is the reason why each of
its eight triangles illustrated in Figure 4.4 is being assigned one of phase oscillators of Figure 3.4.
The complete chain is thus illustrated in Figure 4.5.

Fig. 4.5: SUPERball modeled as a double chain of phase oscillators. Each oscillator corresponds to a group of three
actuated cables
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This simplification in the model means however that the chain of oscillators has a “beginning”
and an “end”. Indeed, many di�erent models were attempted such that this would not be the
case, but the ensuing equations would not be capable of generating synchronized behavior. The
subsequent matrix A in Equation 3.8 would indeed not be invertible.

This thus creates a discontinuity in the model, but that was assumed to be non-critical at this
point of the project. What’s more, it was believed that this model would be able to generate
locomotion in a given direction. Subsequent implementations could thus explore this “triangle-
mapping” and change it in order to change directions. For example, should a given mapping
generate forward locomotion, inverting the chain’s oscillators’ order would allow SUPERball to
move backwards.

However, as SUPERball does not correspond exactly to a spine, it was desired to have a model
with more complexity than the one presented in subsection 3.1.3. Couplings would indeed not
necessarily be symmetrical, thus yielding Equation 4.1, where Âij = „i ≠ „j .

Y
________________]

________________[

„̇1 = Ê1 ≠ a21 · sin Â12 ≠ a31 · sin Â13 ≠ a41 · sin Â14

„̇2 = Ê2 + a12 · sin Â12 ≠ a32 · sin Â23 ≠ a42 · sin Â24

„̇3 = Ê3 + a13 · sin Â13 + a23 · sin Â23 ≠ a43 · sin Â34 ≠ a53 · sin Â35 ≠ a63 · sin Â36

„̇4 = Ê4 + a14 · sin Â14 + a24 · sin Â24 + a34 · sin Â34 ≠ a54 · sin Â45 ≠ a64 · sin Â46

„̇5 = Ê5 + a35 · sin Â35 + a45 · sin Â45 ≠ a65 · sin Â56 ≠ a75 · sin Â57 ≠ a85 · sin Â58

„̇6 = Ê6 + a36 · sin Â36 + a46 · sin Â46 + a56 · sin Â56 ≠ a76 · sin Â67 ≠ a86 · sin Â68

„̇7 = Ê7 + a57 · sin Â57 + a67 · sin Â67 ≠ a87 · sin Â78

„̇8 = Ê8 + a58 · sin Â58 + a68 · sin Â68 + a78 · sin Â78

(4.1)

What’s more, Equation 4.1 may be rewritten as Equation 4.2 by remembering the constraint
imposed by Equation 3.11, the latter of which also makes that „̇2·n≠1 = „̇2·n, n = 1, 2, 3, 4.
There is also a benefit in using this constraint: all of the oscillators are in anti-phase with their
respective neighbors. Subsequently, even if there are technically discontinuities in the chain
model, the starting and ending oscillators are also in anti-phase. Subsequently, there shouldn’t
be high tension discontinuities, which could be harmful for the robot.

Y
____]

____[

„̇1 = Ê1 ≠ (a31 ± a41) · sin Â13

„̇3 = Ê2 + (a13 ± a23) · sin Â13 ≠ (a53 ± a63) · sin Â35

„̇5 = Ê3 + (a35 ± a45) · sin Â35 ≠ (a75 ± a85) · sin Â57

„̇7 = Ê4 + (a57 ± a67) · sin Â57

(4.2)

The di�erential equations characterizing the phase di�erence are finally stated in Equation 4.3,
where eij = Êi ≠ Êj .
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Y
_]

_[

˙Â13 = e13 ≠ (a31 ± a41 + (a13 ± a23)) · sin Â13 + (a53 ± a63) · sin Â35
˙Â35 = e35 + (a13 ± a23) · sin Â13 ≠ (a53 ± a63 ≠ (a35 ± a45)) · sin Â35 + (a75 ± a85) · sin Â57
˙Â57 = e57 + (a35 ± a45) · sin Â35 ≠ (a75 ± a85 + (a57 ± a67)) · sin Â57

Ì

d
≠æ
Â

dt
=

S

WU
e13
e35
e57

T

XV +

S

WU
≠a31 û a41 ≠ a13 û a23 a53 ± a63 0

a13 ± a23 ≠a53 û a63 + a35 ± a45 a75 ± a85
0 a35 ± a45 ≠a75 û a85 ≠ a57 û a67

T

XV

S

WU
sin Â13
sin Â35
sin Â57

T

XV

Ì

d
≠æ
Â

dt
= ≠æ� + A · ≠æ

S

(4.3)

An equation exactly similar to that of Equation 3.7 is obtained. If this new matrix A is invert-
ible, then the overall system will synchronize, i.e. SUPERball will achieve periodic, constant
phase-di�erence oscillations for each of its triangles. With this, preliminary results can be ob-
tained. To do so, the cables were commanded as in Equation 4.4, where li is the new cable
rest length command, li0 its initial rest length and „i0 the phase o�set P of Equation 3.11 of
oscillator i.

li(t) = li0 ·
3

1 + 1
2 · cos („i(t) + „i0)

4
(4.4)

The „i0 were set to 0 for i = 1, 4, 5, 8 and fi for i = 2, 3, 6, 7. The reason why this was done
was that unlike the lamprey application used in [6], it wouldn’t make sense for SUPERball to
have one side of the chain having phases too close one to another. Surely, as each oscillator
corresponds to a triangle where three cables retract or extend simultaneously, the three neigh-
boring triangles should generally be having the opposite behavior. This would indeed prevent
high tensions at one of the robot’s nodes, which could ultimately snap one of the cables.

One of these results can be seen in Figure 4.6, where random values that fulfilled the conditions
above were assigned to the controller.

Fig. 4.6: Results of the double chain of oscillators model with random values assigned to the controller’s parameters,
where d

≠æ
Â

dt = ≠æ0

Though it seems that SUPERball followed a general direction, the overall movement was not
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fully straight nor periodic. Optimization of the open parameters should allow better results to
be obtained. This will be detailed in section 5.1.

4.5.3 Mapping the oscillators to di�erent triangles

As it was previously mentioned, it is assumed that by using the double chain of phase oscillators
as defined in Figure 4.5 would allow SUPERball to move in a specific direction. Using the front
view of Figure 4.1 as a reference and by using the acronyms N for North, S for South, E for East,
W for West, P for Proximal and D for Distal, one way one could map the actuators triangles is
given in Figure 4.7.

Fig. 4.7: 1st example of how one could map SUPERball’s triangles as a double chain of oscillators

If for example that would generate forward, it can be assumed that the 2nd mapping given in
Figure 4.8 would be able to generate locomotion towards the left, all thanks to the symmetrical
structure of the icosahedra.

Fig. 4.8: 2nd example of how one could map SUPERball’s triangles as a double chain of oscillators

Tests in section 5.1 shall indicate if these hypotheses are held or not.
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4.6 Tuning the Controller

The large number of open parameters within the chain of phase oscillators model makes it
clear that hand tuning them would not be the most e�ective method of obtaining a successful
controller. Therefore, it would be wiser to use learning algorithms to drive the parameters
towards these practical values.

Machine learning algorithms had started to be incorporated within NTRT in the form of a
learning library of functions that may be called within the general call of an app file1. A few
di�erent options were available, such as Monte Carlo, Gaussian, Co-evolutionary or Genetic
algorithms.

Incorporating this into the NTRT app file can also easily be done. As the library contains
functions that have to be called within the app file, this would change the process flow of the
simulation into what is shown in Figure 4.9.

Fig. 4.9: Process flow of an NTRT app using the Learning Library’s functions

A configuration file (describing for example number of open parameters in the search-space) and
1
http://ntrtsim.readthedocs.io/en/latest/learning-library-walkthrough.html
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the fitness function are the main additions in this case. Multiple calls to the simulations must
also be added, as evolutionary algorithms require multiple evaluations in order to e�ciently
minimize the fitness function, thus yielding the best parameters values.

4.6.1 NTRT determinism issues

NTRT was introduced in section 2.3 as the open-source simulator used in tensegrity research.
It is developed and used not only by NASA, but also by academic institutions such as Berkeley
and Rutgers University2.

However, as it is a constantly updated collection of open-source software modules, support
for it is not as thorough as it would be for a well-established, paid software. Still, NTRT
being developed exclusively for dynamic tensegrity structures, it has numerous advantages and
particularities that allow easy implementation of tensegrity robots. This is the reason it is the
simulator for tensegrities used within NASA.

There are two high-level methods of using NTRT: whether with or without graphical output.
Without graphical output is particularly useful for running multiple episodes of a given simu-
lation. However, it was discovered that there was a software bug that was causing determinism
issues within the simulator. This means that setting the exact same controller parameters and
initial states would not generate the exact same results after a given set time of simulation, as
it should be expected.

For example, the NTRT app could be called with a YAML file. It would then say that SUPER-
ball has moved a distance of y1. Then, if a reset of the app is called, theoretically all initial
states are the same, and SUPERball would move a distance of y1 again. However, it moved in
a di�erent path and for a distance y2 ”= y1. This continued with all reset calls, i.e. calling it
once more would result in a distance y3 ”= y2 ”= y1, then y4 ”= y3 ”= y2 ”= y1, etc. An illustration
of this can be seen in Figure 4.10.

Fig. 4.10: Output of a simulation calling NTRT’s reset function twice. SUPERball starts the simulations at the blue
dots and the controller then runs from t = 3[s] to t = 30[s]. After these 30[s], SUPERball is in one of the green dots and
the controller is deactivated. The reset function is then called and it can be seen that the generated path is completely
di�erent from that of the 1st run. Similarly, the 3rd run is di�erent from the 2nd and the 1st

2
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/graphs/contributors
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This was not discovered earlier as the Learning Library functionalities had not yet been used
by many people. A commit to another portion of NTRT’s GitHub might thus have deprecated
the base reset functions.

Moreover, by the time the author of this report was carrying out his project, he was the only
one within the DTRL at NASA ARC using NTRT, and the main NTRT developers were not
available to investigating these issues. A large portion of time was required to attempt to debug
NTRT.

Firstly, it was verified that the errors were not coming from the controller’s implementation.
All random values or perturbations were removed, such that all states of the controller were the
same. Alas at every run a di�erent overall result was obtained. Memory leaks were also verified
using Valgrind, and there were indeed none that were causing the non-deterministic behavior.

Next, it was verified that the issue was not coming from the implemented YAML model. To do
so, the controller was deactivated and tensions were checked. Indeed, some vibrations at the
start of a simulation could also be the error’s source, as it can be seen in Figure 4.11.

Pretensions were thus adapted in the YAML model to make sure no initial vibrations were
present in the simulation, as it can be seen in Figure 4.12 and Figure 4.13. Still, for practical
reasons it will be easier if this issue proves not to be the issue, as in the physical prototype of
the robot, it will be easier to control all actuators if they are all calibrated to be under the same
pretension.

In addition to it, the ground on NTRT is built out of two parallel planes, the lower one cor-
responding to a height of 0[m]. If part of the structure is between both of them at the start
of the simulation, this may cause other problems as the simulator would try to quickly push
it through the upper solid plane, thus generating very high tensions. The SUPERball model
was thus adapted to make sure that no nodes were between the ground planes nor directly in
contact with either of them. It was therefore dispatched millimiters above the upper ground
plane, which after a first impact on the ground should not create very di�erent tensions on the
robot’s cables.

Finally, even di�erent numerical integration methods were checked. Neither Euler integration
nor using the C++ Boost library (which can integrate using a 4th order Runge-Kutta method3)
were reproducing the same result upon calling the NTRT reset functions.

An ongoing collaboration with the other NTRT developers is underway to try to get determinis-
tic behavior out of the simulator. Specifically, a preliminary patch was added that modified how
Bullet’s colliding objects interact. This did not correct the reset issues either, though it made
the results obtained with or without graphical output closer to one another (up to floating-point
operations precision).

3
http://www.boost.org/doc/libs/1_56_0/libs/numeric/odeint/doc/html/boost_numeric_odeint/

getting_started/overview.html
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Fig. 4.11: Logged data showing that the initial YAML model provoked some vibrations in the rods’ positions (top) and
the cables’ tensions (bottom)
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Fig. 4.12: Intermediate calibration of the YAML model to reduce initial vibrations. All vibrations on the rods (top) and
the cables (bottom) are completely attenuated after 6[s]
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Fig. 4.13: Vibration-reducing calibration of the YAML model completed. There are no vibrations whatsoever on the
rods (top) nor the cables (bottom) when the SUPERball model is dispatched on the NTRT app
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Chapter 5

Results

5.1 Parameter search for double chain of oscillators model

5.1.1 Selected optimization algorithm

With the patch resolving part of the determinism issues within NTRT, it was then possible to try
to find values for SUPERball’s double chain of oscillators model introduced in subsection 4.5.2.
Nevertheless, trying to tune the 16 open parameters of the coupling matrix A in Equation 4.3
by hand would simply be impossible, due to the highly non-linear and coupled nature of this
model. What’s more, four additional open parameters would also be added to the model, namely
amplitude factors –i, as the commands being sent to the strings are given in Equation 5.1. There
are only four and not eight as it was assumed that that simplification was possible thanks to
the symmetry of the double chain of oscillators model (–i = –j , ’i = 1, 3, 5, 7 and j = i + 1).

li(t) = li0 · (1 + –i · cos („i(t) + „i0)) (5.1)

This is the reason why it was first desired to use NTRT’s Learning Library. However, with
the reset functions not being fully resolved, it was necessary to find another solution to test
this algorithm. Seeing that NTRT is called from a Linux terminal command line along with
the YAML model as an argument, a Python script was implemented to run an evolutionary
algorithm. There is indeed the pyswarm library1, which is capable of running the Particle Swarm
Optimization (PSO) algorithm, whose process flow can be found in Figure 5.1.

This algorithm was selected as the author of this report was already familiar with it, and
because it has also already been used for achieving robust CPG implementations, such as in
[20]. However, in order to run the optimization, a cost function needed to be designed.

A minimalistic cost function to be minimized was the selected approach to this problem. Indeed,
it was simply set as the overall horizontal distance between the starting and final positions of
SUPERball’s center of mass. Consequently, the fact that the robot would try to follow a single
1
http://pythonhosted.org/pyswarm/
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Fig. 5.1: Process Flow for a Particle Swarm Optimization

direction along its path is incorporated into the optimization. Thus, the cost function is given in
Equation 5.2, where r corresponds to the position vector of the center of mass, subscripts x and
y both horizontal components, and subscripts i and f meaning initial and final, respectively.

C(r) = ≠
Ò

(rxf ≠ rxi)2 + (ryf ≠ ryi)2 (5.2)

5.1.2 Optimization on flat terrain

The best results for a non-modulated intrinsic frequency signal can be seen in Figure 5.2.
These results were found when running the optimization algorithm on flat terrain. As it can
be seen, the dynamics each oscillator on the left part of the chain is in antiphase with its
respective neighbor on the right part of the chain. There is indeed a direct link between the
oscillators’ output and the cables’ tension, seeing that the latter varies with the cables’ lengths,
i.e. Equation 5.1.

What was interesting to see was that with this model, even if it was optimized on flat terrain,
SUPERball’s gait could have almost been considered that of a legged animal. As the frames on
Figure 5.3 illustrate, two of the rods served as legs, whereas the horizontal ones parallel to the
direction of movement seemed to stabilize the whole gait (the bottom one to have a 3rd contact
point with the ground and the top one for the lateral shifts), just like a tail would in animal
locomotion.

This gives us some insight into Biology. To the best of the author’s knowledge, no macro-
organism found in Nature presents any type of spherical or rotating locomotion system [21].
These results could therefore reinforce the idea as to why animals have evolved to have legs.
Even if physically the animal was developing some members that would allow rolling, structural
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Fig. 5.2: Cables’ tensions per triangle (top) and aerial view of the path done by SUPERball (bottom) after the best PSO
on flat terrain

support structures give better overall stability, albeit they might require more energy. Conse-
quently, natural selection promoted legs throughout the millions of years of evolution that have
happened on Earth.

In order to showcase the smooth modulation that CPGs present, other tests using the parameters
obtained with the PSO were carried out. Indeed, the intrinsic frequency Êi may be changed
online. The simulation results can thus be seen in Figure 5.4 and the video in https://youtu.
be/gph-_QV8AvQ.
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(a) At time t = 5[s] (b) At time t = 7[s] (c) At time t = 9[s]

(d) At time t = 11[s] (e) At time t = 13[s] (f) At time t = 15[s]

Fig. 5.3: A few frames of the best PSO results on flat terrain. The colors of each rod help showing that the obtained gait
is not a rolling one, but surprisingly one where the main contact points with the ground are generally the same. For the
full video, check https://youtu.be/uAiJJ9y0Iv4

5.1.3 Changing directions

In subsection 4.5.3, it was stated that the order of the oscillators on the chain could be permuted,
as long as the neighbor constraints were kept. Theoretically this should allow SUPERball to
change its direction of locomotion.

However, seeing that SUPERball is resting on the SWD triangle at the start of the simulation
of Figure 5.3, this a�ected the possibilities of which gaits could be generated. In that initial
optimization, the robot was moving Northwest, i.e. going over one of the cables. Additionally,
the chain of oscillators was the one illustrated in Figure 4.7.

All other permutations were tested, and those that gave the best results are shown in Figure 5.5
and Figure 5.6.

The remapping of Figure 5.5 allowed SUPERball to go in a di�erent direction with regards to
the original mapping. Though it took longer for it to converge to a stable, periodic gait, the
robot was still capable of maintaining its direction. The accompanying video can be found in
https://youtu.be/Gi8B0cKJuSc.

The one on Figure 5.6 on the other hand took much longer to converge to a stable, periodic
gait. The accompanying video can be found in https://youtu.be/-7o8L6szeLQ.

Due to time constraints, no further exploration of this steering mechanism was possible, but
these preliminary results have already shown that it is possible to control (at least in part)
SUPERball’s direction with this controller.
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Fig. 5.4: Cables’ tensions per triangle (top) and aerial view of the path done by SUPERball (bottom) after the best PSO
on flat terrain with online frequency modulation. The simulation starts exactly like in Figure 5.2, but between 20[s] and
40[s] all intrinsic frequencies are half of the original ones, and between 40[s] and 60[s] they are all 3/4 of the original ones

5.1.4 Optimization on uneven terrain

With this initial gait obtained, new tests could also be run to see if similar results would be
obtained in uneven terrain. Instead of having a flat terrain, periodic ground oscillations could
easily be implemented in NTRT (see Figure 5.7). Therefore, the ground was replaced and other
PSOs were run. The best achieved results can be seen in Figure 5.8.
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Fig. 5.5: Cables’ tensions per triangle (top) and aerial view of the path done by SUPERball (bottom) after the best
PSO on flat terrain. The double chain of oscillators was remapped to be SEP-SWP-SED-SWD-NED-NWD-NEP-NWP,
i.e. that of Figure 4.8

As it could have been expected, moving on rough terrain is much harder than on flat one.
Though the results do not generate a very periodic gait as in the flat ground tests, SUPERball
did follow a general direction trend. A video of this simulation can be found in https://youtu.
be/bR_taQy0HdY.

Finally, modulating the signals is also possible. The same modulation as the flat ground test was
done and though it traveled a smaller distance, it still kept moving into a general direction, as it
can be seen in Figure 5.9. Its respective video is located at https://youtu.be/f8bUB65O74g.
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Fig. 5.6: Cables’ tensions per triangle (top) and aerial view of the path done by SUPERball (bottom) after the best PSO
on flat terrain. The double chain of oscillators was remapped to be NED-SED-NWD-SWD-NWP-SWP-NEP-SEP
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Fig. 5.7: Example of uneven terrain built with NTRT’s tgHillyGround class, with a triangle size factor of 4 and a wave
size factor of 2
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Fig. 5.8: Cables’ tensions per triangle (top) and aerial view of the path done by SUPERball (bottom) after the best PSO
on the terrain shown in Figure 5.7
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Fig. 5.9: Cables’ tensions per triangle (top) and aerial view of the path done by SUPERball (bottom) after the best PSO
on the terrain shown in Figure 5.7
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5.2 SUPERball v1.0 Motor Primitives

The issues with NTRT prompted the need to take a di�erent approach as to how CPGs should
be incorporated with SUPERball’s locomotion. The first version of the robot exhibited simple
forward locomotion. This was achieved thanks to an o�ine optimization method using Rein-
forcement Learning, specifically a modified version of the Guided Policy Search (GPS) algorithm
named Mirror Descent Guided Policy Search (MDGPS).

The GPS algorithm can be seen as a trajectory-optimized direct policy search scaled to high-
dimensional systems that avoid local minima [22]. The MDGPS one optimizes the global policy
by sampling the current iteration’s local policies and approximating the minimum divergence
between the global and local policies [19].

For that publication, SUPERball v1.0 learned a rolling gait using transitions between the robot’s
“faces” as the local policies and how to transition between them with limited sensor data as
the global data. The robot having only 12 actuators, the expected actuation pattern and how
that would be translated into forward locomotion can be seen in Figure 5.10. Subsequently,
those actuators have been fed into the MDGPS algorithm and created a signal that would allow
SUPERball v1.0 to make one full roll, i.e. return to the same equilateral triangle touching the
ground.

Fig. 5.10: Actuation pattern used on SUPERball v1.0. There are 8 equilateral triangles, shown in either red or blue.
Each red triangle represents a face with only one cable actuated. These actuated cables are denoted by the yellow double
arrows. Each blue triangle represents a face with actuators on all cables. The basic forward rolling of SUPERball has
the robot landing with red triangles on the ground during locomotion. The left figure shows each triangle highlighted on
SUPERball and the right one shows the forward locomotion pattern, or walking pattern, of SUPERball, taken from [19]

These motor primitives have been validated with the robot’s first physical prototype. However,
seeing that the GPS algorithm requires a large amount of computational power, it would not
be an e�ective long-term solution to make SUPERball have robust locomotion. A more online
approach should be taken, and this is where the CPGs come in. If the CPGs can reproduce
these motor primitives, as well as modulate them and have smooth transitions between di�erent
frequency regimes, then this could be a better solution to be explored.
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The discrete signals that allowed SUPERball v1.0 can be seen in Figure 5.11. It can also be seen
that they do not seem to be periodic by nature. However, seeing that these 30[s] signals make
the robot complete one full roll, if the signal can be reproduced continuously then theoretically
the robot should achieve continuous rolling.

Fig. 5.11: Signals obtained with the GPS algorithm for SUPERball v1.0

In order to create a continuous periodic function, Fourier series have been used to interpolate
the GPS results. Indeed, given a signal s(x) with variable x, it is possible to represent it as a
partial or infinite sum of harmonically related sinusoidal functions, thanks to the frequency Ê.
The Fourier series equation is given in Equation 5.3.

sN (x) = A0
2 +

Nÿ

n=1

A

an · cos(n · Ê · x) + bn · sin(n · Ê · x)
B

(5.3)

However, using MATLAB version R2016b only allows a limited number of sinusoidal functions,
specifically eight. These 8-component interpolations can be seen in Figure 5.12.

Nevertheless, each obtained signal has a di�erent main frequency. To simplify the CPG con-
troller, each signal will be cut to at the period of the smallest period, i.e. 21.14[s] according
to Figure 5.12. What’s more, hardware constraints on the physical prototype were required for
safety reasons. This also has to be incorporated into the interpolated signals.

The resulting motor primitives, alongside the early data can be seen in Figure 5.13.

These new motor primitives can then be fed to the amplitude-controlled CPGs described in
subsection 3.2.2 so that frequency may easily be modulated. For verification purposes, a non-
varying driving signal was applied such that the signals from Figure 5.13 are reproduced. This
test can be seen in Figure 5.14, where everything was scaled such that the motor primitives
were reproduced if d = 1/30.
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Fig. 5.12: 8-component Fourier series interpolation of the signals in Figure 5.11

Fig. 5.13: GPS signals alongside thresholded Fourier series interpolation

The results of this can be seen in Figure 5.15. The first and last selected frames have the robot
resting on the same base triangle, thus indicating that a full roll was obtained (the full video can
be found in https://youtu.be/GX8vK5J-RHQ). Removing part of the results from the signals
to be learned was therefore not harmful. The robot is still capable of rolling.

The signal reproduction being successful, it is now possible to try to modulate the frequencies,
as it can be seen in Figure 5.16 (with a linearly varying drive signal), and in Figure 5.17 (with
a single modification of the drive signal).
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Fig. 5.14: CPG signals constructed with the Fourier series interpolation

(a) t = 0.0[s] (b) t = 6.0[s] (c) t = 12.0[s]

(d) t = 18.0[s] (e) t = 24.0[s] (f) t = 30.0[s]

Fig. 5.15: Results obtained with the CPG controller learning a signal similar to the one used on SUPERball v1.0

The accompanying video to Figure 5.16 (https://youtu.be/IhnE1WFxQGY) shows that SU-
PERball was unable to roll after about 40[s]. Seeing that the drive was increasing from d = 1/30

to d = 1/6 in 120[s], it can be deduced that the maximum speed with these signals on flat terrain
is approximately 2.3 times the original one.

This test was done to illustrate the smooth transition that happens even when a step func-
tion is used to change the oscillators’ frequencies. It was indeed doubled at t = 60[s]. The
accompanying video is found in https://youtu.be/TnAuZvZVzfM.
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Fig. 5.16: CPG signals with linearly increasing amplitude drive modulation

Fig. 5.17: CPG signals with step amplitude drive modulation

All the results of this section were obtained using OpenSceneGraph (OSG) as the 3D rendering
program for NTRT (instead of GLUT/FreeGLUT) as the GPS framework was installed in a
computer that had this former configuration of NTRT. What is interesting to know though, is
that in that computer there was also a Robot Operating System (ROS) interface setup, which
would easily allow the transition from simulation to physical testing.

With this preliminary framework working, it was expected to rerun the o�ine GPS optimization,
as well as collaborate with Rutgers University, who have been working not only on GPS, but
also on a kinodynamic planner to generate new teaching data for a 24-actuator version of a
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tensegrity icosahedra, i.e. similar to SUPERball v2.0. However, software bugs prevented this
new data to be obtained.

Due to time constraints this implementation has thus been put on hold, though the whole
framework for generating the CPGs out of the motor primitives is functional and can be found
in the report’s author’s personal repository in NTRT’s GitHub page2.

5.3 Matlab implementation

5.3.1 Incorporating Tegotae to SUPERball

The Tegotae approach first described in subsection 3.2.2 o�ers a method of incorporating feed-
back components into the CPGs through physical coupling instead of the neural coupling used
in the other implementations.

SUPERball being a tensegrity robot, all sensed forces are distributed across the whole network of
cables and rods. Thus, it would be interesting to see if taking inspiration from the methodologies
obtained in [17] could be used to generate locomotion for SUPERball.

However, in that article, the oscillators were directly connected to the limbs, who were the
elements sensing ground reaction forces (GRFs). There were indeed three-axis force sensors at
each foot of their robot. In the case of SUPERball, it isn’t the rods that are directly connected
to the oscillators, but the cables. No GRFs can then be directly sensed. Still, as each actuator
is directly connected to two end caps, those could serve as the interface between the physical
environment and the actuators’ phases. Indeed, one could imagine that if a single end cap
perceives an impact, the cables connected to it shall su�er a change in tension, which is being
controlled by the CPGs.

The matrix illustrated in Figure 4.3 (right) would then be incorporated into this report’s Tegotae
implementation. Moreover, as the tensegrity icosahedra is such an interconnected network of
components, using only a single Tegotae rule surely wouldn’t fully capture the whole robot’s
complexity. The other parts that could have a significant impact on a cable’s tension are the
opposite ends to which the actuators are connected to. Certainly, if one of the end caps su�ers
a strong GRF, it is safe to assume that the cables connected to its opposite end shall increase
their actual lengths, thus increasing their tensions.

Subsequently, a Tegotae rule incorporating these dynamics shall also be used. The matrix given
in Figure 5.18 illustrates these “neighboring” connections between an actuator and the “distant”
end caps.

The established Tegotae-based CPG equation used for SUPERball is therefore Equation 5.4.

„̇i = Ê ≠ ‡1 ·
A

1
nL1

·
nL1ÿ

jœL1(i)
NV

j

B

· cos „i + ‡2 ·
A

1
nL2

·
nL2ÿ

jœL2(i)
NV

j

B

· cos „i (5.4)

2
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/SUPERball_CPG
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Fig. 5.18: Graphical representation of the matrix describing the connection between a cable and a “distant neighbor”

The first Tegotae term encapsulates the closer neighbors, i.e. those given in Figure 4.3 (right),
whereas the second Tegotae term encapsulates the “distant” ones. Opposite signs are used for
‡1 and ‡2 as it is assumed that the contributions of both the closer and the further neighbors
is also opposite in its nature.

5.3.2 SUPERball Matlab model

In order to implement the Tegotae rules, the ground reaction forces should be quantified. It was
considered to do so in NTRT, but through discussion with other members of the community, it
was discovered that attempts had already been made to quantify GRFs, but that no significant
results had been obtained.

Subsequently, another simulation environment was required to test the algorithm. A preliminary
Matlab model had been implemented in [23] to do state estimation of SUPERball. The basis
for that model had been compared to the NTRT one and results were quite similar [24].

Using now this model would be beneficial, as normal forces computations had been incorporated
into it. Subsequently, the model was adapted to compute CPGs online, whilst considering the
Tegotae rules described in the previous subsection.
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5.3.3 Parameters search

As there is no way of predicting accurate values that would allow SUPERball to achieve “inter-
limb coordination”, an approach using evolutionary algorithms would be used. Moreover, as the
model being used for this implementation is within Matlab, the Global Optimization Toolbox
may be used.

Two di�erent evolutionary algorithms were selected, namely Genetic Algorithms (GAs) and
Particle Swarm Optimization (PSO). The first one has the benefit of also having a preliminary
implementation within NTRT’s Learning Library. Subsequently, when the issues described
in subsection 4.6.1 will have been fully resolved, its results could then be compared to those
obtained in Matlab. The second one has been selected as it would be useful to compare both
algorithms to assess if one was e�ectively better than the other.

The process flow for the PSO algorithm was presented in Figure 5.1, and that of the GA
algorithm is presented in Figure 5.19.

Fig. 5.19: Process flow for a Genetic Algorithm

To observe if this implementation would make a simple gait emerge, the phases obtained would
be incorporated into the output as Equation 5.5. No antiphase mechanism was added to this
subsection’s model (unlike Equation 5.1), as it is assumed that it will inherently emerge from
the GRFs modulation.

li = li0 · (1 + –i · sin („i)) (5.5)

The open parameters that would be tuned thanks to both algorithms are as follows:

• Common intrinsic frequency of the oscillators Ê;

• Common coupling to the 1st Tegotae equation ‡1;

• Common coupling to the 2nd Tegotae equation ‡2;

• 24 amplitudes for the oscillatory rest length commands –i.

The same cost function as in Equation 5.2 was used. When using a genetic algorithm, the results
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after a population of 150 evolved for 150 generations generated the values seen in Figure 5.20
and Figure 5.21.

Fig. 5.20: Results obtained with the Matlab model on flat terrain after a genetic algorithm optimization

Fig. 5.21: Binary results (left) and aerial view of the path made by SUPERball (right) with the genetic algorithm results
seen in Figure 5.20

It can particularly be seen in Figure 5.21 that after an initial stabilization cycle, a mostly
periodic gait with a frequency of about 0.1[Hz] emerges. Certainly, it is not a perfectly periodic
gait (as it can be seen for example for cable 4 around t = 50[s]), but there is clearly a trend.
The video of this simulation can be found in https://youtu.be/7Z8rnM1mDxI.

Seeing that a general direction was being followed, it may be interesting to see how the system
reacts when the intrinsic frequency of the oscillators is changed. Figure 5.22 to Figure 5.25 show
firstly what happens when the frequency is reduced, then what happens when it is increased.

It can be seen that the path is the same as before, but that SUPERball hasn’t traveled the
same total distance. The intrinsic frequency thus seems to be directly controlling SUPERball’s
speed. The video can be seen at https://youtu.be/r8UWgKCZLnw.

Similarly, increasing the oscillators’ intrinsic frequency allowed SUPERball to follow the same
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Fig. 5.22: Results obtained with the Matlab model on flat terrain after a genetic algorithm optimization. At t = 30[s],
the intrinsic frequency is changed to 3/4 of the original one

Fig. 5.23: Binary results (left) and aerial view of the path made by SUPERball (right) with the genetic algorithm results
seen in Figure 5.22. At t = 30[s], the intrinsic frequency is changed to 3/4 of the original one (green path line)

path, and even go further than the original simulation. The accompanying video is located at
https://youtu.be/tyZKy2Upljw.

In addition to running these optimizations with a GA, PSO was also tested. However, as
Figure 5.26, Figure 5.27 and the video at https://youtu.be/QpIrnD9BqtQ indicate, the path
obtained with it was not as e�cient as the one obtained with the GA. Subsequently, the GA
results should be the ones maintained for further research.

Other cost functions had also been tested, but the obtained results were not as cogent as the
ones obtained with the minimalistic cost function. Indeed, it was thought that reducing the total
variation the cables had to do throughout the simulation (for energetic cost minimization) or
trying to force the signals to be phase-locked would contribute to the synchronization, but they
were too restraining on the robot, even though they were set as multiple orders of magnitude
below the overall distance traveled.

Master Project | Marc Leroy - BioRob - IBI - STI - EPFL 54

https://youtu.be/tyZKy2Upljw
https://youtu.be/QpIrnD9BqtQ


5.3. Matlab implementation CHAPTER 5. RESULTS

Fig. 5.24: Results obtained with the Matlab model on flat terrain after a genetic algorithm optimization. At t = 30[s],
the intrinsic frequency is changed to 3/2 of the original one

Fig. 5.25: Binary results (left) and aerial view of the path made by SUPERball (right) with the genetic algorithm results
seen in Figure 5.24. At t = 30[s], the intrinsic frequency is changed to 3/2 of the original one (green path line)

The results obtained with the Tegotae rule looked very promising. Time constraints prevented
further exploration of this implementation, for example testing it on uneven terrain. However,
the code framework is present and for physical validation it has been discussed that one of the
next steps for the prototype will be to integrate some type of force sensor into the end caps.
This would allow to test the findings of this subsection not with commands computed o�ine,
but with commands being generated online.
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Fig. 5.26: Results obtained with the Matlab model on flat terrain after a particle swarm optimization

Fig. 5.27: Binary results (left) and aerial view of the path made by SUPERball (right) with the particle swarm optimiza-
tion results seen in Figure 5.26
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Chapter 6

Parallel Activities

6.1 Mockup models manufacturing

SUPERball v2.0 was being designed to have rods of approximately 1.9[m] in length. Being
such a large robot, during the development phases, in order to have a better feeling of what
the physical prototype would look like, it was decided to create mockup models of the robot.
What’s more, having smaller scale models is beneficial, as they can also be shown to visitors
and NASA’s management.

The mockup models were 30[%] scale models, which made them easily transportable. A few of
them were manufactured in the spring of 2017, one of which can be seen in Figure 6.1.

Fig. 6.1: SUPERball v2.0 mockup model made of 3D-printed parts, wood and nylon cables

These scaled models were manufactured simply using wood rods, 3D-printed PLA parts and
nylon cables. All but the cables were painted such that the mockup more closely resembles the
physical prototype, which had not yet been built as these were being manufactured.

Figure 6.1 is also interesting as it is promoting a more long-term view of the SUPERball project.
There is indeed a payload within the the spherical tensegrity structure. In the case of the
mockup, that payload is a GoPro© camera, as it is safe to assume that vision will be incorporated
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into future control algorithms for SUPERball or that a scientific instrument would have optics
to some extent. What’s more, having more cables should also have the added benefit of having
a better distribution of unexpected forces across the whole robot.

However, the actuation method is not being showcased in the mockup model in the sense that
the cables’ spooling in the motors are not represented. But this design simplification can easily
be justified during a presentation of the model.

6.2 SUPERball v2.0 prototype manufacturing

This subsection states in more detail SUPERball’s main components, and points out a few
non-trivial considerations one has to take when assembling the full robot.

As previously stated, SUPERball v2.0 is a tensegrity icosahedron. It is therefore consisted of 6
rigid rods and 24 tensile elements. The latter are actuated thanks to 24 Hebi Robotics©X8-3
motors1. These 460[g] BLDC motors are capable of providing a continuous torque of 3[N · m],
and have a maximum speed of 84[rpm]. These values were used in chapter 4 as constraints
on the simulations’ actuators. What’s more, they have an array of di�erent sensors, such as
an accelerometer, a gyroscope, temperature, voltage and current sensors embedded within each
one of them. This makes them quite useful for trying out not only the controllers implemented
by the author, but also other control algorithms, which may require di�erent types of feedback.
Figure 6.2 shows a Computer-Aided Design rendering of one of the robot’s end caps.

Fig. 6.2: SUPERball v2.0 end cap main components

1
http://hebirobotics.com/products/
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The cables are compliant nylon cables with a radius of 4[mm] and are capable of stretching
up to 15[%]. The spools’ housing have also been designed to be capable of reeling in up to
2[m] of cable, as not only locomotion control algorithms are of interest, but also those for
folding/unfolding, which may require greater cable lengths for some of them, and lesser for
others. Figure 6.3 illustrates that.

Fig. 6.3: SUPERball v2.0 folded into a star shape

In addition to it, the cables pass through an omnidirectional routing, which allows to reduce
friction.

However, during assembly of such a tensegrity structure, one has to make sure that all cables
have precisely the same length, otherwise the robot wouldn’t be a symmetrical icosahedron due
to the uneven distribution of tensions. The cables’ routing has also been designed such that the
spooling angle is always the same.

What’s more, calibration is of extreme importance, especially since the motors only have a
resolution of 8 turns. Seeing that reeling in or out the cables may change the number of cable
layers around the motors’ shafts, all of them are set such that the cables are exactly in between
cable layers when it is in its stable configuration. Thanks to this, if cable is released, the it’ll
be at a lower layer, whereas if cable is reeled in then an additional layer will start. This was
important as in the future, new onboard sensors shall be incorporated into the robot’s prototype,
particularly one verifying these cable layers, in order to complement the motors’ encoders.

6.3 Testing a CPG with the manufactured prototype

Right before the end of the author’s stay at NASA ARC, SUPERball v2.0 had been assembled
and initially calibrated.

The control strategies detailed and implemented throughout this report could then be tested.
However, due to time constraints, only one was possible. The selected one was the double chain
of oscillators model, as the signal learner had not yet been provided with motor primitives data
for a 24-actuator version of SUPERball, and because the robot did not have force sensors at its
end caps to be used with the Tegotae implementation.

However, as is often the case when porting simulation results to actual physical prototypes,
the simulation commands were not exactly reproduced by the robot. Some of the cables were
retracting too much compared to what the simulation had computed. This certainly came
from calibration errors and/or slight mismatches between the robot’s components and their
corresponding model’s parameters.
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Still, some face transitions were obtained and can be seen in Figure 6.4. The full video can be
seen at https://youtu.be/nhldoBLI96U.

(a) At time t = 0[s] (b) At time t = 7[s] (c) At time t = 11[s]

(d) At time t = 17[s] (e) At time t = 45[s] (f) At time t = 48[s]

(g) At time t = 50[s] (h) At time t = 53[s] (i) At time t = 76[s]

(j) At time t = 80[s] (k) At time t = 83[s] (l) At time t = 107[s]

(m) At time t = 117[s] (n) At time t = 119[s] (o) At time t = 123[s]

Fig. 6.4: A few frames of the test of the double chain of oscillators CPG model, whose parameters have been optimized
for flat terrain. For safety and testing purposes, the commands were being sent at a lower frequency than that of the
simulation in Figure 5.3. The robot was correctly transitioning from one face to another, but calibration errors and the
simulation/real world mismatch made that the tensions were not correct, therefore making the robot be much “lower” than
what it is supposed to be

In the coming weeks, calibration of the robot will be improved and the obtained control system
shall be tested once more.
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Chapter 7

Conclusion

7.1 Future works

Results obtained throughout this project proved that di�erent implementations of CPGs can
be used to generate locomotion for a tensegrity icosahedron.

The double chain of oscillators model has generated an interesting “walking” gait, which was
tested only once due to time constraints. Porting the results from the simulation environment
to the physical prototype resulted in a few triangle transitions, but there were still some di�er-
ences with the results obtained in NTRT. It would be of interest to continue working on this
implementation, as it was shown that the gaits obtained were stable and periodic.

What’s more, when the initial gait will be properly reproduced by the physical prototype, the
frequency modulated versions will be able to be tested. Then, it will be interesting to test
the results of the optimizations on uneven terrain. In fact, at NASA ARC it will possible to
simulate the required rough terrain and even planetary surface missions thanks to the outdoors
Roverscape test facility1.

Moreover, steering for that model should be further explored. It wasn’t able to have a full 360[¶]
control of its moving direction, but it could follow three di�erent directions.

As it was stated in section 5.2, data for an o�ine machine-learning generated gait for a 24-
actuator version of SUPERball had not yet been generated by the DTRL collaborators. Still,
the signal-learning CPG framework implemented by the author should easily allow to create
the CPG equivalents of the data. Then, it will be possible to test the obtained CPG thanks to
the ROS interface.

Last but certainly not least, the Tegotae-based approach to CPGs should also be tested with the
physical prototype. However, this requires creating and incorporating a GRF sensor to be added
to each end cap of SUPERball. Alternatively, one could imagine computing the GRFs thanks
to a neural network, which would be trained using the simulation results and computing the
forces on the prototype with other sensors that are already present in the onboard electronics,

1
https://www.nasa.gov/feature/roverscape
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such as accelerometers and gyroscopes.

Much remains to be done, but with the talent of the people of the DTRL, there is no doubt
that progress shall be achieved in the very near future.

All code related to the SUPERball project is located in NTRT’s GitHub page. A new branch,
containing all the code written by the author of this report between February and August of
2017, has been added2.

7.2 Summary

Throughout the time that the author was carrying out his research at NASA ARC, the following
contributions have been made by him:

• Created the new nomenclature for SUPERball v2.0 and updated the NTRT models;

• Implemented a double chain of oscillators model for SUPERball;

• Ran an optimization algorithm to tune the double chain of oscillators controller;

• Implemented a framework to learn arbitrary primitive motor signals;

• Created and implemented a Tegotae-based model for SUPERball;

• Ran di�erent optimization algorithms to tune the Tegotae-based controller;

• Helped other members of DTRL in manufacturing and testing tasks.

7.3 Overall conclusion

Throughout this Master Project, it was studied if bio-inspired control techniques could be
applied to a tensegrity robot to generate locomotion.

Though tensegrities in general can be used to model certain biomechanical elements, a complete
tensegrity icosahedron does not exist in Nature (to the best of the author’s knowledge). There-
fore, there was no guarantee that achieving locomotion would be possible by using bio-inspired
control techniques to command SUPERball.

However, all three di�erent approaches were capable of making SUPERball move. CPGs have
proven to provide e�ective feedforward (and partly feedback) components, even for such a highly
complex and non-linear system that is that robot.

The work done in the scope of this project provides a framework to continue exploring these
control strategies. Hopefully in the future many advantages will be found in using CPGs to
control tensegrities. Being such a simple concept to grasp, yet capable of amazingly complex
2
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim/tree/SUPERball_CPG
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gaits, it can be assumed that future robotic applications will be using them more and more
often.

It is very important to have robots with compliant structures, as recent robotics developments
are highlighting the need of having robots that are easy and safe to interact with, as they become
more and more present in our daily lives. Tensegrity structures being inherently compliant
structures, it is safe to assume they will be used in numerous applications in the near future.

The author would like to thank once more all those that have made the opportunity to carry
out this research project at NASA possible. It truly was a once in a lifetime experience and a
dream come true for him. No better way could have been imagined to complete his engineering
studies.

Marc André Leroy
NASA Ames Research Center

Mo�ett Field, CA, USA
Aug. 18th, 2017
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APPENDIX A. YAML/C++ COMPARISON WITHIN NTRT

Appendix A

YAML/C++ Comparison within NTRT
A.1 Implementation in YAML

The following YAML code can be used to generate a simple 3-rod tensegrity structure within
NTRT, which can be seen in Figure A.1.

nodes:
bottom1: [-5, 0, 0]
bottom2: [5, 0, 0]
bottom3: [0, 0, 8.66]

top1: [-5, 5, 0]
top2: [5, 5, 0]
top3: [0, 5, 8.66]

pair_groups:
rod:

- [bottom1, top2]
- [bottom2, top3]
- [bottom3, top1]

string:
- [bottom1, top2]
- [bottom2, top3]
- [bottom1, top3]

- [top1, top2]
- [top2, top3]
- [top1, top3]

- [bottom1, top1]
- [bottom2, top2]
- [bottom3, top3]

builders:
rod:

class: tgRodInfo
parameters:

density: 0.688
radius: 0.31

string:
class: tgBasicActuatorInfo
parameters:
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stiffness: 1000
damping: 10
pretension: 300
max_tension: 70000.0

(a) At time t = 0[s] (b) At time t = 1[s]

Fig. A.1: Output of the presented YAML code for a 3-rod tensegrity structure within NTRT at the initialization (left),
and a few timesteps after (right)

A.2 Implementation in C++

The following C++ code would be the one require to create a 3-rod tensegrity structure. It can
clearly be seen that YAML files should be used instead, thanks to their better readability.

#include "PrismModel.h"
#include "core/tgBasicActuator.h"
#include "core/tgRod.h"
#include "tgcreator/tgBuildSpec.h"
#include "tgcreator/tgBasicActuatorInfo.h"
#include "tgcreator/tgRodInfo.h"
#include "tgcreator/tgStructure.h"
#include "tgcreator/tgStructureInfo.h"
#include "LinearMath/btVector3.h"
#include <stdexcept>

namespace
{

const struct Config
{

double density;
double radius;
double stiffness;
double damping;
double pretension;
double triangle_length;
double triangle_height;
double prism_height;

} c =
{

0.2, // density (mass / length3̂)
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0.31, // radius (length)
1000.0, // stiffness (mass / sec2̂)
10.0, // damping (mass / sec)
500.0, // pretension (mass * length / sec2̂)
10.0, // triangle_length (length)
10.0, // triangle_height (length)
20.0, // prism_height (length)

} ;
} // namespace

PrismModel::PrismModel() :
tgModel()
{
}
PrismModel:: PrismModel()
{
}
void PrismModel::addNodes(tgStructure& s, double edge, double width, double height)
{

// bottom right
s.addNode(-edge / 2.0, 0, 0); // 1
// bottom left
s.addNode( edge / 2.0, 0, 0); // 2
// bottom front
s.addNode(0, 0, width); // 3
// top right
s.addNode(-edge / 2.0, height, 0); // 4
// top left
s.addNode( edge / 2.0, height, 0); // 5
// top front
s.addNode(0, height, width); // 6

}
void PrismModel::addRods(tgStructure& s)
{

s.addPair( 0, 4, "rod");
s.addPair( 1, 5, "rod");
s.addPair( 2, 3, "rod");

}
void PrismModel::addMuscles(tgStructure& s)
{

// Bottom Triangle
s.addPair(0, 1, "muscle");
s.addPair(1, 2, "muscle");
s.addPair(2, 0, "muscle");

// Top
s.addPair(3, 4, "muscle");
s.addPair(4, 5, "muscle");
s.addPair(5, 3, "muscle");

//Edges
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s.addPair(0, 3, "muscle");
s.addPair(1, 4, "muscle");
s.addPair(2, 5, "muscle");

}
void PrismModel::setup(tgWorld& world)
{

const tgRod::Config rodConfig(c.radius, c.density);
const tgSpringCableActuator::Config muscleConfig(c.stiffness, c.damping, c.pretension);

// Create a structure that will hold the details of this model
tgStructure s;

// Add nodes to the structure
addNodes(s, c.triangle_length, c.triangle_height, c.prism_height);

// Add rods to the structure
addRods(s);

// Add muscles to the structure
addMuscles(s);

// Move the structure so it doesn’t start in the ground
s.move(btVector3(0, 10, 0));

// Create the build spec that uses tags to turn the structure into a real model
tgBuildSpec spec;
spec.addBuilder("rod", new tgRodInfo(rodConfig));
spec.addBuilder("muscle", new tgBasicActuatorInfo(muscleConfig));

// Create your structureInfo
tgStructureInfo structureInfo(s, spec);

// Use the structureInfo to build ourselves
structureInfo.buildInto(*this, world);

// We could now use tgCast::filter or similar to pull out the
// models (e.g. muscles) that we want to control.
allActuators = tgCast::filter<tgModel, tgSpringCableActuator> (getDescendants());

// Notify controllers that setup has finished.
notifySetup();

// Actually setup the children
tgModel::setup(world);

}
void PrismModel::step(double dt)
{

// Precondition
if (dt <= 0.0)

throw std::invalid_argument("dt is not positive");
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else

// Notify observers (controllers) of the step so that they can take action
notifyStep(dt);
tgModel::step(dt); // Step any children

}
void PrismModel::onVisit(tgModelVisitor& r)
{

// Example: m_rod->getRigidBody()->dosomething()...
tgModel::onVisit(r);

}
const std::vector<tgSpringCableActuator*>& PrismModel::getAllActuators() const
{

return allActuators;
}
void PrismModel::teardown()
{

notifyTeardown();
tgModel::teardown();

}
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Appendix B

NTRT App File example
The following C++ code shows the basic architecture of the source code required to create an
NTRT app that shall be using a YAML file to create the tensegrity model.

#include "yamlbuilder/TensegrityModel.h"
#include "LengthControllerYAML.h"
#include "core/terrain/tgBoxGround.h"
#include "core/tgModel.h"
#include "core/tgSimulation.h"
#include "core/tgSimViewGraphics.h"
#include "core/tgWorld.h"
#include "LinearMath/btVector3.h"
#include <iostream>
#include <string>
#include <vector>

int main(int argc, char** argv)
{

// For this YAML parser app, need to check that an argument path was
// passed in.
if (argv[1] == NULL)
{

throw std::invalid_argument("No arguments passed in to the application.
You need to specify which YAML file you would like to build.");

}

// create the ground and world. Specify ground rotation in radians
const double yaw = 0.0;
const double pitch = 0.0;
const double roll = 0.0;
const tgBoxGround::Config groundConfig(btVector3(yaw, pitch, roll));
// the world will delete this
tgBoxGround* ground = new tgBoxGround(groundConfig);

const tgWorld::Config config(98.1); // gravity, dm/sec2̂
tgWorld world(config, ground);

// create the view
const double timestep_physics = 0.0001; // seconds
//const double timestep_physics = 0.001;
const double timestep_graphics = 1.f/60.f; // seconds
tgSimViewGraphics view(world, timestep_physics, timestep_graphics);

// create the simulation
tgSimulation simulation(view);
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// create the models with their controllers and add the models to the simulation
// This constructor for TensegrityModel takes the ’debugging’ flag as the
// second argument.
TensegrityModel* const myModel = new TensegrityModel(argv[1],false);

// Attach a controller to the model, if desired.
// This is a controller that interacts with a generic TensegrityModel as
// built by the TensegrityModel file.

// Parameters for the LengthControllerYAML are specified in that .h file,
// repeated here:
double startTime = 5.0;
double minLength = 0.7;
double rate = 0.25;
std::vector<std::string> tagsToControl;
// See the threeBarModel.YAML file to see where "vertical_string" is used.
tagsToControl.push_back("horizontal_string");

// Create the controller
Ctlr const myController = new Ctlr(startTime, minLength, rate, tagsToControl);

// Attach the controller to the model
simulation.attach(myController)
// Add the model to the world
simulation.addModel(myModel);

simulation.run();

// teardown is handled by delete
}
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Appendix C

Optimized simulation parameters
This appendix states the results of the di�erent optimization algorithms used in the CPGs’
implementation.

Ê1 8.20368327e-01
–1 4.94165304e-01
a13 7.72563368e-02
a14 -9.48981451e-01
Ê2 6.64453389e-01
–2 4.99983857e-01
a31 2.63744176e-01
a35 -6.47762233e-02
a32 4.40416848e-01
a36 7.51836036e-01
Ê3 3.22210578e-01
–3 -3.47760919e-01
a53 -5.14416534e-01
a57 -9.99998555e-01
a54 7.01349754e-01
a58 6.60893960e-01
Ê4 9.87293930e-01
–4 -5.00000000e-01
a75 -5.09037753e-02
a76 -9.84507250e-02

Table C.1: Optimized parameters (using PSO) for the double chain of phase oscillators model on flat terrain
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Ê1 0.13284348
–1 0.15958025
a13 -0.71523177
a14 0.84594515
Ê2 0.4146127
–2 -0.48740534
a31 0.17690895
a35 -0.38930058
a32 0.87968614
a36 -0.47189826
Ê3 0.78792464
–3 -0.39499771
a53 -0.28487358
a57 0.54740467
a54 -0.74158756
a58 -0.26540554
Ê4 0.36496253
–4 0.3580396
a75 -0.55317575
a76 -0.15056692

Table C.2: Optimized parameters (using PSO) for the double chain of phase oscillators model on hilly terrain

Ê 0.989569545078806
‡1 -0.002475745160053
‡2 -0.001375942675489
–1 0.125165812983512
–2 -0.211605016093833
–3 -0.211830301660209
–4 -0.367278552730883
–5 0.440640875218469
–6 -0.386002749747558
–7 -0.416039778620822
–8 0.166581960684192
–9 -0.307461797395952
–10 0.244702155148751
–11 0.408002088735525
–12 -0.314583877276441
–13 0.128888984146500
–14 -0.259270273409962
–15 0.461212444578856
–16 0.261602920115001
–17 -0.096403017295290
–18 0.197595406930123
–19 -0.337511736523481
–20 -0.038249438263737
–21 -0.287601134751449
–22 -0.461235777576469
–23 -0.476811373650674
–24 0.376812706540407

Table C.3: Optimized parameters (using GA) for the Tegotae-based model on flat terrain
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Ê 0.977962865824894
‡1 -0.001693474943499
‡2 -0.007238718933995
–1 -0.346258824547989
–2 0.491568345493328
–3 0.073170612902163
–4 0.500000000000000
–5 -0.317308555822357
–6 -0.035712286768713
–7 -0.231355392084874
–8 -0.049867815237308
–9 0.183031436454369
–10 -0.115573105253081
–11 0.427640410982165
–12 -0.177189553155370
–13 0.088259785990946
–14 -0.423975558616757
–15 0.000205723388772
–16 0.455729335682354
–17 0.216866167911571
–18 -0.191516116367079
–19 -0.305416134747032
–20 -0.468784346236993
–21 -0.253661294076273
–22 -0.317156259831665
–23 0.372571170190585
–24 -0.241972725367681

Table C.4: Optimized parameters (using PSO) for the Tegotae-based model on flat terrain
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