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Summary

This dissertation explores the computational and hardware design aspects of
compliant tensegrity robots and structures. I first focus on the control and
computational features of robots based on the tensegrity design principle.
Afterwards, I present the design of two hardware platforms developed to in-
vestigate the practical aspects of compliant tensegrity designs. In addition to
this, I provide a general overview of the statics and dynamics of tensegrities.

Tensegrity Structures
Tensegrities (tensile-integrity) are structures in which compressive elements
(e.g. bars, struts) are held together by tensile elements (e.g. springs or
cables). Due to the specific arrangement of the members, it is possible to
make highly efficient use of materials as only axial forces are present (no
bending or shear forces).

More precisely, one can build free-standing structures consisting of only
struts and cables in which no two struts are connected to each other. Forces
diffuse throughout the whole system instead of concentrating at the joints,
decreasing the risk of failure due to impacts. Additionally, tensegrity struc-
tures can be folded for efficient storage in tight spaces such as payload
fairings. The combination of these properties makes them ideal candidates
for environments requiring robust and capable robot designs.

While tensegrities were invented decades ago by Buckminster Fuller and
Kenneth Snelson, only a handful of robotic systems have applied this design
principle. One of the main reasons for this is the technical difficulty of con-
structing and controlling such structures, due to the subtle interplay between
tensile and compressive forces which propagate through the structure.

In the first part of this dissertation I provide an in-depth overview of
the statics and dynamics of tensegrity structures. I propose new methods
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to optimize the shape of a compliant tensegrity structure and to tune the
stiffness of structures with a redundant number of controllable tensile ele-
ments. Additionally, the two simulation environments used throughout this
work are introduced.

Computational Aspects
Afterwards, I redirect my attention to the computational aspects of tenseg-
rity robots. I first cast tensegrities as a specific type of Physical Reservoir
Computing and demonstrate how this allows feedback controllers for tenseg-
rity robots to be implemented. Reservoir Computing is originally an efficient
technique to use Recurrent Neural Networks. The method works by training
only an output layer while leaving the internal network (or Reservoir) intact.
This contrasts with more established methods which aim at training the full
network. A number of physical implementations of Reservoir Computing
have emerged in recent years, particularly in the photonics and electronics
fields. It is in the realm of Physical Reservoir Computing that I present sim-
ple, yet efficient computational techniques for compliant tensegrity robots.

I then extend this computational approach by introducing learning rules
based on Reward Modulated Hebbian plasticity. I demonstrate that similar
learning rules can be applied to tensegrity robots and Recurrent Neural
Networks. This provides an interesting perspective of the similarity between
highly compliant robots and the well established Neural Network research
domain.

Design of Tensegrity Robots
A considerable part of my PhD research was dedicated to the design of a
compliant tensegrity robot nicknamed ReCTeR, which is short for Reservoir
Compliant Tensegrity Robot. ReCTeR is a small (1m diameter), untethered,
lightweight (1.1 kg) and underactuated (6 DC motors) robot. Its design is
based on the common tensegrity icosahedron (6 struts, 24 tensile elements).
However, the 6 actuated tensile members are not included in the 24 standard
tensile members and instead run through the structure. This design allows
low power motors to considerably deform the robot.

The robot’s two fundamental hardware components are tension springs
and carbon fiber tubes. Carbon fiber struts reduce the mass of the robot,
without reducing its mechanical strength. ReCTeR has been dropped both on
purpose and accidentally from heights up to 1m. None of these impacts has
resulted in mechanical failure, which is remarkable considering the fragility of
the carbon fiber struts in bending. This clearly illustrates one of the benefits



VII

of a tensegrity design. The tensile members are off-the-shelf linear springs
attached to high-strength wires which connect the ends of the carbon fiber
struts. Actuated tensile elements have a rotational DC motor connected
to a wire spindle which wraps a wire attached to a spring, thus effectively
modifying the rest length of the linear spring.

ReCTeR can fold, deploy and roll and has a battery life of over 30min
with all systems active. This makes it possible to validate the simulators
and techniques employed throughout this work based on experimental results
obtained with this robot. Despite its low weight, ReCTeR is equipped with
a large amount of sensors to enable feedback control.

Tensegrities for Space Exploration
In the last Chapter of this work, I focus on tensegrity robots for space ex-
ploration. I have contributed to the NASA Innovative Advanced Concepts
Tensegrity project and have had the opportunity to visit the Intelligent
Robotics Group at the NASA Ames Research Center in California. During
this research period, I worked on SUPERball (an acronym for Spherical Un-
deractuated Planetary Exploration Robot). SUPERball is a next generation
tensegrity robotics research platform. The main differences between this
new platform and ReCTeR are that SUPERball is larger (≈1.5m diameter,
≈15 kg), more robust and highly modular. Its fundamental objective is to
provide an extensible tensegrity robotics research platform rather than a
single robot.

The current target hardware design is a tensegrity icosahedron with 12
actuated tensile members. Unlike ReCTeR, the springs are embedded into
the compressive members of the new robotic platform. This allows for a
safer construction that is capable of handling large tensile forces (which
occur during an impact) without the risk of wires wrapping around springs
or plasticly deforming. The main hardware design aspects such as the wire
spindle design have been inspired by ReCTeR’s, but significant improvements
have been made. While ReCTeR provides modularity at the strut level,
SUPERball’s end caps are fully independent. Each end cap hosts a battery,
an actuator, springs and all necessary electronics. An original design allows
to fix an end cap onto a strut with a single bolt. This makes it possible to
quickly experiment with modified actuator and sensor designs.

Currently, one strut has been built and construction of the full robot
is expected by mid 2014. Successful transfer of the control methods to the
hardware platform is planned within a year.





Samenvatting

Tensegrity-robots en -structuren vormen het hoofdonderwerp van dit doc-
toraat. In het eerste deel van dit werk focus ik mij op de computationele
aspecten van flexibele robots gebaseerd op het tensegrity-principe. Nadien
stel ik het ontwerp van twee robots voor die gebouwd werden om de prak-
tische aspecten van flexibele tensegrity’s te bestuderen. Bovendien geef ik
een overzicht van de statische en dynamische eigenschappen van tensegrity-
structuren.

Flexibel betekent meegaand (compliant in het Engels) in de context van
dit werk. Robots van dit type kunnen soepele interacties met hun omgeving
aangaan, in tegenstelling tot stijve en vaak gevaarlijke klassieke industriële
robots. Meegaandheid kan op verschillende manieren gerealiseerd worden,
bijvoorbeeld door zeer snelle controle in combinatie met krachtsensoren (ac-
tive compliance). Alle robots beschouwd in dit werk bevatten echter flexibele
elementen – zoals veren – en zijn dus inherent meegaand (passive compliance).

Tensegrity-structuren
Tensegrity’s (afkomstig van het Engelse tensile-integrity) zijn structuren
waarin constructie-elementen in compressie worden samengehouden door een
set van elementen die enkel onderhevig zijn aan treklasten. Door de specifieke
configuratie van deze elementen is optimaal gebruik van materialen mogelijk,
omdat ieder element enkel aan axiale krachten onderhevig is (geen buigingen
of schuifkrachten).

Meer bepaald maakt dit mogelijk om vrijstaande structuren te bouwen
die enkel bestaan uit (flexibele) kabels en compressie-elementen waarbij
er geen twee compressie-elementen met elkaar verbonden zijn. Dit heeft
tot resultaat dat inwerkende krachten zich verspreiden doorheen de hele
structuur in plaats van zich te concentreren ter hoogte van de gewrichten.
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Bovendien kunnen tensegrity-structuren opgeplooid worden, zodat ze efficiënt
opgeslagen kunnen worden in een beperkte ruimte. Deze combinatie van
eigenschappen maakt tensegrity’s uitermate geschikt voor omgevingen waarin
een robuust en veelzijdig robotontwerp gewenst is.

Hoewel het tensegrity-principe meerdere decennia geleden werd uitgevon-
den door Buckminster Fuller en Kenneth Snelson, zijn er tot op heden maar
een beperkt aantal tensegrity-robots gebouwd. De voornaamste reden hier-
voor is de complexiteit van het ontwerp en de regelaars ten gevolge van het
subtiele samenspel van trek- en duwkrachten die zich doorheen de volledige
structuur verspreiden.

In het eerste deel van dit doctoraat ga ik dieper in op de statische en dy-
namische aspecten van tensegrity-structuren. Ik beschrijf nieuwe methoden
voor de optimalisatie van de vorm van een tensegrity-structuur en van de stijf-
heid van structuren met een redundant aantal regelbare kabels. Bovendien
stel ik de twee simulators voor die ik heb gebruikt voor dit werk.

Computationele aspecten

Vervolgens richt ik mijn aandacht op de computationele aspecten van tensegrity-
robots. In de eerste plaats maak ik gebruik van het Reservoir Computing
principe voor fysieke systemen en demonstreer hoe regelaars met terugkoppe-
ling voor tensegrity-robots gerealiseerd kunnen worden. Reservoir Computing
is oorspronkelijk een efficiënte leertechniek voor recurrente neurale netwerken.
In tegenstelling tot meer courante methodes wordt bij Reservoir Computing
enkel een uitleeslaag getraind, het interne netwerk (Reservoir in het En-
gels) blijft onaangeroerd. Klassieke methodes trachten in de meeste gevallen
alle verbindingen te optimaliseren, wat problemen oplevert als de precieze
dynamica van het systeem niet geweten is. Recent is men Reservoir Com-
putingtechnieken beginnen te ontwikkelen voor fysieke systemen. Een fysiek
systeem, bijvoorbeeld gebaseerd op optische versterkers of elektronische ele-
menten, neemt in dit geval de plaats in van het interne neurale network. Het
is in dit kader dat ik Reservoir Computing voor fysieke systemen uitbreid
naar tensegrity-robots en eenvoudige, doch efficiënte leeralgoritmes voorstel
voor flexibele tensegrity-robots.

Nadien zet ik deze lijn verder door het invoeren van leerregels gebaseerd
op beloningsgemoduleerde Hebbiaanse theorie. Ik toon aan dat gelijkaardige
leerregels van toepassing zijn op tensegrity-robots en recurrente neurale
netwerken. Dit biedt een interessant perspectief voor de gelijkenis tussen
zeer flexibele robots en neurale netwerken.
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Ontwerp van tensegrity-robots
Een significant deel van mijn doctoraatsonderzoek heb ik gewijd aan het
ontwerp van een flexibele tensegrity-robot die ReCTeR (Reservoir Compliant
Tensegrity Robot) werd gedoopt. ReCTeR is een vrij kleine (1m diameter),
draadloze, lichte (1.1 kg) en ondergeactueerde (6 gelijkstroommotoren) robot.
Het ontwerp van deze robot is gebaseerd op het standaard tensegrity-icosaëder
(6 elementen in compressie, 24 in treklast). De 6 aangedreven verbindingen
behoren echter niet tot de 24 elementen in treklast uit het standaardontwerp.
Ze lopen doorheen de robot, wat toelaat om minder krachtige motoren te
gebruiken die toch grote vormveranderingen van de robot teweeg kunnen
brengen.

De twee voornaamste structurele elementen van de robot zijn trekveren en
koolstofvezelstaven. De koolstofvezelstaven laten toe het gewicht te beperken,
zonder aan robuustheid in te boeten. ReCTeR is meerdere keren opzettelijk
of per ongeluk gevallen van hoogtes tot 1m. Geen enkele van deze voorvallen
had mechanische problemen tot gevolg. Dit is vrij opmerkelijk, gezien de
koolstofvezelstaven slecht bestand zijn tegen buiging en niet-axiale belasting.
Het toont duidelijk één van de voordelen van het tensegrity-principe aan. De
gebruikte trekveren zijn vrij verkrijgbare lineaire veren die door middel van
een kabel worden verbonden met de uiteinden van de koolstofvezelstaven.
De aandrijving van de geactueerde verbindingen bestaat uit een gelijkstroom-
motor gekoppeld aan een kleine draadspoel. Op deze wijze kan de rustlengte
van een veerverbinding aangepast worden.

ReCTeR is in staat om zichzelf plat te vouwen, te ontplooien en te rollen.
De robot heeft een batterijtijd van meer dan 30min met alle systemen en mo-
toren geactiveerd. Deze eigenschappen maakten het mogelijk om ReCTeR te
gebruiken ter validatie van de simulatoren en de ontwikkelde regeltechnieken.
Ondanks het lage gewicht, is ReCTeR toch uitgerust met een groot aantal
sensoren om het gebruik van terugkoppelingsregelaars mogelijk te maken.

Tensegrity-structuren voor de ruimtevaart
In het laatste hoofdstuk van dit doctoraat bespreek ik de toepassingen van
tensegrity-robots voor de ruimtevaart. Tijdens mijn doctoraat had ik de
unieke kans om mee te werken aan het NASA Innovative Advanced Con-
cepts tensegrity-project. In dit kader heb ik de Intelligent Robotics Group
van het NASA Ames Research Center in Californië bezocht. Tijdens deze
onderzoeksperiode heb ik meegewerkt aan SUPERball (Spherical Underac-
tuated Planetary Exploration Robot). SUPERball is een nieuw tensegrity-
onderzoeksplatform dat een aantal ontwerpsaspecten van ReCTeR overneemt.
De grote verschillen tussen het nieuwe platform en ReCTeR zijn dat SUPER-
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ball groter en zwaarder is (≈1.5m diameter, ≈15 kg), meer robuust is en
vooral zeer modulair opgebouwd is. De fundamentele doelstelling is om een
uitbreidbaar tensegrity-onderzoeksplatform aan te bieden in plaats van één
robot met een vast ontwerp.

In het huidige ontwerp is SUPERball een tensegrity-icosaëder met 12
geactueerde kabels. In tegenstelling tot ReCTeR zijn alle veren van het
nieuwe platform geïntegreerd in de staven. Dit maakt het ontwerp veiliger
en laat bovendien grote treklasten op de kabels toe (wat voorvalt bij een
val) zonder risico op plastische vervorming of het onderling verstrikt raken.
Een aantal belangrijke mechanische componenten, zoals het ontwerp van
de kabelaandrijving, zijn gebaseerd op ReCTeR. Desondanks zijn er signifi-
cante verbeteringen aangebracht ten opzichte van het eerdere ontwerp. De
staven van ReCTeR zijn modulair, maar SUPERball gaat een stap verder
op dit vlak. Elk uiteinde van een staaf dat een kabel aandrijft, is volledig
onafhankelijk. Batterijen, motoren, veren en alle elektronische onderdelen
werden samengevoegd en het geheel kan met een enkele bout vastgezet wor-
den aan een staaf. Dit laat toe snel te experimenteren met aangepaste
ontwerpen voor de aandrijving en sensoren.

Op dit moment is een staaf van de robot volledig gebouwd. Voltooiing
van de volledige robot wordt tegen midden 2014 verwacht. Nadien is de
doelstelling om binnen het jaar de in simulatie ontwikkelde regelaars naar
het nieuwe robot platform over te hevelen.
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1
Introduction

This work is an in-depth study of the computational and hardware design
aspects of compliant tensegrity structures. I present a number of results
related to the computational aspects of tensegrity structures and describe
the hardware designs of two hardware platforms developed within the context
of this thesis. Additionally, I provide background information on most aspects
of tensegrity structures to cast this work as a general overview of the current
state of tensegrity robotics.

1.1 Tensegrity Structures

On August 31th 1959 Buckminster Fuller filed a patent in which he described
tensegrity structures as [57]

. . . it has seemed appropriate to characterize the structure fur-
ther as comprising compression elements which are like "islands"
of compression in a "sea" of tension elements.

In a less poetic phrasing tensegrity structures can be defined as a set
of compression elements (bars, struts. . . ) held together by a tension net
(springs, cables. . . ). Many common structures fit this description: suspension
bridges, bicycle wheels. . .While the tensegrity concept is indeed sometimes
used to describe such a broad spectrum of systems, the more common use
of the term is restricted to structures which have the following properties:

Pure Compression and Tension Tensegrities are pin-jointed structures.
This means that a tensegrity configuration can be described as a set of
members interconnected by ideal ball joints. This allows for optimal
use of materials as no shear forces or bending moments act on the
members of the structure.
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Disconnected Compression Members Compressive members float in the
tension net. The maximum number of interconnected compressive
members defines the class of the structure. In this work, I only con-
sider Class 1 tensegrity structure in which compressive members only
connect to tensile members. This partition of tensile and compressive
members provides a global level of compliance to Class 1 tensegrities.

Prestress Tensegrities can be prestressed. The stability of a tensegrity
structure is a global property, which is the result of a subtle energy
balance of all the members. This differs from ubiquitous compression
designs which can often be built sequentially by stacking components.

There is some discussion on whether Snelson [158] or Fuller [58] invented
the tensegrity concept (see [126], p.221 for a discussion or [163]), but I shall
not delve into these historical issues.

Figure 1.1 shows an example of a free-standing tensegrity structure in
simulation and hardware. The image on the left clearly shows how bars are
suspended in a tension net. The configuration shown is called the tensegrity
icosahedron and consists of 6 compressive members held together by 24
tensile elements. This structure has 6 additional actuated tensile members
which transform it into a tensegrity robot.

Figure 1.1: The tensegrity robot introduced in Chapter 6 on
the left and its simulation model on the right.The tensegrity
structures studied in this dissertation consist of fixed length
compressive members (bars), passive tensile members (springs
in line with a cable) and actuated tensile members (springs in
line with an actuated cable). In the illustration on the right,
the bars are shown in red (thick full lines), the passive tensile
elements in green (thin lines) and the actuated tensile members
in blue (thick dashed lines).
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1.1.1 Bridging Fields
An intriguing aspect of tensegrity structures is that they appear at several
scales. Historically, they were first introduced as an architectural design
principle. Later, seminal work by Ingber [84] demonstrated how tensegrities
are particularly suited models for the study of the mechanical behavior of cells
(Figure 1.2). Tensegrities have also been studied for large space structures
(e.g. deployable antennae [172]) and more recently there has been interest in
tensegrities as biomechanical models. Finally, the tensegrity robotics field is
now emerging.

Such a variety of fields linked by a common principle allows one field to
adopt results or methods from another domain. For example, it is possible to
use biomechanical measures to study the locomotion properties of a tensegrity
robot or to investigate the force distribution of the cytoskeleton by building
large scale replicas.

Figure 1.2: Computer simulations of a nucleated tensegrity
cell model exhibits mechanical coupling between the cell, the
cytoskeleton, and the nucleus. Adapted by permission from
Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biol-
ogy [188], 2009.

1.1.2 Contributions to Robotics
Over the past few decades, there has been a clear shift from stiff robots to
platforms that include compliant or flexible elements. The main objectives
are to simplify control problems and to increase the safety of robot-human
interactions. Often, biological analogies are used to substantiate the choice
for flexible elements. Indeed, life on earth appears extremely resilient and
robust, while most of the life forms have far less computational capabilities
than today’s computers. Machines that imitate nature have always been a
core objective of scientific research. Currently, it is still not clear if or when
we will be able to build a robot with better overall autonomous performance
than, say, a cat. However, compliant robotics has brought us promising and
highly convincing demonstrations of robots with similar or better physical
skills than animals or humans for specific situations. Today, compliant robots
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begin to appear in the workplace (e.g. Rethink Robotics’ Baxter robot) and
even space (NASA’s Robonaut in the ISS).

Compliant tensegrities are more than merely a type of robot with a
large amount of flexible elements. They are highly structured, tunable soft
robots with global compliance. It is thus reasonable to say that tensegrities go
beyond the now common approach of adding compliance to a stiff mechanism
(e.g. a robot arm joint) and instead use compliance and a global distribution
of forces as core building blocks.

Investigation of the properties of dynamic compliant tensegrities is op-
portune. The field of compliant robotics is clearly maturing and this makes
it possible to use the lessons learned from this domain and develop funda-
mentally different design and control approaches for soft structures. It is my
hope that the research ideas developed in this dissertation may help establish
tensegrity robots as a significant research domain over the next years.

1.2 Research Questions

I will focus on two main research questions in this dissertation:

How can computational methods provide insight into tensegrity
robot control problems? This first question is not very detailed on
purpose. The goal is to study methods that allow a tensegrity structure with
suitable sensor equipment to simplify its proper control problems.

How to design capable tensegrity robots with rich sensor feed-
back? To be able to validate the methods developed to answer the first
research question, it is invaluable to build hardware prototypes. As will be
detailed in the relevant chapters, the tensegrity robotics field is not (yet)
well established. Therefore, this work should advance the state of the art in
tensegrity robotics by presenting results about the design aspects of capable
compliant tensegrity robots.

1.3 Related Research & Techniques

The work presented herein touches upon multiple fields and research topics.
Presenting every subject here would significantly lengthen this manuscript
without adding scientific value. Instead, the topics are introduced throughout
this work where relevant, except for a few techniques (Reservoir Computing
and tensegrity structures) which merit their proper chapter.
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The original tensegrity concept is first and foremost an architectural
or mechanical principle. As this thesis is submitted to the Department of
Electronics and Information Systems, I provide an extensive overview of
the mechanical properties of tensegrities in Chapter 2. In general, the static
aspects of tensegrity structures are fairly well studied and a number of review
articles and books are available.

To study the computational aspects of tensegrities, I will take inspiration
from three main fields: Recurrent Neural Networks (Reservoir Computing in
particular), Morphological Computation and Hebbian plasticity. Recurrent
Neural Networks and Reservoir Computing have been studied in depth in
our lab and Morphological Computation is a broad concept or idea that
physical structures and robots can perform computations which can simplify
control or sensing problems. Tensegrities provide an ideal setup to study
this concept as tensegrities can be used to model physical systems at various
scales. However, I take a pragmatic approach to Morphological Computation:
When studying computational aspects, I will always focus on solving a task
at hand. Hebbian theory has been around for over half a century, but it
is still actively studied today. I provide variations on the classic Hebbian
plasticity rule to allow for learning in compliant tensegrity robots.

Additionally, I use Central Pattern Generators and Evolutionary Compu-
tation at various points. These topics are discussed in Chapters 4 and 7. In
recent years, a limited number of control methods and hardware platforms
for tensegrity robots have been demonstrated. Chapter 2 reviews tenseg-
rity control methods and Chapter 6 discusses a number of related hardware
designs.

1.4 Thesis Outline

This dissertation is structured as follows. I begin with an in-depth overview
of tensegrity structures in Chapter 2. In Chapter 3 I provide an introduction
to Reservoir Computing. Chapters 4 and 5 present a number of results about
the computational aspects of tensegrity structures. I then go on to present
the hardware design aspects of two tensegrity robots in Chapters 6 and 7.
The former chapter focuses on the design, control and simulation of ReCTeR,
a small scale compliant tensegrity robot built in the context of this thesis.
The latter discusses tensegrity structures for space exploration applications
and the construction of SUPERball, the tensegrity robot platform built at
the NASA Ames Research Center. I end with my conclusions and future
perspectives in Chapter 8.
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Tensegrity Structures

The goal of this chapter is to provide a rather general introduction to tenseg-
rity structures. As tensegrities have been studied in various domains, it is
imperative to define the types of structural elements and the mathematical
and engineering tools used in this work. In addition to this, I also present a
number of new results about the statics of tensegrity structures. After read-
ing this chapter, the reader should have an overview of the main tensegrity
terminology and research problems.

This chapter is organized as follows. I will first introduce the notation
used to describe the connection patterns and spatial arrangement of tenseg-
rities (Section 2.1). After that, I describe stability conditions (Section 2.2)
and continue with linear stiffness and vibration analysis (Sections 2.4 & 2.5)
of tensegrity structures. The main focus of this thesis are actuated tenseg-
rity structures and I therefore present a short discussion about actuation
patterns, which is useful for underactuated systems (Section 2.6). These sec-
tions are followed by form-finding methods and a number of new methods for
self-stress tuning (Section 2.7). Afterwards, simulation techniques are given
for tensegrity structures in Section 2.8. Considerable effort was put into the
validation of the simulators using experimental measurements. As hardware
platforms for these analyses are presented in a later chapter, the relevant
results will be presented there. Finally, I present a literature overview of
control strategies for tensegrity robots (Section 2.9).

Some historic information about tensegrity structures was provided in
the introduction of this thesis and it will therefore not be discussed here. For
a more extensive general introduction to tensegrity kinematics and dynamics,
I refer to Skelton’s book [157].
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2.1 Notation and Terminology

A tensegrity structure consists of a set of compressive members held together
by a tensile network. The compressive members are also called bars, rods or
struts, while the term spring-cable assembly is used for the tensile elements1.
In this work the assumption is made that compressive members have fixed
lengths, while all tensile members have low stiffness and thus behave like
springs. Additionally, all tensile members are considered to be linearly elastic,
meaning that the tension on a tensile member is a linear function of the
distance between its attachments. Every member connects to an adjacent
element at a single point and it is assumed that these contacts behave as
ideal ball joints. Alternative terms for the connection between two members
are node or end cap. Because tensegrities are pin-jointed structures, all forces
act linearly along the members. This allows for efficient use of materials, as
the members need not resist shear or bending forces.

Figure 2.1: A 6-bar Class 1
tensegrity with the minimum
(18) number of tensile elements.
The structure is a truncated
tetrahedron with 4 triangular
faces and 4 hexagonal faces.
Bars are shown as thick red lines,
tensile elements are thin green
lines.

In this work, I only consider 3-dimensional
Class 1 tensegrities [157], i.e. pure tensegri-
ties. This means that no two bars ever share
a common node. Hence there are exactly 2b
nodes with b the number of bars. Calla-
dine provides an extensive discussion on the
number of states of prestress and infinites-
imal mechanisms by extending Maxwell’s
rule [20, 118]. The theoretical considera-
tions of these papers are not directly related
to the work in this dissertation. Hence, they
will not be discussed further. An important
remark is that a Class 1 tensegrity with b

bars needs at least 3b tensile elements, as
each node needs to be constrained in 3 di-
mensions. The tensegrity icosahedron con-
figuration with 24 tensile members and 6
bars, exceeds this requirement and it is in
fact possible to construct 6-strut structures
with only 18 tensile elements (Figure 2.1).

1In a strict sense, a bar is a structural element that can handle both compressive
and tensile forces, while a strut is designed for compressive forces. As it is assumed
that all compressive elements are always in compression (if not, one could replace
it with a tensile member), the terms strut and bars will be used interchangeably.
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2.1.1 Elastic Compressive Elements
In a hardware implementation, every bar element will have a finite stiffness
coefficient, which can be calculated based on the modulus of elasticity of the
material. The two robots discussed in later chapters use carbon fiber and
aluminum bars of approximately 1m and 1.5m in length respectively. The
stiffness coefficient k of these bars can be calculated as:

k = EA

l0
, (2.1)

where E is the modulus of elasticity (Young’s modulus) of the material and
A is the cross-sectional area of the element. The aluminum struts used in the
hardware setup have a cross-sectional area of 132× 10−6 m2 and the carbon
fiber struts have a cross-sectional area of 28× 10−6 m2. Using the Young
moduli of aluminum and carbon fiber, one obtains approximate stiffnesses
of kalu = 6× 106 Nm−1 and kcarbon = 5.1× 106 Nm−1. All tensile elements
used in this work have stiffnesses below 1000Nm−1 and the fixed length
assumption for the compressive members (bars) is thus valid.

As explained in the next section, tensegrities are in static equilibrium
when the potential energy of the structure reaches a local minimum. It is easy
to show that the rods do not store significant amounts of elastic potential
energy and form-finding methods using stiff spring-like compressive members
or fixed length rods will thus generate the same results. In a standard
icosahedron configuration (shown in Figure 2.4), it can be shown that in
equilibrium the compressive member tension equals

√
6 times the tensile

member tension. For a common icosahedron configuration with 24 tensile, 6
compressive members, the bar elastic potential energy can be shown to be at
least 3000 times lower than the tensile elastic potential energy for the spring
constants and prestress levels in this work.

2.1.2 Coordinates
Class 1 structures allow the use of slender elements. These elements are
often be cylindrical as there is no preferential direction in the structure.
In theory, the angular velocity of any member should remain zero in a
pin-jointed structure. Therefore, it is possible to disregard the rotation of
the members and use the positions of the nodes or a linear transformation
thereof as coordinates. A compressive member can thus be modeled as two
point masses with a distance constraint. This description is more elegant and
natural than a common rigid body set of coordinates using the position of the
center of mass and e.g. Euler angles. Forces act at the nodes, the coordinates
of which are directly available. In practice, small amounts of torsion and
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bending can occur in a member due to contact forces or offset attachment
points. However, even in a hardware implementation the moment of inertia
around the longitudinal axis will be at least a few orders of magnitude lower
than the moment of inertia around the other axes2.

ni

nj

z
y

x

ω=0

Figure 2.2: Cartesian coordi-
nates for the description of a
bar. Structures are simulated
by tracking the positions and ve-
locities of the end caps of the
compressive elements. Infinites-
imally thin (line) elements are
modeled and thus zero angular
velocity ω is assumed.

For reasons of consistency, Cartesian coor-
dinates (see Figure 2.2) of the nodes are
used throughout this thesis to describe the
state of a structure. In Skelton’s reference
work [157] and my prior work [22] a different
set of generalized coordinates was used, but
the resulting equations are equivalent (up
to a linear transform). Skelton’s generalized
coordinates allow to decouple the rotational
and translational equations of motion, while
the Cartesian coordinates are more intuitive
because the system is directly modeled as
a spring-mass net with distance constraints.
Note that both these coordinate sets are not
minimal. In [22] and [191] it is shown how

to replace Skelton’s generalized coordinates with a minimal set of generalized
coordinates. However, these equations are far less elegant, provide little
insight and incur the risk of gimbal lock.

2.1.3 Matrix Description
A number of matrices are commonly used to describe and study tensegrities.
This section provides an overview of the most common tensegrity related
matrices, their function and properties.

2.1.3.1 Nodal Coordinates Vector and Matrix

The Cartesian coordinates of all nodes are given by:

N =

x1 y1 z1

. . .

xp yp zp

 =


nT1
nT2
. . .

nTp

 =
[
xy z

]
. (2.2)

2For example, consider the extreme case of a solid 1m rod with a 6 cm radius.
The corresponding ratio of the moments of inertia around the longitudinal axis
and rotational axes is 185.
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It is sometimes convenient to store the nodal coordinates in vector form:

n =
[
x1 . . . xp y1 . . . yp z1 . . . zp

]T
. (2.3)

2.1.3.2 Connectivity Matrix

The matrix C ∈ {0, 1,−1}s×p is called a connectivity matrix and contains
only ones, zeros and minus ones. Here s is the number of members and p is the
number of nodes, which is equal to two times the number of bars3. Each row
of C contains exactly one −1 and one 1 value, the order of which is arbitrary
as all members are symmetric. The positions of the non-zero values indicate
connections between nodes (from-to). A connectivity matrix can be split
(row-wise) into a spring connectivity matrix and a bar connectivity matrix.
Spring connectivity matrices reflect the configurations of tensile members
and bar connectivity matrices those of compressive members. A spring
connectivity matrix Cspring requires sspring ≥ 3p2 (each node is connected to
at least three springs). Only Class 1 tensegrity structures are considered in
this dissertation, which implies that sbar = p

2 for a bar connectivity matrix
Cbar.

In graph theory, a connectivity matrix is also called an incidence matrix.
This provides some interesting insights. For example, the matrix CTC is a
Laplacian matrix. A Laplacian matrix is always positive semidefinite and its
rank deficiency corresponds to the number of connected components (1 in
case of a connected structure). Certainly for larger structures, results from
graph theory can provide insight into the static properties of a tensegrity. In
fact, the Laplacian and in particular the algebraic connectivity are a popular
research topic with applications in various fields [35, 51, 124].

2.1.3.3 Nodal Forces Vector and Matrix

The nodal forces matrix is defined as:

F = [fx fy fz] . (2.4)

This matrix has the same dimensions as the nodal coordinates matrix N ,
but contains the nodal forces instead of coordinates. Similarly to the nodal
coordinates vector, the nodal forces are sometimes used in vector form:

f =
[
fx1 . . . fxp f

y
1 . . . fyp f

z
1 . . . fzp

]T
. (2.5)

3These equations can be extended to include fixed nodes. I will not address this
here, as free-standing tensegrities are the main focus of this thesis.
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2.1.3.4 Force Density Vector and Matrix

A common quantity in tensegrity research is the force density of a member.
The force density is defined as the ratio of the tension or force f on a member
and its current length l:

q = f

l
. (2.6)

The force densities are used in both vector q and matrix Q = diagv (q) form4.
Many equations related to pin-jointed structures and tensegrities in par-

ticular, can be written in terms of force densities. If this is the case, one is
free to scale the structure by scaling the member forces by the same amount.
Additionally, the member stiffness or rest length can be chosen freely.

2.1.3.5 Member Length Vector and Matrix

The elements of the vector l and matrix L = diagv (l) are the current lengths
(distance between adjacent nodes) of the members. For elastic members, l0
and L0 contain their rest lengths, which is the length at which the tension
of the member becomes zero.

2.1.3.6 Stiffness Matrix

The stiffness matrix relates small nodal displacements and nodal forces in
vector form:

Kδn ≈ δf . (2.7)

As shown later in Section 2.4, it can be computed by taking the partial
derivatives of the nodal forces with respect to the nodal coordinates:

K = ∂f

∂n
. (2.8)

Note that the stiffness matrix is not constant and depends on the current
configuration of the structure as well as the tensions. The variable K on
the left-hand side of the above equation should thus be intepreted as the
function K (n, q).

4The diagv operator transforms a vector into a diagonal matrix.
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2.1.3.7 Stress Matrix

The stress matrix is defined as:

E = CTQC. (2.9)

This matrix relates nodal coordinates and nodal forces due to internal forces:

F = EN . (2.10)

The expanded stress matrix is obtained by:

G = I3 ⊗E, (2.11)

which defines the equivalent relationship for nodal forces and coordinates in
vector form:

f = Gn. (2.12)

Note that the expanded stress matrix is a function of the nodal coordi-
nates and in general does not equal the stiffness matrix (Section 2.4). It can
be seen that due to its similarity to the Laplacian matrix CTC, the stress
matrix will also have at least 1 zero eigenvalue. In fact, this matrix should
have at least 4 zero eigenvalues (12 for the expanded equilibrium matrix), a
fact that will be used in the section on form-finding [197].

In the above equations, C is generally constant (the connectivity is fixed)
and Q is a non-linear function (Euclidean distances) of the nodal coordinates
n and the properties of the tensile elements.

2.1.3.8 Equilibrium Matrix

Eq. 2.12 is a linear function of the nodal coordinates or the force densities,
because E is linear in q. It is often convenient to decompose this formula in
another form:

Aq = f (2.13)

A =

CTdiagv(Cx)
CTdiagv(Cy)
CTdiagv(Cz)

 . (2.14)

The matrix A is called the equilibrium matrix.
Remark that there is some confusion in the literature about the naming

of the equilibrium matrix and stress matrix. In [197] the stress matrix
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(according to the definition in this work) is called the equilibrium matrix.
Connelly has an equivalent definition for the stress matrix to mine [29], while
Tibert uses both the terms stress matrix and force density matrix to refer to
the same matrix [171]. Motro uses the same definition for the equilibrium
matrix as presented here [126].

2.2 Equilibrium Conditions

The static equilibrium conditions for tensegrity structures and pin-jointed
structures have been studied for a long time and various types of stability
have been defined, mostly based on properties of the matrices defined in
the previous section. I provide a brief overview of the two basic conditions
for stability and refer the reader to the extended literature on the subject
for additional stability condition. The reason why I limit the scope of this
section is that for tensegrity robotics the connectivity and basic shape are
most often a driven parameter due to practical constraints.

2.2.1 Balance of Forces
The basic condition for equilibrium is that the net nodal forces balance out:

0 = Gn, (2.15)

or equivalently:

0 = Aq. (2.16)

For a valid tensegrity structure the constraint qspring > 0 ensures that
springs only carry tension loads. These conditions are trivially extended to
include external loads and gravity.

The quadratic form qTATAq = 0 of the last equilibrium equation is often
convenient to write form-finding or self-stress problems as an optimization
problem. For non-degenerate configurations, the fact that C is full rank
ensures that the matrix ATA is non-singular (assuming no parallel springs).

2.2.2 Stability of an Equilibrium
A force balance only means that for a particular shape and set of force
densities, the structure does not experience any accelerations. Analogous
to an inverted pendulum, which has an unstable equilibrium in the upright
position, it is important to investigate the stability of such an equilibrium.
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The standard way of doing this is by verifying that the potential energy
of the structure is at a local minimum. This ensures that (small) deviations
from the equilibrium state will generate restoring force in the direction of
the equilibrium. As tensegrities can have multiple equilibrium states, it is
only feasible to require a local potential energy minimum.

By definition, the stiffness matrix provides a relationship between small
nodal displacements and the nodal forces generated by them. This allows
for the common approximation of the change in potential energy due to a
nodal displacement:

u(N + δN)− u(N) ≈ 1
2δn

TKδn. (2.17)

For a minimum of potential energy, the requirement is u(N+δN)−u(N) > 0
for all δN excluding rigid body modes (translations & rotations). This simply
means that the non-rigid body mode eigenvalues of the stiffness matrix (which
is thus the Hessian of the potential energy) need to be strictly positive.

In the inverted pendulum example, the Hessian has a negative eigenvalue
when the pendulum is in the upright position. A similar situation is un-
common for practical tensegrity structures. Instead, zero eigenvalues of the
stiffness matrix can occur. These degenerate equilibria correspond to zero
stiffness mechanisms. This means that there are (first order) flexes of the
structure which do not alter the potential energy of the system. In practice,
it can be useful to intentionally create such a mechanism to facilitate active
folding of a structure. In this context, Section 2.7.6.2 presents a technique
to tune the eigenvalues of the stiffness matrix and Section 2.4.1 provides a
situation in which counterintuitive flexes can occur.

Tensegrities with multiple equilibrium states (bistable and multistable
solutions) are beyond the scope of this dissertation, but could show potential
for tensegrity locomotion by switching between equilibrium states. For exam-
ple, a tensegrity prism can be pushed inside-out, which results in a mirrored
stable configuration. Similarly, there are examples of stacked structures ar-
ranged in a torus shape, which can be twisted. This last example could be
advantageous for pipe climbing tensegrity robots.

2.2.3 Extended Equilibrium Conditions
The previous paragraphs have provided only very basic equilibrium and
stability conditions. However, various other stability criteria are known
for tensegrities and pin-jointed structures in general [189]. For example,
Connelly [29, 198] introduces the super stability condition; a stronger equi-
librium condition which depends only on the properties of the stress matrix.
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As equilibrium conditions and form-finding are closely related, the extensive
form-finding literature provides various alternative formulations of the equi-
librium conditions [171]. Note that an equilibrium condition does in general
not ensure stability of a tensegrity structure. Tensegrities in equilibrium can
be unstable (e.g. due to a mechanism).

2.3 Actuation and Sensing: Spring-Cable
Assemblies

Most experiments in this thesis involve actuated structures with embedded
sensors. In this section, I define the setup and terminology used for this.

Actuation and sensing only involve the tensile members of a structure.
The hardware robots developed in the context of this thesis have additional
sensory equipment embedded in the bars, the properties of which will be
discussed in the relevant hardware chapters.

motor

l0
sensor

f
spring

k

node 0 node 1

Figure 2.3: Conceptual model of a spring-cable assembly. All
tensile members in this thesis have passive compliance. Actuated
members have a series motor that changes the length of a cable
inline with a spring, thus changing the effective rest length of
the assemby. Inline force transducers are used to sense the
spring/cable tension.

A tensile member is realized by a spring-cable assembly. Spring-cable
assemblies have various possible physical realizations, all of which implement
the conceptual model presented in Figure 2.3. The model consists of two
nodes with 3 series elements in between them. From left to right, one first
sees the force transducer to measure the tension f on the assembly. A
linear spring with spring constant k sits in the middle of the assembly. In the
model, the linear spring has zero equilibrium and acts as a pure linear tension
element. The last element is an actuated cable. An actuator changes the
length of a cable, which modifies the effective rest length of the spring-cable
assembly.
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The tension on the spring-cable assembly is given by:

f = kmax (l − l0, 0) (2.18)
= kmax (‖n1 − n0‖ − l0, 0) , (2.19)

where n1 and n0 are the positions of the two nodes.

The force density of a spring-cable assembly in tension is thus given by:

q = f

l
(2.20)

= k

(
1− l0

l

)
. (2.21)

2.4 Stiffness Matrix

In this section, I present a linear static analysis of tensegrity structures.
This provides insight into stiffness and oscillatory properties, as well as the
differences between actuation patterns. Most of the equations presented here
can be derived using linear dynamical systems and finite element theory.

The derivation of the stiffness matrix is based on the descriptions in
[64, 152, 197]. To simplify the mathematical formulation, I assume linear
elastic tensile and compressive members. Each bar is modeled as two point
masses and tensile members attach at these points. This disregards twisting
of the bars, which in practice only minimally influences the behavior of a
tensegrity robot.

More precise models are necessary to obtain accurate estimates of the
behavior during impact. However, these effects are beyond the scope of this
work. Pure axial loading is a basic assumption for tensegrity structures,
which unfortunately cannot be guaranteed during impact. Impact forces
take time to propagate through the tensile and compressive network. As
such, bending moments can exist during the brief period that the structure
needs to rebalance itself. To the best of my knowledge there has been no
significant research in this direction, although the University of Idaho has
started performing drop tests to investigate these effects ([1] and personal
communication).

The stiffness matrix K is obtained by partial differentiation of the nodal
forces with respect to the nodal coordinates N . For the elements x of N
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this gives:

∂fx
∂x

=
[
∂E

∂x1
x
∂E

∂x2
x . . .

∂E

∂xp
x

]
+E (2.22)

∂fy
∂x

=
[
∂E

∂x1
y
∂E

∂x2
y . . .

∂E

∂xp
y

]
(2.23)

∂fz
∂x

=
[
∂E

∂x1
z
∂E

∂x2
z . . .

∂E

∂xp
z

]
. (2.24)

Using the definition of the stress matrix E, one obtains:

∂E

∂xi
= CT ∂Q

∂xi
C (2.25)

∂Q

∂xi
= L0SL

−2 ∂L

∂xi
. (2.26)

The diagonal matrix S contains the spring constants k of the members.
Note that I use spring constants k instead of Young’s modulus (modulus of
elasticity) which is common in mechanical engineering and materials science.
The reason for this is that for the robots developed in this thesis, the elastic
members are tension and compression springs of low axial stiffness. The
main characteristic of these elastic elements is the spring constant k as their
other properties (e.g. Poisson’s ratio) are of less importance in most robotics
applications.

Now compute the nodal coordinate differences as:

[uvw] = CN . (2.27)

The diagonal matrices U , V and W contain the values of u, v and w as
non-zero elements respectively. Note that the matrix W represents a set
of coordinate differences here, whereas W refers to a weight matrix in the
remainder of this thesis.

Noting that L2 = U2 + V 2 +W 2 allows to compute the derivatives of
member lengths with respect to the nodal coordinates:

∂L

∂xi
= L−1

[
U
∂U

∂xi
V
∂V

∂xi
W

∂W

∂xi

]
, (2.28)

with

∂U

∂xi
= Ci

∂V

∂xi
= 0 ∂W

∂xi
= 0. (2.29)

Here Ci is a diagonal matrix containing column i of C as non-zero elements.
Similarly, ci is a vector containing the same values. Using these definitions,
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one obtains:

∂E

∂xi
x = CTL0SL

−3U2ci, (2.30)

where slack spring-cable assemblies are discarded.

Now introduce the variables Dx = CTUL−1, Dy = CTV L−1 and
Dz = CTWL−1. The derivatives of the nodal forces with respect to the
nodal coordinates can then be written as (again shown for the elements x of
N):

∂fx
∂x

= DxL0SL
−1DT

x +E (2.31)

∂fy
∂x

= DyL0SL
−1DT

x (2.32)

∂fz
∂x

= DzL0SL
−1DT

x . (2.33)

The complete stiffness matrix is therefore given by:

K = ∂f

∂n
(2.34)

=


∂fx
∂x

∂fx
∂y

∂fx
∂z

∂fy
∂x

∂fy
∂y

∂fy
∂z

∂fz
∂x

∂fz
∂y

∂fz
∂z

 (2.35)

= Ke +Kg (2.36)
Ke = DL0SL

−1DT (2.37)
= D (S −Q)DT (2.38)
= AL−2 (S −Q)AT (2.39)

Kg = I ⊗E = G, (2.40)

where I used DT =
[
DT
x D

T
y D

T
z

]
. The form K = AL−2 (S −Q)AT +G

allows to write the stiffness matrix purely in terms of nodal coordinates,
member stiffness and force densities. This is often useful, as the force density
is a more natural quantity than the rest length for the calculation of the
stiffness of the compressive members. The eigenvectors ofK are the stiffness
modes of the structure. In a free-standing structure, the first 6 modes are
rigid-body modes with zero eigenvalues. Figure 2.4 shows an example of a
deformation of a tensegrity icosahedron along one of its stiffness modes.



stiffness modeequilibrium

Figure 2.4: Linear static analysis. The common tensegrity
icosahedron in equilibrium is shown on the left. The right plot
shows a displacement along a stiffness mode of the structure
(eigenvector of the stiffness matrix K).

equilibrium zero stiffness mode

Figure 2.5: A zero stiffness mechanism (shearing) in a tenseg-
rity icosahedron with zero rest length spring-cable assemblies.
The length of the bars does not change for finite displacements
along this mode and as affine transforms also satisfy the equi-
librium conditions, the mechanism is finite.
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2.4.1 The Stiffness of Tensegrities

Figure 2.6: Anglepoise lamp: An
example of a balanced arm design
with zero stiffness mechanisms with
tensioned springs. This mechanism
was first patented by George Carwar-
dine in the 1930s [25].

Remark that zero rest length spring-
cable assemblies (l0 = 0 or equivalently
q = s), can reduce the rank of Ke. If
a displacement is in the null space of
Ke, only the stress matrix defines the
stiffness of the structure with respect
to this displacement. As I stated ear-
lier, G will have a nullity of at least
12 for a non-degenerate 3-dimensional
tensegrity [197]. This implies that zero
stiffness mechanisms can exist in struc-
tures with zero rest length spring-cable
assemblies.

This might be seen as counterintu-
itive and a disadvantage of rest length
actuation for tensegrities at first, as an
increase of the pretension and elastic po-
tential energy of the structure can re-
duce its stiffness. The effective stiffness
of individual spring-cable assemblies in-
creases, but the stiffness of some modes
drops. However, it potentially allows for
interesting control algorithms in the sense that one can create a mechanism
by tensioning a cable and stiffen the mechanism by releasing a cable. This
can be safer than quickly tensioning a loose cable to stiffen a mechanism.

Zero stiffness tensegrities were studied by Schenk [152]. Schenk showed
that zero stiffness mechanisms are not restricted to infinitesimal mechanisms
an can thus be moved over finite distances. More precisely, if an affine
transform keeps the lengths of the bars constant and the structure has zero
rest length spring-cable assemblies, the zero stiffness mechanisms are finite.
Figure 2.5 shows an example of such a finite mechanism (shearing) in a
tensegrity icosahedron when the rest length of the spring-cable assemblies
are reduced to zero.

A similar effect is used in balanced-arm designs, such as the Anglepoise
Lamp (Figure 2.6) [56]. In these designs, the structure’s gravitational forces
are balanced by springs. Typically only a small amount of work (mainly due
to friction) is required to change the shape of such designs, as the mechanisms
themselves have almost no stiffness, while the springs are in fact tensioned
or compressed.

Figure 2.7 shows the eigenvalues of the stiffness matrix of a tensegrity
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icosahedron (24 spring-cable assemblies) with 1m struts and uniform spring
constants and rest lengths as a function of the pretension and spring constants.
The 6 rigid body modes and the 6 modes corresponding to changing strut
lengths were discarded and the remaining 24 modes were averaged per 3
reflecting the symmetry of the structure.

Intuitively one expects a monotonous increase in modal stiffness for
increasing spring constants and pretension. For the spring constants, this is
indeed the case and the most straightforward way to increase the stiffness of
a tensegrity structure is to increase the spring constants.

On the contrary, the pretension tells a more interesting story. While
stiffer modes indeed become even stiffer at higher pretensions, the opposite
effect is shown for the lowest stiffness mode. At high pretension, when the
rest length nears zero, a zero stiffness mechanism is created.

2.5 Modal Analysis

The eigenvectors of the local stiffness matrix K provide information about
how a structure deforms under loading, by describing the first order rela-
tionship between nodal forces and nodal displacements. The linear dynamic
behavior can be modeled by adding inertial forces to the equation:

Mn̈(t) +Rṅ(t) +Kn(t) = fext(t), (2.41)

where fext(t) are external nodal forces,M is the mass matrix of the structure
and R is a damping matrix. The vibration modes decouple for undamped
systems (R = 0). As the compliant Class 1 tensegrities considered in this
work have only small amounts of friction due to the lack of joints, the damping
matrix is not considered.

The normal modes of the structure can be found by solving the general-
ized eigenvalue problem for the eigenvectors φi and the eigenvalues ωi [175]:

Kφ = ω2Mφ. (2.42)

The eigenvalues ω provide the oscillation frequency of each normal mode.



Figure 2.7: Eigenvalues (Nm−1) corresponding to the modes
of the stiffness matrix K of a tensegrity icosahedron (24 spring-
cable assemblies) with 1m struts and uniform spring constants
and rest lengths as a function of the pretension and spring con-
stants. The 6 rigid body modes and the 6 modes corresponding
to changing strut lengths were discarded and the remaining 24
modes were averaged per 3 reflecting the symmetry of the struc-
ture. Counterintuitively, the stiffness of the lowest mode drops
at high pretension (zero rest length).
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2.6 Actuation Patterns

In this section, I analyze the behavior of actuated spring-cable assemblies.
In particular, one goal is to find which connections are advantageous in an
underactuated structure. Using the first order approximation Kδn ≈ δf ,
the nodal displacements due to a force applied between any two nodes of the
structure can be estimated. Because this is a linear relationship, it is sufficient
to study individual node pairs. Additionally, the simulator presented in
Section 2.8 is used to compare the non-linear and linear kinematics. This
provides useful insights for later chapters in which tensegrities are seen as
computational devices. In that context, highly non-linear regimes are often
sought after.

The symmetric tensegrity icosahedron with uniform spring constants is
used as an example.The reason for this is that this structure is the basis of the
two physical realizations built in the context of this work. Figure 2.8 presents
the results of various actuation patterns for this structure. It becomes
clear that the pattern (0-10) (top right plot of Figure 2.8) which connects
perpendicular struts by spring-cable assemblies running through the robot
is particularly advantageous for a number of reasons. First, it significantly
excites all stiffness modes of the structure, has a large range of motion and
causes maximal deformation of the robot. Secondly, an actuator using this
pattern does not need to oppose the pretension of the structure and the
structure can be powered down without collapsing the robot. Finally, even
the kinematics due to this pattern are highly non-linear, which renders the
control of a tensegrity robot an interesting and non-trivial problem.

2.7 Form-Finding & Tuning

Form-finding provides answers to the problem of finding valid sets of nodal
coordinates N and force densities q for structures in static equilibrium.
Most of the literature on this topic is review-like or concerned with a specific
new development on tensegrity form-finding. In contrast, this section is
structured around specific questions that might arise when one aims to design
or optimize a tensegrity structure. The goal is to provide a good solution for
each situation, while not aiming at a complete overview of the literature on
the topic. In this context, new approaches for shape optimization and for
prestress tuning for structures with multiple states of self-stress are presented.

I do not address the question of finding an optimal connection pattern
from scratch and instead I assume the connectivity matrix C to be known.
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Figure 2.8: Evaluation of actuation patterns for a uni-
form tensegrity icosahedron with spring-cable assemblies with
30Nm−1 springs and a rest length of 0.2m. The length of
the struts is 1m. The bottom 6 plots show the displacement
of 2 nodes as a function of the force applied between various
pairs of nodes (0-10),(0-5) and (0-8). The thin dashed lines
are the displacements predicted by the linear kinematic model
Kδn ≈ δf , while the full lines show the results of the non-
linear model presented in Section 2.8. The top right and center
plots show the deformation (based on the non-linear model) of
the structure when 5N of force is applied between the various
actuation patterns. The top left figure presents how different
patterns deform the structure along its stiffness mode based
on the linear stiffness model. For each pattern, the projections
on the stiffness modes are normalized. The rigid body and bar
extension modes are discarded and the eigenvectors are aver-
aged per 3 (highly similar due to symmetry). Additionally, the
average nodal displacement is shown (mmN−1). These results
show that the (0-10) pattern (and its symmetries) allows for
large deformations at low tensions with significant non-linearities
for even a single actuator. Note that pattern (0-5) works against
the pretension of the structure.
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The argument to omit this is that it is almost never an issue in practice
as there is a vast set of known tensegrity patterns. For example, Connelly
and Terrell [30] provide a catalog of highly symmetric structures at http:
//www.math.cornell.edu/~tens/.

According to my personal experience with designing irregular structures,
an efficient method is to add redundancy (additional members) to existing
structures and to remove original members by trial-and-error or by following
a gradient descent approach to reduce the force on a member to zero. The
advantage of this approach is that the resulting irregular structures tend
to inherit some of the good properties of the original pattern and shape.
In particular, the structures tend to be open — meaning that compressive
members are spaced far apart — which is important for robotics applications
as bar-to-bar collisions must be avoided. This method was used to design
the irregular or random structures for some of the experiments in Chapters 4
and 5.

Similarly, Section 2.7.5 optimizes irregular redundant structures which
were created by adding a large amount of tensile members to a minimal
configuration. For alternative methods, I refer to Rieffel who provides a
generative method for irregular structures [143] and Paul who developed a
form-finding method using evolutionary algorithms, which is also capable of
finding irregular structures [135].

Gravitational and external forces are not considered in the next sections.
These types of forces typically enter the equations as linear constraints and
as they are of lower or equal order than the other constraints, they can be
added easily to the equations presented next.

2.7.1 Unknown Nodal Coordinates and Unknown
Force Densities

This is the standard form-finding problem often studied in the literature.
Therefore, I will only briefly discuss the issue and instead refer the reader to
one of the multiple review articles on the topic [72, 171].

A large number of the form-finding methods for tensegrities are extensions
of the force-density method presented in the 1970s by Schek [151]. The
original force-density method applies to tension nets, for which the stress
matrix is generally positive definite. The typical modus operandi of the
extensions of this method to tensegrity structures is to alternate between
optimizing the eigenvalues of the stress matrix and finding a valid set of force
densities [176, 197].

Relaxation methods are an interesting alternative to the force-density
approaches [107, 171]. These methods involve dynamic or kinematic relax-

http://www.math.cornell.edu/~tens/
http://www.math.cornell.edu/~tens/
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ation of the forces in a structure to find a stable shape. The advantage
is that complex behavior of elements (e.g. cables that become slack, bars
that buckle) are usually easier to take into account than with force-density
methods.

2.7.2 Unknown or Partially Known Nodal Coor-
dinates and Known Force Densities

This particular problem can occur when a form-finding problem is solved in
terms of force densities. If the force densities are known, the equilibrium
condition Gn = 0 can be used to find a suitable set of nodal coordinates.
The expanded stress matrix of a non-degenerate three-dimensional tensegrity
structure has at least 12 zero eigenvalues and is thus singular. Therefore, the
problem has infinitely many solutions and additional information is needed
to find an optimal shape. One possibility is to fix the position of 4 nodes.
Another interesting choice is to maximize the volume of the structure or
minimum inter strut distance.

2.7.3 Known Nodal Coordinates, Unknown Force
Densities

The equilibrium condition Aq = 0, combined with the positive force density
constraint for the tensile members, can be used in this case. Section 2.7.5
provides solutions in case the system is underdetermined. If the system is
not underdetermined, a simple practical approach is to solve the constrained
optimization problem argminq q

TATAq subject to the constraints qi > ρ for
some lower limit ρ on the force densities of the spring-cable assemblies. If
the result satisfies the equilibrium condition, then a valid solution has been
found. Otherwise, the nodal coordinates are not a valid equilibrium shape.

2.7.4 Shape Optimization with Respect to a Tar-
get Shape

I now consider the problem of finding a set of nodal coordinates and force
densities which put a tensegrity structure in a static equilibrium close to
a target set of nodal coordinates ntarget. A possible application of this
technique is the replacement of a rigid body part of a robot with a tensegrity
structure of similar shape (e.g. designing a tensegrity spine for a quadruped,
Figure 2.9).
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	  Figure 2.9: Spine and corresponding tensegrity models
showing how vertebrae can float without touching. Im-
age courtesy of Tom Flemons (copyright 2006) http://www.
intensiondesigns.com

A gradient descent approach is used to solve this problem. This method
has the added benefit that one can build a structure that morphs from an
initial shape into the final one. I assume an initial set of valid force densities
to be given, a problem which was addressed in Section 2.7.1.

The idea behind the approach is to alternate between the optimization
of the force densities q and the nodal coordinates n. However, the static
equilibrium condition Gn = 0 needs to be fulfilled at all times. An al-
ternative method to the gradient approach developed here is presented by
Micheletti [121].

Therefore, it is appealing to define a loss function only in terms of the
force densities:

L(q) = min
n
‖n− ntarget‖ (2.43)

subject to

Gqn = 0, (2.44)

where Gq is the expanded stress matrix for q. The optimization of the nodal
coordinates for fixed force densities turns out to have a closed form solution.
This makes it possible to compute the gradient of q through the optimal
solution of n.

To show this, the minimization of ‖n− ntarget‖ is first rewritten in the

http://www.intensiondesigns.com
http://www.intensiondesigns.com
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standard form for quadratic programming:

argminññTñ (2.45)

with

ñ = n− ntarget (2.46)

subject to

Gqñ = −Gqntarget. (2.47)

It is well known that the solution to this problem can be found by solving
the following set of equations:[

I GT
q

Gq 0

][
ñ
λ

]
=
[

0
−Gqntarget

]
, (2.48)

where λ are Lagrange multipliers. As the goal is to compute the partial
derivatives of ñ with respect to q, the derivatives need to be computed
through the solution of this equation. The matrix on the left is singular, so
one could use the pseudo-inverse of this matrix and compute the derivatives
through the pseudo-inverse [61].

However, the unregularized pseudo-inverse tends to be unstable in this
case and the resulting derivatives will be as well. I therefore developed
a solution based on the regularized pseudo-inverse. First, the regularized
pseudo-inverse solution is computed as:

Ω =
[
I GT

q

Gq 0

]
(2.49)[

ñ
λ

]
=
[
ΩTΩ + rI

]−1 ΩT

[
0

−Gqntarget

]
. (2.50)

Note that Ω = ΩT and thus
[
ΩTΩ + rI

]−1 =
[
Ω2 + rI

]−1. Writing out
this last equation in full gives:

[
Ω2 + rI

]−1 =
[
I(1 + r) +G2

q Gq

Gq G2
q + Ir

]−1

. (2.51)

For non-zero regularization terms r, this last matrix is block invertible. This
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is a useful fact, because:

ΩT

[
0

−Gqntarget

]
=
[
−G2

qntarget

0

]
(2.52)

shows that only the top left block of the inverse of the right hand side of Eq.
2.51 needs to be known.

The formula for the blockwise matrix inverse gives (only the relevant
block is computed):

[
Ω2 + rI

]−1 =
[[
I(1 + r) +G2

q −Gq(G2
q + Ir)−1Gq

]−1
.

. .

]
. (2.53)

Finally, the optimal coordinates are obtained in closed form:

ñ = −
[
I(1 + r) +G2

q −Gq(G2
q + Ir)−1Gq

]−1
G2

qntarget. (2.54)

The main merit of this formula is that it gives a closed form solution for a
stable (w.r.t. small changes in q) set of coordinates as close as possible to a
target shape.

The quadratic loss equals:

ñTñ = (2.55)
nTtargetG

2
q

[
I(1 + r) +G2

q −Gq(G2
q + Ir)−1Gq

]−2
G2

qntarget

It is now straightforward to apply gradient descent on q by evaluating
the gradient of ñTñ for the current best value of q. In practice, one only
needs to lower limit the force densities of the springs during the gradient
descent updates.

Figure 2.10 shows the result of an optimization run. The left plot shows
the initial shape (minimal 6-bar structure), the center plot shows the target
shape and the gradient descent solution is presented on the right. The
optimization was halted when the quadratic loss dropped to 0.1m2. In this
case the target shape was an invalid shape in the sense that no valid set
of force densities exists to keep the target structure in static equilibrium.
The result of the optimization is thus a feasible tensegrity structure that
approximates the desired invalid shape as well as possible (L2 norm).

Malerba introduced a gradient descent method for form-finding under
general (differentiable) constraints for cable nets [114]. The core idea of
their method is to iteratively solve for a modified gradient that obeys the
constraints (project the gradient onto the constraint). They solve for the
minimum norm change of the force density vector (∆q) that satisfies the
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Figure 2.10: Shape optimization of a tensegrity structure to
approximate a target shape. The left plot shows the initial shape
(minimal 6-bar structure), the center plot shows the target shape
and the gradient descent solution is presented on the right. In
this case the target shape was an invalid shape in the sense
that no valid set of force densities exists to keep the target
structure in static equilibrium. The result of the optimization is
thus a feasible tensegrity structure that approximates the desired
invalid shape as well as possible.

constraints. Their method lends itself easily to find a modified gradient close

to the desired gradient of my method ∂ñTñ
∂q

. This can be implemented

by a simple change of coordinates in Eq. 16 and 17 of [114]. Replace r

with ∆r +GT ∂ñTñ
∂q

and add ∂ñTñ
∂q

to the solution of their algorithm to
obtain the modified gradient. If this method is used, the constraints will be
satisfied at each step during the optimization. Note that G here refers to the
Jacobian of the constraints as defined in Eq. 14 of [114]. Eq. 22 of Malerba
is problematic for tensegrity structures as the stress matrix is not positive
definite for free-standing structures. Fortunately, this is of little practical
concern, as one can compute the derivative of the constraints directly.

2.7.5 Optimizing Force Densities in a Multiple
Self-Stress Configuration

Section 2.2 showed that Aq = 0 is a necessary condition for a tensegrity
in static equilibrium. If this equation has multiple linearly independent
solutions for q, then any linear combination of these will also satisfy the
condition. The solution space corresponds to the null space of A. If the
dimension of the null space is v and if the columns of the matrix V are a
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set of v linearly independent vectors in the null space of A, then one can
rewrite the original condition as:

AV c = 0, (2.56)

where c is a v-dimensional vector.
This simple trick reduces the search space for a good set of force densities,

as all q satisfying Aq = 0 can be produced by evaluating V c. However,
additional inequality constraints are needed to ensure that the force densities
of spring-cable assemblies are positive. Note that for all practical purposes,
the rows of V and q corresponding to compressive members can be omitted.
To keep the notation simple it is assumed that V and q have their compressive
member rows removed in this and the next section.

Now consider the goal of minimizing the elastic potential energy of a
structure under the constraint that the spring-cable force densities are larger
than some quantity:

argmincu = cTV Tdiagv(α)V c (2.57)
= cTBc (2.58)

subject to

−V c < −qmin (2.59)

with

αi = l2i
2ki

, (2.60)

where the fact was used that the elastic potential energy of a member can
be written as u = αq2 = l2

2k

[
k(l−l0)

l

]2
= k(l−l0)2

2 . The optimization assumes
that the potential energy is changed by modifying the rest length of the spring-
cable assemblies, therefore α will be constant throughout the optimization.
This is a quadratic programming (QP) problem with linear constraints, which
can be handled by common QP solvers.

Note that the constant elastic potential energy constraint implies that the
Euclidean norm of the eigenvalues of the stiffness matrix K (which depends

on the rest lengths) remains constant. This means that
∂ Tr

(
K2)

∂c
= 0. It

can be seen that Tr
(
K2) is the square of the Frobenius norm of K, which

can also be defined as the sum of the squares of the elements of the stiffness
matrix. This also constrains the resonance frequencies, which depend on
the mass distribution of the structure and the stiffness matrix. I therefore
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argue that the elastic potential energy constraint is natural. It allows to
transfer energy between vibration modes of the structure, which can be
useful in structures or robots in which certain modes are damped more than
others. Active vibration control is an important topic in tensegrity research
for structural engineering [8, 27, 139].

How can the dimension of the null space be changed? A straightforward
way to increase the dimension of the null space of a structure, is to add
redundant spring-cable assemblies [20]. A parallel spring trivially increases
the dimension of the null space by one. One application of this method
is the homogenization of the tensions in the structure. This can be useful
in an active structure, as highly pretensioned members typically only allow
for small changes in length before plastic deformation. Tran et al. also
considered the form-finding problem of structures with multiple self-stress
states in [177].

Note that only the balance of forces was enforced throughout the op-
timization. This means that the optimization can potentially yield results
with additional mechanisms (deformations that require no mechanical work).
However, because this technique primarily applies to redundant structures,
this is unlikely to happen in practice (additional members tend to remove
mechanisms [64]).

2.7.6 Energy Preserving Self-Stress Control

I now present a method to control the self-stress of a tensegrity structure
with multiple self-stress states — redundant structures with nullity (A) > 1.
The goal is to optimize an objective function under the constraint that
the structure maintains its original static equilibrium shape (i.e. there is
no movement of the bars) and that there is no change in the total elastic
potential energy of the structure. If the structure is in static equilibrium, the
exchange of potential energy between the spring-cable assemblies entails that
no net mechanical work is needed to move within this constrained self-stress
space. Two objectives are considered here: Tuning of the elastic potential
energy in a target shape ntarget and stiffening of the eigenmodes of the
structure.

A related set of methods in structural engineering are topological op-
timization methods [9, 112, 128]. Topological optimization allows to tune
a structure’s frequency response, to minimize its mass and to solve similar
problems. The methods I present here are thus in a sense specific applica-
tions of topological optimization. The benefits over the generic methods are
the increased computational efficiency for this type of structure (tensegrities)
and the simpler mathematical formulation.
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There are various possible applications of the self-stress control technique.
Consider for example the tensegrity spine example from Section 2.7.4. In
this case, one might want to vary the stiffness of a particular movement or
stiffness mode to handle loading, impact or to design turning strategies in
which the controls remain fixed.

In addition to this, variable stiffness is a common principle in biology
and human locomotion [43, 44, 47]. In this regard, stiffness tuning plays a
central role in locomotion as a mechanism to use energy efficiently. In aquatic
locomotion, trouts (living and euthanized) have been observed to exploit the
energy of the flow they inhabit to reduce their swimming efforts [see 104,
for a review] and variable stiffness is also believed to be a common principle
in land locomotion for the adaptation to surfaces with changing mechanical
properties [see 147, and references therein]. The phenomenon extends to
other behaviors, such as breathing and thermal control. There is evidence
that entrainment phenomena are present in the control of airflow in humans,
guinea pigs, panting in dogs and in pigeons [186], and this would accomplish
the dual aim of maximizing flow and minimizing the work required from the
respiratory muscles.

In principle, the presented method can be extended to include dynamics,
which would be equivalent to impedance control of the full robot [75]. How-
ever, this requires significantly more state information or estimation, which
is a hard problem for a free-standing tensegrity.

As redundant tensegrities have a large number of spring-cable assemblies
by design, full actuation is expected to be problematic in hardware. Moored
presented an interesting variation on the common tensegrity principle by
investigating clustered actuation [125]. Smart coupling (e.g. through pulleys)
of tensile members could allow for a design that can switch between self-stress
states at very low energetic cost with a reduced number of actuators.

The core concept of the method is a constrained gradient descent/ascent
algorithm. The objective function L is written in terms of the null space
coordinates:

argmaxcL(c) (2.61)

subject to

ueq(ct) = ueq(c0), (2.62)

where ct is the solution at iteration t of the algorithm and ueq is the elastic
potential energy function in the equilibrium shape. It was shown in Sec-
tion 2.7.5 that ueq(c) can be written as ueq = cTBc. Two interesting choices
for L(c) are discussed at the end of this section. The constraint ensures
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that the structure is at constant elastic potential energy throughout the full
optimization run, which implies that an actuation pattern along the (smooth)
trajectory c0 . . . ct will not cause any movement of the structure.

Now write the gradient descent/ascent step explicitely:

ct+1 = argminc‖c− cprop‖2 (2.63)

subject to

cTt+1Bct+1 = ueq(c0) (2.64)

with

cprop = ct + µ
∂L(c)
∂c

(ct), (2.65)

where µ is the step size and cprop are the proposed coordinates by the
gradient step. The proposed coordinates are then mapped onto the nearest
ct+1 satisfying the constraint.

The result is a quadratic problem with quadratic constraints [62]. It
is well known that such a problem can be cast as a generalized eigenvalue
problem [54, 175]. However, I will follow a standard Langrange multiplier
approach here, as this results in a particularly efficient implementation. The
time complexity to find the Lagrange multiplier is of the order O(log(b)b),
where b is the dimension of the null space. This is due to the complexity of
Newton’s method (assuming this method is used to solve the constraint).

The Lagrangian of this problem is given by:

L (ct+1, λ) = (ct+1 − cprop)T (ct+1 − cprop)
+ λ

(
cTt+1Bct+1 − ueq(c0)

)
, (2.66)

where λ is a Lagrange multiplier.
Setting the partial derivatives of L (ct+1, λ) to zero and solving for ct+1

gives:

ct+1 = (I + λB)−1
cprop (2.67)

ueq(c0) = cTprop (I + λB)−1
B (I + λB)−1

cprop. (2.68)

Finding the optimal λ can be simplified by using the eigendecomposition
B = Pdiagv (d)P T [18]:

(I + λB)−1 = P [I + λdiagv (d)]−1
P T . (2.69)

Now use the notation m = P T cprop (here m is a temporary variable to
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simplify the notation) to reduce the problem to:

0 =
(
‖ (I + λ diagv (d))−1√diagv (d)m‖ −

√
ueq(c0)

)2
(2.70)

The gradient of the right hand side is given by:

∂
(
‖ (I + λ diagv(d))−1√diagv (d)m‖ −

√
ueq(c0)

)2

∂λ
= (2.71)

−2
(

1−
√
ueq(c0)

∥∥∥(I + λ diagv (d))−1√diagv (d)m
∥∥∥−1

)
mT diagv (d)2 (I + λ diagv (d))−3

m. (2.72)

As before, the diagv operator transforms a column vector into a diagonal
matrix.

The Lagrange multiplier λ can now efficiently be found using the last two
equations. In practice the truncated Newton method was found to perform
well in this case with approximately 10 iterations per gradient step for a
6-bar structure with 54 springs.

Two things need clarification at this point. First, how are positive force
densities maintained during optimization and secondly, why is gradient de-
scent/ascent used while in theory any cprop can be used? While the first
issue could be solved by adding inequality constraints (additional Lagrange
multipliers) to the optimization problem, I instead opted for a soft lower limit
on qprop = V cprop. The elements of qprop below the lower limit are set to the
lower limit and a least-squares solution is used to find the modified proposed
cprop. The corrected new force densities qt+1 = V ct+1 can (slightly) violate
the constraint, but this case will be corrected during the next iteration.

The answer to the second remark is that the outcome of the gradient
ascent/descent algorithm is a continuous set of valid force densities. Each
element of the sequence c0 . . . ct is a valid set of force densities and it is
simple to ensure additional constraints such as positive spring-cable force
densities. One could minimize the objective function (possibly in closed form)
independent of the constraint and then find the nearest valid solution using
the Lagrange multiplier. However, in this case it is harder to maintain valid
force densities and depending on the objective function no continuous path
of force densities might exist between the original state and the final solution.
This assertion was verified by applying the intermediate steps found by the
algorithm in a dynamic simulation. More precisely, the results of the example
in the next section (with µ = 5) were subsampled (1 in 10 gradient steps)
and the next sample was applied 200ms after the previous. In between two
control time steps, the spring-cable rest lengths were linearly interpolated.
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This indeed did not generate any measurable movement of the structure.

2.7.6.1 Tuning the Elastic Energy of a Target Shape

The first objective considered here is tuning of the elastic potential energy in
a target shape ntarget. The rationale behind this objective is that maximizing
the elastic potential energy in a target shape will cause deformation of the
robot or structure in the direction of the target to become more difficult and
to require more mechanical work. This can be particularly advantageous to
anticipate an impact force as it allows to maximize the energy absorption of
the structure. A similar effect is seen in bipedal walking: Stretching your
leg allows more energy to be stored and tightening your leg muscles allows
you to handle higher drops [3]. Tuning here means that I wish to be able
to both maximize and minimize the required work, i.e. I wish to know the
range over which the elastic potential energy utarget of a target shape can
be varied. This is illustrated in Figure 2.11.

ueq

Energy

Tunable
range

ueq

ueq

c

c

c

Figure 2.11: Illustration of target energy tuning. The objective
is to enable maximization and minimization of the required
mechanical work (i.e. the elastic energy utarget) to deform the
structure from the equilibrium shape n0 to the shape ntarget,
while keeping the energy ueq of the equilibrium shape constant.
The algorithm optimizes the null space coordinates v, assuming
that actuation is performed by changing the rest lengths l0 of
the spring-cable assemblies.

The objective function L(c) is in this case given by:

L(c) = ±utarget(c), (2.73)

where the sign allows to choose between maximization and minimization of
the elastic energy in the target shape.
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Using the assumption that the actuation is performed by changing the
rest length of the spring-cable assemblies, the gradient step can be written
as:

cprop = ct + µ
∂L(c)
∂c

(ct) (2.74)

= (I ± 2µB)ct ± µV Tdiagv(β), (2.75)

where βi = li(li,target − li).
Figure 2.12 shows an example of this algorithm. In this case 36 spring-

cable assemblies were added to the minimal 6-bar structure shown in Fig-
ure 2.1 for a total of 54 tensile members. The total elastic potential energy in
the system in equilibrium was 384 J. Even for the small displacement shown
in this example (the average nodal displacement was 0.06m), the elastic
potential energy in the target shape could be varied significantly between 9 J
a 16 J above the equilibrium state. During minimization the average spring
tension tends to drop, while the total elastic potential energy is constant.
This is possible because the spring-cable assemblies have different stiffness
coefficients and rest lengths.

Figure 2.13 shows the connectivity of the structure from the example
in Figure 2.12 and how the tension on the spring-cable assemblies changes
due to the maximization of the energy of the target shape. The tension of
spring-cable assemblies which seem to disappear remained constant. This
representation allows the identification of the spring-cable assemblies that
are more relevant for the change in elastic energy between the two shapes.

2.7.6.2 Stiffness Tuning

The second objective I consider is tuning the eigenvalues of the stiffness
matrix K. Similar to the previous section, this has a number of practical
purposes. In practice it can often be advantageous to stiffen the most flexible
eigenmode. An alternative purpose which has yet to be studied is the tuning
of a tensegrity structure for optimal energy recuperation. Stiffness tuning is
an important aspect of energy harvester design [26, 41].

Let the eigenvalues of K be ωi with corresponding eigenvectors vi. The
objective is then simply given by (the rigid body eigenmodes are implicitly
discarded):

L(c) = ωi. (2.76)

In practice, the goal will be to maximize the objective function or move the
eigenvalue closer to a desired value. Minimization of an eigenvalue typically
results in a zero eigenvalue and thus in the creation of a mechanism.
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Figure 2.12: Example of the optimization of the elastic poten-
tial energy in a target shape. Bottom left: equilibrium shape.
Bottom right: target shape (avg. nodal displacement 0.06m).
Starting from a random initial set of self-stress parameters c0,
the elastic potential energy in the target shape was first maxi-
mized (red region in the top plot), then minimized (green region)
and then maximized again to show how the method allows for
continuous modification of the elastic potential energy. In the
top plot, the black line shows the elastic potential energy in
the target shape ntarget, the red line is the average change in
spring tension and the dashed blue line is the average change
in rest length of the spring-cable assemblies. Even for the small
displacement shown in this example the elastic potential energy
in the target shape could be varied significantly between 9 J and
16 J above the equilibrium state.



Figure 2.13: Force density change. The figure depicts the
structure as a graph, where the nodes of the graph are the ex-
trema of the bars (thicker lines) and the edges (thinner lines)
represent the tensile members. Nodes of the same bar are col-
ored accordingly. The left panel shows the connectivity of the
structure. In the right panel the springs are colored according
to the change in tension relative to the initial state. Darker
indicates bigger changes, springs that seem to disappear expe-
rienced smaller changes. The color shows if the change is an
increment (red) or decrement (blue) of tension.
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Figure 2.14: Maximization of the stiffness of different eigen-
modes. During the first 500 iterations, the eigenvalue of the first
non-rigid body mode is maximized. During the next 500 steps
the second mode is stiffened and so on. Significant changes
in modal stiffness can be obtained by this method. The top
plot shows the elastic potential energy in each spring and the
bottom plot shows the modal stiffness for the first 6 non-rigid
body modes. The constant elastic potential energy constraint
implies that the norm of the vector of modal stiffnesses is con-
stant. The structure from Figure 2.12 was used. In the legend
mii refers to the i-th entry of the structure’s diagonalized mass
matrix.
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Recall the definition of the stiffness matrix:

K = Kg +Ke. (2.77)

Therefore, the partial derivatives of the objective function with respect to c
can be written as:

∂L(c)
∂c

= vT
∂Kg

∂c
v + vT ∂Ke

∂c
v (2.78)

= vT
∂Kg

∂q

∂q

∂c
v + vT ∂Ke

∂q

∂q

∂c
v (2.79)

= vT
∂Kg

∂q
V v + vT ∂Ke

∂q
V v (2.80)

∂Kg

∂qi
= I3 ⊗CT

i Ci (2.81)

∂Ke

∂qi
= −liA.,iA

T
.,i (2.82)

with Ci the ith row of the connectivity matrix C and A.,i the i-th column of
A. The last equation is easily obtained using the equality Ke = AL−2(S −
Q)AT and the assumption that actuation is performed by modifying the
rest lengths (constant S). Note that v (the eigenvector corresponding to the
eigenvalue ω) is a function of c (the eigenvectors are a function of the force
densities). This result is then substituted in Eq. 2.65.

This approach can be trivially extended to the tuning of the natural fre-
quencies, by noting that the partial derivatives of an eigenvalue of the general-
ized eigenvalue problemKv = ωMv are given by ∂ω = vT (∂K − ω∂M)v =
vT∂Kv [138].

In practice the optimization of this objective is slightly slower than the
elastic potential energy optimization from the previous section, due to the
repeated eigendecomposition at each gradient step. If needed, one can assume
the eigenvectors to be constant during a few gradient steps.

Figure 2.14 demonstrates the stiffening of different modes of the struc-
ture. Initially the first (non-rigid body) mode is maximally stiffened. After
500 iterations, the next eigenvalue is maximized and so forth. It becomes
clear that significant changes of the stiffness or resonance frequencies can be
obtained by this method.
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2.8 Dynamic Simulation

This section presents two simulation environments. To foster interest into
tensegrity research, both simulation environments are open source and freely
available at http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/
tensegrity/. The experimental results obtained with these simulators are
presented in later chapters.

The first simulator directly implements the equations of motion described
in Section 2.8.1. It is an extension of the dynamics formulation described
by Skelton [157]. Below I reformulate Skelton’s equations in a Cartesian
coordinate system as this is more intuitive. My implementation adds support
for ground contacts and other practical features. The second simulator is the
NASA Tensegrity Robotics Tookit (Section 2.8.2). This simulator is based on
the Bullet Physics engine and allows for complex environmental interactions,
at the cost of a much simpler integration method. My main contribution to
this simulator is a set of validation experiments using motion capture with
the robot described in Chapter 6.

2.8.1 Constrained Spring-Mass Net

As much work has been done on the computational aspects of spring-mass
nets, the equations of motion in this section are cast as the dynamics of a
constrained spring-mass net. This means that the system is modeled as a
set of point masses with coordinates ni with a set of distance constraints
for the fixed length struts. The result is a simple set of equations that can
efficiently be implemented in matrix form.

As stated in Eq. 2.10 the nodal forces due to internal forces (spring-
cable tensions) are given by Finternal = EN . In case external forces Fext
are present in the system, the nodal forces are given by:

F = EN + Fext +RṄ , (2.83)

where RṄ can be used to model linear damping (e.g. Rayleigh damping).
Now consider a single strut between nodes i and j. The acceleration of

node i and j can be written as:

n̈i = m−1
i fi + λi,j

∂ (ni − nj)T (ni − nj)− l2i,j
∂ni

(2.84)

n̈i = m−1
i fi + 2λi,j (ni − nj) (2.85)

n̈j = m−1
j fj + 2λi,j (nj − ni) , (2.86)

http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/
http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/


2.8 Dynamic Simulation 43

where the Lagrange multiplier λi,j needs to be found to satisfy the constraint
(ni − nj)T (ni − nj) = l2i,j . Analogous to Skelton’s equations of motion,
this value can be found by computing the second time derivative of the
constraint5 [157]:

d2l2i,j
dt2

= dnTi nj − 2nTi nj + nTi nj
dt

(2.87)

0 = (ṅi − ṅj)T (ṅi − ṅj) + (ni − nj)T (n̈i − n̈j) . (2.88)

Subtracting ni and nj and substituting this in the last equation gives:

n̈i − n̈j = m−1
i fi −m

−1
j fj + 4λi,j (nj − ni) (2.89)

0 = ‖ṅi − ṅj‖2 (2.90)
+ (ni − nj)T

(
m−1
i fi −m

−1
j fj + 4λi,j (nj − ni)

)
.

Using which the Lagrange multiplier can be found:

λi,j = −
‖ṅi − ṅj‖2 + (ni − nj)T

(
m−1
i fi −m

−1
j fj

)
4‖ni − nj‖2 (2.91)

The implementation of these equations is straightforward, as one can
simply compute the (unconstrained) nodal forces followed by the evaluation
of the Lagrange multipliers to find the constraint forces. Ground contacts
were modeled using the penalty based method described in [195].

As each strut is modeled as two point masses6 with a constraint, the
effective number of degrees of freedom of a strut is 5. The main advantage of
this non-minimal coordinate set, is the lack of direction cosines to describe
the orientation of each strut. Wroldsen [191] demonstrates how to use a
minimal set of generalized coordinates based on the coordinate system used
by Skelton [157]. The resulting equations are however far less elucidative
than the simple description presented here.

2.8.2 NASA Tensegrity Robotics Toolkit
The second simulator used in this work is the NASA Tensegrity Robotics
Toolkit (NTRT), developed by the Intelligent Robotics Group at NASA
Ames Research Center. This simulator is an extension of the Bullet Physics
engine. Bullet is primarily aimed at performance while providing results that

5Thus replacing the fixed length constraint with the constraint that there is no
acceleration along a bar.

6General mass distributions can be used by replacing the individual nodal masses
mi with a (block) mass matrix.



44 2 Tensegrity Structures

appear credible. Therefore, its integration method has limited accuracy (e.g.
it is not energy conserving), which is cause for concern as the stability of
tensegrity structures is defined by a subtle equilibrium of forces in the whole
structure.

However, Bullet has an efficient and extensive collision detection algo-
rithm, which is the main reason to focus on this simulator for future work
on tensegrity locomotion. As presented in Chapter 6, significant effort was
put into validation experiments of (both) simulators.

2.9 Control of Tensegrity Structures

The previous sections have mainly focused on the static and kinematic prop-
erties of tensegrity structures. However, the core focus of this thesis are
free-standing structures that can move and deform in an environment. This
section therefore provides a brief overview of related work on actuated struc-
tures, a domain which has only begun to develop in recent years.

The Applied Computing and Mechanics Laboratory (IMAC) at EPFL
was one of the first laboratories to construct large-scale prototypes of actu-
ated tensegrities [49, 48]. Their designs are room-sized structures targeting
the structural engineering community, with a focus on smart load-bearing
structures. Their main actuator design is based on telescopic struts. In re-
cent years, research into actuated tensegrities for structural engineering has
resulted in the design of deployable tensegrity bridges [99, 141, 142]. Also
in the structural engineering realm, related research has focused on active
vibration control [8, 27, 139]. These works are significant because of the
large-scale hardware deployments and it becomes particularly exciting when
one considers that at the other end of the spectrum tensegrity structures
have been built using DNA as structural elements [105].

A few years before the IMAC prototypes, Sulton showed how actuated
tensegrities can be used for telescope positioning [164]. Not long after that,
Sultan and Skelton developed the mathematics for a tensegrity flight sim-
ulator (a 6 degrees of freedom actuated platform to simulate flight condi-
tions) [165].

Early demonstrations were mainly focused on kinematic controls or tar-
geted a very specific design. Skelton and Wroldsen presented results for feed-
back non-linear dynamic control of general tensegrity structures [157, 191].
However, this type of controls has been largely limited to constrained setups
in which accurate state information is available [63, 123].

Around 2005, Paul and Lipson at Cornell University approached the con-
trol problem from a computer science perspective. They evolved controllers
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in simulation capable of dynamic locomotion without precise state estimation
or models of the dynamics of the systems [136]. While also at Cornell, Rieffel
presented an original control approach in simulation based on spiking Neural
Networks coupled through body dynamics [144].

Recently, Rieffel started focusing on very simple control methods for
small, low-cost tensegrity robots using small vibration motors [97]. Similar
work was also presented in 2013 by Bohm [15].

The BIER lab at the University of Virginia is researching Central Pattern
Generator based controls for tensegrity based flapping wings (e.g. fish tails),
which provides another interesting link between tensegrities and biology [12,
13, 14].

While the previous hardware implementations used electric motors, Koizumi
and Shibata have developed rolling tensegrity structures based on pneumatic
actuators [98, 156]. This is an interesting development, as typical electric
motors are optimized for rotational motion, while tensegrity robotics would
significantly benefit from efficient linear actuators.

What this literature overview shows is that tensegrities are reasonably
well studied from a mechanical and structural point of view, but the number
of practical demonstrations of actuated tensegrities is still limited. This last
fact in particular applies to free-standing structures in real-world environ-
ments. Most of the algorithms developed in the next chapters require no
detailed knowledge of the system dynamics or state and thus apply to tenseg-
rity robots which can be deployed in unknown environments. This is fully
in line with the goals of the NASA Innovative Advanced Concepts project
— to which the work presented in this dissertation has significantly con-
tributed [1, 87, 88] — and the European Community’s FP7 AMARSi project.
The compliant robotics technologies developed during the last decade, make it
an ideal time for a leap forward in dynamically actuated tensegrity research.





3
Reservoir Computing

Reservoir Computing (RC) is a recurring theme throughout this thesis. As
various excellent dissertations at the Reservoir Lab [183, 192] have been fully
devoted to the study of RC systems, I limit the scope of this chapter to
an overview of the main concepts and an introduction to the most relevant
techniques. In this context, I will present two original contributions to the
Echo State Network type of Reservoir Computing. In collaboration with
Francis wyffels, I have experimentally verified the Echo State property of
large Reservoirs [24]. Pieter Buteneers and I have developed an efficient
technique for regularization parameter selection in feedforward Echo State
Networks [18]. Considering this thesis’ focus on physical systems, I discuss
how the RC concept has been extended beyond the scope of artificial Neural
Networks.

This chapter is organized as follows. Section 3.1 first reviews the concepts
of Reservoir Computing in hardware and software architectures. This is
followed by an in-depth discussion of the properties of Echo State Networks,
a common software Reservoir Computing implementation, in Section 3.2.
Before presenting my conclusions in Section 3.4, I discuss methods to solve
tasks using Reservoir Computing (Section 3.3).

3.1 Overview of Reservoir Computing

3.1.1 Concept
The general concept of Reservoir Computing is to use a dynamical system
as a computational black box. Information is fed into the system, which
provides random projections of the input and short term memory. Reservoir
Computing allows to efficiently use a large range of dynamical systems to
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approximate a desired filter. In RC the dynamical system is left untouched,
instead only an observation or output layer is trained. Extensions of the
basic method allow to design systems which autonomously generate signals
and thus have long term memory.

The clear advantage of RC is that only limited knowledge or control of
the dynamical system is needed. This is at the same time the main disad-
vantage of these methods. Better performance could sometimes be obtained
by training the computational substrate. However, Reservoir Computing is
an attractive method as it tends to have good performance on various prob-
lems and can in general be implemented faster than competing algorithms.
Because of these features, it is also an excellent baseline for more involved
techniques.

3.1.2 In Silico Reservoirs
The most common implementations of Reservoir Computing are software
based. Three types of software RC are well known: Liquid State Machines,
Echo State Networks and Backpropagation-Decorrelation. Similar techniques
have appeared in the literature prior to the introduction of RC, but they
were not widely embraced. Echo State Networks were introduced by Jaeger
in 2001 [90, 94] and this implementation is discussed in depth in the next
sections. Liquid State Machines were developed by Maass [113] around
the same time and provide a more biologically plausible perspective. This
technique is typically implemented as a set of (continuous time) differential
equations. Finally, Steil presented an efficient single step backpropagation
algorithm which uses a Reservoir at its core [162]. As much of the knowledge
and intuition transfers between these approaches, the general principle of
these methods later became known as Reservoir Computing [185].

3.1.3 Physical Reservoirs
While artificial Reservoirs have now been studied for well over a decade,
there is a recent trend to study the computational or Reservoir properties of
physical systems. In fact, the possibility of physical Reservoirs was realized
early during the onset of RC systems, with demonstrations such as a bucket
of water used as an RC system [45]. The recent developments in physical
implementations of RC are focused on applications that benefit from the
fact that RC allows to exploit computational capabilities without precise
control of all the aspects of the physical system. One domain that has seen a
significant influence from RC techniques is optoelectrical and all-optical com-
puting [40, 100, 133]. Much of this work was initially simulation based [52],
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but recently optical RC has been demonstrated in a silicon photonics chip
with passive waveguides [182]. In the next chapters, I focus on the Phys-
ical RC properties of compliant tensegrity robots. Section 4.4 will revisit
the Physical RC concept and explains how it can be adapted to robotics in
practice.

It was recently shown that a large class of dynamical systems (artificial
or physical) inherently have an equal amount of information processing ca-
pacity [32]. These are not computations in the Turing sense [180]. Instead,
the result from [32] essentially shows how difficult it is to linearly approxi-
mate (w.r.t. the quadratic norm) desired transformations of an input stream
based on observations of the state of a dynamical system. One caveat is that
a desired type of processing might be present in a physical system, but it
can be unfeasible to extract it due to sensor limitations. On the contrary, a
system might appear unsuitable for a computational task, while an intelligent
encoding can dramatically increase the performance. By this last statement
I mean that a dynamical system might for example fail at encoding a desired
input transformation as pulses, while it performs optimally when encoding it
in the frequency spectrum. In this case, the desired information processing
is available in the system, but it is hard to effectively use it.

When making claims about computational properties of a system it is
therefore ultimately useful to focus on the problems one is interested in
solving:

Beware of the Turing tar-pit in which everything is possible but
nothing of interest is easy. [137]

For example, there is no point in using a bucket of water as a general
computer beyond the sake of research. Similarly, there is little value in
utilizing a compliant robot to add numbers. But how is Physical RC then
any different from centuries-old analog or mechanical computers [80, 37]?
The answer is that Physical RC systems need not be designed to solve the task
at hand. The method allows to exploit computations inherently performed
by the dynamical system.

It is my belief that the real issue is to maximally exploit useful compu-
tations available in a dynamical system. Reservoir Computing provides a
means to use or interpret a physical substrate as a computational tool, even if
not all its details are fully known or understood. In the context of compliant
robotics, one interesting goal is to use Physical RC for locomotion control,
as information from the interaction of the robot with its environment is in-
herently processed. The control of a robot is interpreted as a computational
problem.
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3.2 Echo State Networks

I now return to the artificial Neural Network RC implementation called Echo
State Networks.

3.2.1 Mathematical Formulation
Echo State Networks (ESN) are a common software implementation of Reser-
voir Computing [90]. While their performance can often be surpassed by a
properly trained Recurrent Neural Network with a similar number of neurons,
the key features of ESNs are their simple implementation, limited number
of parameters and wide applicability. A complete ESN implementation typ-
ically only takes a few lines of code in a language with support for matrix
operations.

Win

Wout

Wres

outputreservoirinput

1 Wbias

Figure 3.1: Schematic overview of an Echo State Network RC
system with 3 inputs (on the left) and 2 outputs (on the right).
The Reservoir is the random Recurrent Neural Network in the
center of the figure. The key concept is to only train the output
connections Wout, while the other connections are fixed.

Figure 3.1 shows the architecture of a standard ESN with multiple inputs
and outputs. At its core, an ESN has a — typically large — discrete time
non-linear Recurrent Neural Network, called the Reservoir. The Reservoir is
fixed, meaning that the weights of the internal connections remain constant.
The hyperbolic tangent function is the most common non-linearity used for
ESNs. This squashing function ensures that the values of the neurons in
the Reservoir are bounded. Unlike continuous time Reservoirs (e.g. Liquid
State Machines), the topology of ESN Reservoirs does not appear to have a
significant impact on their performance. In short, the Reservoir section of an
ESN is an arbitrary Recurrent Neural Network with a sigmoid non-linearity.
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Two sources feed into the Reservoir: the inputs of the system and a
bias. Both the bias and the inputs are connected to the Reservoir through
random fixed weights. Often, the bias is not explicitly mentioned, as it can
be modeled as a fixed constant input.

Formally, for a Reservoir with n neurons, the weights of the connections
within the Reservoir are represented by a matrix Wres of size n × n. Ad-
ditionally, matrix Win and vector Wbias represent the connection weights
from the input to the Reservoir and from a bias to the Reservoir respectively.
Typically,Wbias has dimensions n× 1 andWin has dimensions n×u, where
u is equal to the number of inputs to the Reservoir. After sampling these
weights from a random distribution, e.g. a standard normal distribution, the
update of the system’s state is written as:

x[d+ 1] = tanh(Wresx[d] +Winu[d+ 1] +wbias), (3.1)

where u is the input of the system. The output y of an ESN is defined by1:

y[d+ 1] = Woutx[d+ 1], (3.2)

where Wout are the connection weights from the Reservoir to the output.
The dimensions of this weight matrix are n×o, where o equals the number of
outputs. The goal of ESN training algorithms is to adapt the only non-fixed
matrix Wout to approximate the desired output y.

3.2.2 Parameters
Echo State Networks are unique in that their properties are to a large extent
defined by random sets of weights. However, it turns out that the obtainable
performance by optimal training of the output layer primarily depends on
a few scalar parameters. More precisely, it is crucial to choose a good scal-
ing of the input matrix Win, bias vector wbias and spectral radius. These
parameters depend on the problem at hand, but some intuition exists. The
bias scaling pushes the neurons of the Reservoir into the non-linear regime
of the hyperbolic tangent, which tends to be useful for non-linear computa-
tions. For too large input scalings, the memory of the Reservoir tends to be
destroyed, as the inputs force the state of the network. The last variable,
the spectral radius, is studied in more detail in the following sections.

One of the key principles behind RC is the Echo State Property (ESP)
introduced by [90]. A Reservoir system exhibits the ESP if it forgets all
previous input after a limited time, i.e. it cannot have infinitely long memory

1Other types of readouts (e.g. winner take all or soft-max) also appear in the
literature, but are not considered here.
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(similar to the concept of fading memory introduced in [113]). In other words,
without any external input, the system’s state should converge to a single
fixed point. In order to tune the dynamics of the Reservoir, many researchers
use the spectral radius ρ, which is defined as the largest absolute eigenvalue
of the Reservoir weight matrix Wres.

Figure 3.2: Bifurcation diagram of a 128-dimensional Reservoir
with zero input and zero bias. The equilibrium points for three
randomly selected neurons are visualised. By increasing the
spectral radius, the system bifurcates from a single fixed point
to spontaneous activity.

The effect of the spectral radius on the dynamics of the Reservoir system
becomes clear when the bifurcation diagrams of the Reservoirs are traced. In
Figure 3.2 the bifurcation diagram is shown for a 128-dimensional network
with neither input, nor bias. The bifurcation diagram shows the different
equilibrium points (i.e. local extrema) of three randomly selected neurons
of a simulated Reservoir after many different initializations. For ρ < 1.0,
one observes that the system’s state converges to a fixed point at the origin.
At ρ = 1 the system undergoes a bifurcation which makes the Reservoir
dependent on its initial condition. Consequently, the ESP does not hold
anymore. This bifurcation point does not always occur for ρ = 1. When the
system is fed an input signal or a constant bias, this bifurcation point can be
observed for a spectral radius slightly larger than 1, see Figure 3.3. Due to
the nonlinearity of the system — which has maximum gain at zero input —
this will be the case in almost all practical situations in which the Reservoir
is excited with one or more input signals.
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Figure 3.3: Bifurcation diagram of 128-dimensional network
fed a constant bias. The equilibrium points for three randomly
selected neurons are visualised. By increasing the spectral radius,
the system bifurcates from a singled fixed point to spontaneous
activity. The constant input (e.g. bias) postpones this bifurca-
tion point.

3.2.3 Echo State Property Revisited
The Echo State Property (ESP) is a key concept in Reservoir Computing
which can be formally stated as [90]:

Definition 1. A network F : X ×U → X (with the compactness condition)
has the Echo State Property with respect to U , if for any left infinite input
sequence u−∞ ∈ U−∞ and any two state vector sequences x−∞, y−∞ ∈
X−∞ compatible with u−∞, it holds that x0 = y0.

Consequences of the ESP are that the current network state only depends
on a certain number of previous inputs and is not influenced by the initial
state after a certain period of time (often called warm-up period). Reservoirs
with the ESP can be used as nonlinear finite impulse response filters. Instead
of crafting the Neural Network such that it performs a certain task (i.e.
emulates some desired filter), one typically combines the available nonlinear
projections of the Reservoir in a linear fashion, assuming that the desired
nonlinear computations are available in the system. This will be explained
in detail in Section 3.3.

Therefore, it is customary to study the global properties of Reservoirs
with respect to a few parameters, such as the spectral radius, input bias and
leak rate. In this spirit, the linear memory capacity [70] has been studied as
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Figure 3.4: A low spectral radius (ρ = 0.39) two neuron net-
work without the Echo State Property. 1× 105 initial states
were sampled (uniform ∈ [−1, 1]2) and the states were recorded
for multiple time steps (increasing from left to right). All
initial states converge to the origin or continue to oscillate
between ±[0.8975 0.9946]T. The weight matrix is given by
Wres = [−3 1.24;−5.968 2.416]. This is not a degenerate case,
as small variations of the weights also result in a non-ESP net-
work (e.g. Wres = [−3 1.2;−6 2.4], ρ = 0.6).

well as the apparent tradeoff between linear memory and nonlinearity [184].
Rules of thumb are that high bias networks are useful for highly nonlinear
computations (because of the nonlinear behavior of the hyperbolic tangent)
and a high spectral radius results in longer memory. See [111] for a complete
overview of design strategies.

One complication of the ESP is that it is input dependent. There has
been some research into the input dependent ESP [115], but in practice it
is often impossible to know all statistics of the input sequences beforehand.
The ESP is thus mostly studied independently of the input sequence.

Different methods exist to verify if a given Reservoir exhibits the ESP.
The most commonly used method (for hyperbolic tangent networks) is to
compute the spectral radius of the weight matrix (ρ = maxi |λi|). If the
spectral radius is below unity, one assumes that the ESP is fulfilled. The
rationale for this approach is the fact that the hyperbolic tangent has the
highest gain at the origin and one thus regards the linear system with the
same weight matrix as an upper bound for the stability (eigenvalues within
the unit disk).

Unfortunately the spectral radius method is not sufficient for the ESP
(e.g. [196]) and it is possible to construct low spectral radius (ρ << 1)
counterexamples. Consider Figure 3.4, which shows the state progression
for a 2-dimensional network with ρ = 0.39 and neither input, nor bias. The
system was initialized in 1× 105 random states and the update equation
(Eq. 3.1) was applied. After a few iterations, all initial states contract into
the origin or begin oscillating between two states. One intuitive explanation
for such behavior is that the nonlinear network weakens negative feedback.
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It is therefore possible to construct networks with very large weights, which
have low spectral radius and do not exhibit the ESP.

Multiple sufficient conditions or tests for the ESP have been proposed. In
his original work, Jaeger [90] proved that having the largest singular value of
the weight matrix below unity is sufficient for the ESP. It is easy to show that
maxi(σi) ≥ ρ, because any consistent matrix norm has a higher value than the
spectral radius. Only for normal weight matrices (W ∗

resWres = WresW
∗
res),

both norms coincide and the SVD condition is thus more restrictive than the
spectral radius condition.

More recently, the ESP has been studied in terms of Lyapunov expo-
nents [185], operator norms [17] and Schur stability [196]. Nevertheless, there
are multiple reasons to study the usefulness of the spectral radius method.
First of all, the proposed methods are generally more complex to verify. Sec-
ondly, it will be shown that the spectral radius method is often a tight bound
for the ESP.

The Schur stability method by Yildiz et al., the largest singular value
test and the spectral radius method are now considered in more detail for
small, zero input and zero bias networks.

The Schur stability method is stated as a linear matrix inequality condi-
tion [196]:

Definition 2. A zero bias hyperbolic tangent Reservoir has the Echo State
Property for any input if its weight matrix Wres is diagonally Schur stable,
i.e. there exists a diagonal matrix P > 0 such that W T

resPWres − P is
negative definite.

Figure 3.5 and Figure 3.6 show the fraction of rejected weight matrices
for the different methods for 2 and 8 neuron Reservoirs respectively with i.i.d.
normally distributed weights as a function of the spectral radius averaged over
1× 104 random Reservoirs. To check whether a network has the ESP, each
network was initialized in 1× 103 random (uniform ∈ [−1, 1]2 or ∈ [−1, 1]8)
states and updated for 1× 103 iterations. If the norm of any final state was
above 1× 10−7, the network was considered to not have the ESP as not all
states contracted to the origin. This is the baseline, indicated as non-ESP.

It becomes clear that the singular value test and the Schur method reject
many networks for high spectral radii, while the fraction of Reservoirs that
effectively do not have the ESP for ρ < 1 is many times lower. Furthermore,
the bounds tend to become weaker for larger networks, while the fraction of
non-ESP networks becomes smaller.
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Figure 3.5: Fraction of the 2-dimensional networks (zero input,
zero bias) that do not have the experimentally verified ESP
in function of ρ, fraction of the 2-dimensional networks with
max(SVD) > 1 and fraction of the 2-dimensional networks
which are not Schur stable.
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Figure 3.6: Fraction of the 8-dimensional networks (zero input,
zero bias) that do not have the experimentally verified ESP
in function of ρ, fraction of the 8-dimensional networks with
max(SVD) > 1 and fraction of the 8-dimensional networks
which are not Schur stable.
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3.2.4 Echo State Property in Large Reservoirs
To study the ESP in large Reservoirs, an extensive numerical verification
was performed. These experiments are designed to show the influence of the
Reservoir size and connectivity on the ESP.

3.2.4.1 Experimental Setup

In a large-scale numerical experiment the number of neurons n, the connec-
tivity (the fraction of weights that is non-zero) c of the Reservoir weight
matrix and the spectral radius ρ were varied:

n ∈ {2, 4, 8, 16, 32, 64, 128, 256}
c ∈ {0.01, 0.0167, 0.0278,

0.0464, 0.0774, 0.1292,
0.2154, 0.3594, 0.5995, 1.0}

ρ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9,
0.91, 0.92, 0.93, 0.94, 0.95, 0.96,
0.97, 0.98, 0.99, 1, 1.01, 1.05, 1.1, 1.2}.

Each parameter combination was tested for 1× 105 randomly generated
networks with weights Wres sampled from a standard normal distribution
and 1× 103 random (uniform ∈ [−1, 1]N ) initial states. To test the ESP for
a (zero-input) network, each network was updated by applying Eq. 3.1 with
zero bias and zero input (u and wbias equal to 0) for 1000 iterations for each
initial state. The largest norm of the final states (‖x[1001]‖) was then stored.
Results are presented for fully dense weight matrices with varying network
size and for networks with 128 neurons with varying connectivity.

3.2.4.2 Results

Figures 3.7 and 3.8 show the fraction of networks for which the ESP does
not hold (‖x[1001]‖ > 10−7) as a function of the spectral radius with respect
to network size and connectivity respectively. One can observe in Figure 3.7
that for relatively large (fully connected) networks (n > 32) the probability
of finding a network without the ESP is below 1× 10−3. This is interesting
because most Reservoir systems of practical use are quite large (n > 50) and,
consequently they are not affected by the fact that the spectral radius method
is not a sufficient condition. Additionally, from Figure 3.8 one learns that the
connectivity greatly influences the ESP. The sparser the network, the less
likely it is to exhibit the ESP. For very sparse networks, with a connectivity
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Figure 3.7: Fraction of the fully connected networks with vary-
ing size for which the ESP does not hold in function of the
spectral radius. The larger the network, the less likely that it
does not exhibit the ESP for ρ < 1.0.
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Figure 3.8: Fraction of the 128-dimensional networks with
varying connectivity for which the ESP does not hold in function
of the spectral radius. Larger or denser networks with ρ < 1.0
are less likely not to exhibit the ESP.
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Figure 3.9: Bifurcation diagram for a fully connected 128-
dimensional network. As can be observed in the bifurcation
diagram, the ESP does also not hold for ρ < 1.0.

of 1%, the fraction increases to 3.8% of the networks. In comparison, only
0.031% of the fully connected 128-dimensional networks did not exhibit the
ESP. This observation corresponds with the intuition that it is very likely to
find oscillating sub-networks, e.g. the small networks given in [196], in sparse
networks.

In [196] a method is given for constructing large Reservoir systems for
which the ESP does not hold for spectral radii below 1. By following that
procedure, the obtained networks will be sparse. A logical question is whether
large dense networks can be found for which the ESP does not hold with
ρ < 1. The answer is positive, as can be understood from Figures 3.7 and 3.8.
A bifurcation plot of such a system is given in Figure 3.9. For ρ < 0.98 this
system exhibits the ESP. At ρ ≈ 0.98 the system bifurcates and starts to
oscillate for some of the initial conditions. This contrasts with the behavior
of a normal Reservoir as depicted in Figure 3.2.

3.2.4.3 Discussion

The spectral radius is the most commonly used indicator for the dynamics of
a Reservoir. As a rule of thumb, it is assumed that a Reservoir will exhibit
the Echo State Property for spectral radii below unity. The ESP indicates
that a Reservoir has fading memory and thus that the network state will
eventually become independent of the initial state and past inputs. One
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Figure 3.10: Commonly used parameters for Reservoir Comput-
ing: the Reservoir size n, spectral radius ρ and the connectivity
c. All accessible studies citing [185] were consulted. Researchers
tend to use relatively large networks. The majority of the re-
searchers use a spectral radius slightly below unity. Typically
very sparsely or very densely connected networks are preferred.
This indicates that most studies used parameter ranges for which
the spectral radius is a good indicator for the ESP.

consequence of this is that a zero input, zero bias network has to converge
to the origin (see Figure 3.2).

However, as has been indicated in the past by a number of researchers
(e.g. [111]) and pointed out explicitly in [196], this simple rule does not
always hold. Low-dimensional examples in [196] illustrate that in some cases
a network oscillates despite the fact that ρ < 1. These low-dimensional
examples can be extended to higher-dimensional networks, however these
are always sparse by construction. By large-scale numerical experimentation
also explicit examples of large networks (n ≥ 128) were found for which the
ESP does not hold for ρ < 1 (see for example Figure 3.9).

Fortunately, it was observed that the fraction of such networks rapidly
decreases with increasing network size. Apart from Reservoir size, the con-
nectivity of the network also influences the ESP. In particular, it was shown
that sparser networks with ρ < 1 are more likely not to exhibit the ESP
compared to dense Reservoirs with equal spectral radius.

These findings do not suggest that the spectral radius should always be
below 1. As the bifurcation plot in Figure 3.3 indicates, inputs also greatly
influence the ESP. One should consider the exploration of larger ρ, like [196]
and see ρ as a task dependent global parameter for optimization.

To get an overview of how Reservoirs are typically tuned, all accessible
papers citing [185] that use hyperbolic tangent neurons were analyzed. It
can be seen that the majority of the researchers use 0.9 < ρ < 1.0 (see
Figure 3.10). However, practical experience shows that the spectral radius
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should be much larger or much smaller for some tasks and consequently that
this distribution should be more bell-shaped.

The meta-analysis also shows that most researchers are using large net-
works. This is positive, since the ESP is more likely to hold for ρ < 1 in
such networks. More surprising is the connectivity used in many Reservoirs.
There seem to be two factions; one preferring fully dense networks for which
the spectral radius seems to be a valid indicator for the ESP in general and
the other preferring very sparse networks. Although the latter group com-
prises a significant portion of the studies, this does not necessarily indicate
a problem as the networks were typically large.

In [90] and [196] different metrics for the ESP were given. By large-scale
experimentation on 2- and 8-dimensional networks, it was shown that both
the largest singular value method and the Schur stability are too restrictive
conditions for practical use. Further experiments on larger networks indi-
cated that the probability of a network with spectral radius below unity not
exhibiting the ESP quickly drops as a function of the network size for zero
input, zero bias networks. In conclusion, the spectral radius remains a good
indicator of the ESP, especially in large Reservoir systems.

3.3 Solving Tasks

3.3.1 Feedforward Tasks
The properties of ESNs have been discussed in depth, but the training
methods have yet to be explained. Recall that the output of a standard ESN
is a linear combination of the state of the network’s neurons:

y[d+ 1] = Woutx[d+ 1]. (3.3)

The most common and simplest application of ESNs are batch regression
tasks. In this case, a sequence of inputs u[0],u[1] . . . is fed into the network
and the resulting state sequence x[1],x[2] . . . can be observed2. The goal is to
approximate the target sequence z[1], z[2] . . . as a linear combination of the
state sequence. Linear regression solves this problem by minimizing the mean-
squared error (MSE). Write XT = [x[1]x[2] . . .] and ZT = [z[1] z[2] . . .].
Minimization of the MSE can now be written as:

arg min
Wout

= ‖XW T
out −Z‖2, (3.4)

2Note the one time step shift between the inputs and outputs.
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where the Frobenius norm was used. A closed form solution to this problem
is given by the well known equation:

W T
out =

(
XTX

)−1
XTZ. (3.5)

This simple formula combined with the state update equations of the
ESN are sufficient to build a working RC system. The basic recipe for a
feedforward regression task using an ESN is thus:

• Initialize a random Recurrent Neural Network, input matrix and bias
vector (Wres, Win and wbias).

• Rescale the Reservoir weight matrix to obtain a suitable spectral radius
for the task at hand (typically 0.5 < ρ < 1.2).

• Compute and store the network states by applying Eq. 3.1 to u[0],u[1] . . .

• Apply Eq. 3.5 to compute the output weight matrix Wout.

OnceWout is computed, the system can be used to predict new outputs based
on a different input sequence utest[0],utest[1] . . .. The general flow is to train
the system using an input sequence u[0],u[1] . . . and matching target output
sequence z[1], z[2] . . . and then use the trained system to predict the output
of a test input sequence utest[0],utest[1] . . .. The testing phase is the most
important part of the whole process: A well-trained system should generalize
to new input data. A learning system that simply stores and reproduces
the training samples it has been fed will achieve perfect performance on the
training set, but it will utterly fail to generalize to unseen input data.

The initialization is one minor aspect of ESNs has not yet been properly
addressed. Section 3.2.3 discussed the short term memory of ESNs. The
state of networks with the Echo State Property becomes independent of past
inputs. An ESN can thus be initialized in an arbitrary state and after a
warm-up sequence the state sequence of the network will be independent of
the initial state. Initialization is thus not an issue for ESNs. However, it is
important to not consider the state sequence corresponding to the warm-up
samples in the learning algorithm. This means that the indices in x[1]x[2] . . .
are counted start from the first sample after the warm-up sequence. The
length of the warm-up period is typically on the order the network size.

In practice, optimizing the behavior of an ESN for a feedforward re-
gression task primarily involves tuning of 4 scalar parameters: the spectral
radius, the input scaling, the bias scaling and the regularization parameter
of the output layer. This last parameter is explained in the next section.
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3.3.1.1 Efficient Ridge Regression

A well-trained system should generalize to new input data. The assumption
is that the test data has the same properties as the training data. It is
therefore possible to split the training data into a smaller training set and a
testlike set of which the targets are known. To prevent confusion, this last
dataset is called a validation set as it is used to validate the performance of
the algorithm trained on the (reduced) training set. This approach makes it
possible to introduce additional (hyper)parameters that allow to optimize the
generalization to unseen data. Testing and final evaluation of the performance
is still based on the test set of which the target outputs are not known to
the training method. It is imperative to only use the test set for evaluation
purposes and not include it in the training phase in any way.

Various techniques exist to split the original training data into training
and validation sets such that optimal use can be made of the available data.
These techniques are commonly known as cross-validation. In a k-fold cross-
validation scheme, the data is split into k subsets. One subset becomes the
validation set and the k − 1 remaining are used to train the system. This
process is repeated k times, such that each subset takes on the role of the
validation set once. An extreme form of cross-validation is leave-one-out
cross-validation in which the validation set consists of a single sample. As
RC methods are applied to sequential data, cross-validation for RC should
split the data into chunks instead of randomly selected subsets. Leave-one-
out cross-validation is thus generally not applicable and 5-fold or 10-fold
versions are more common.

Cross-validation makes it possible to evaluate the generalization proper-
ties of a trained system. However, the parameters that have been explained
so far (spectral radius, input scaling and bias scaling) mainly influence the
computational properties of the system. They have no direct contribution
to the trained output layer of the network and thus provide no control over
the generalization performance.

In contrast, the regularization parameter, introduced in this section,
constrains the weights of the output layer. This prevents overfitting on the
training samples and thus to improve generalization properties. The common
method to constrain the Euclidean norm of the output weights is called ridge
regression. Ridge regression minimizes the following loss function [174]:

arg min
Wout

= ‖XW T
out −Z‖2 + λ‖Wout‖2, (3.6)

where λ is the regularization parameter. A closed form solution to this
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problem is given by:

W T
out =

(
XTX + λI

)−1
XTZ. (3.7)

Note that in linear regression and ridge regression, the output dimensions are
independent. One is thus free to select different regularization parameters
per dimension.

There is no closed form formula to select the optimal λ. Instead, a line
search is needed to reveal the best value. For high-dimensional data it can
be computationally demanding to evaluate Eq. 3.7 for a large number of λ
values. In [18] Pieter Buteneers and I have shown that by precomputing the
eigenvalue decomposition of the cross-validation subset covariance matrices
there is no increase in computational cost with respect to the unregularized
solution in most cases. More precisely, we have shown that for a limited
number of folds (kn < m) and regularization parameters to test (r < n), the
complexity of finding the optimal regularization parameter and calculating
the optimal output weights order O(n2m). Here k is the number of folds, n
the number of neurons in the ESN, m the number of training samples and r
the number of regularization parameters to test.

3.3.1.2 Other Loss Functions & Training Algorithms

The squared loss function is appropriate for regression problems. However,
it is well known that it is generally not a good fit for other types of problems
such as classification [11]. In feedforward applications of RC, i.e. in which
there are no connections from the output layer to the input, the output layer
is independent of the reservoir dynamics and it is thus straightforward to
use a more appropriate training technique for the problem at hand.

In this context RC methods even appear in unsupervised learning se-
tups for which the target output is not known. This was demonstrated by
Antonelo [5], who used RC in combination with Slow Feature Analysis for
autonomous robot navigation.

3.3.2 Feedback Tasks
While the simple training methods discussed in the previous sections already
make RC applicable to a large set of problems, it is hard to advocate a
method for Recurrent Neural Networks not capable of emulating a rather
basic component such as a flip-flop. It turns out that a simple, yet ingenious
trick extends RC to tasks that rely on long-term memory. The basic concept
is illustrated in Figure 3.11. Fixed random feedback connections Wfb are
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added from the output layer to the Reservoir. The connections from the
Reservoir to the output are still the only trained weights.

Win

Wout

Wres

outputreservoir                        input

1 Wbias Wfb

Figure 3.11: Schematic overview of an Echo State Network
RC for feedback tasks. The setup differs from Figure 3.1 in that
feedback connections have been added from the output neurons
to the Reservoir. This makes training methods more complex,
but allows for tasks with long-term memory (e.g. a latch) to be
implemented.

The question is how the learning strategy for feedforward task can be
adapted to this modified architecture? Changes to the Wout weights now
affect the system in the same way modifications of the internal connections
of a Recurrent Neural Network do. However, the essential difference is that
the desired outputs are known and only the layer directly connected to the
output is trained. This still allows for efficient, simple and robust learning
techniques.

3.3.2.1 Teacher Forcing

The simplest way to train an ESN with output feedback is to use the tech-
niques available for the feedforward case and cut the network at the output
layer [91]. During training the desired output is fed back into the Reservoir
through the feedback connections, while the output layer is trained as before.
This technique is known as Teacher Forcing, because the teacher or training
data is forced into the Reservoir during training. The method relies on the
fact that after training the output approximates the target signals. Thus
once the training phase is finished, the actual output can be fed back into
the system and the recurrent setup is operational. To increase the robustness
and probability of success, noise is commonly added to the training signals
or injected into the Reservoir.
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3.3.2.2 Recursive Least Squares and FORCE Learning

More elaborate techniques have been developed, which improve upon the
original Teacher Forcing method. The most common such methods rely upon
the Recursive Least Squares (RLS) algorithm or so-called FORCE learning.
The main advantages of the newer methods are increased robustness3 and
online learning capabilities. FORCE learning was introduced by Sussillo and
Abbott in 2009 and uses initially chaotic Reservoirs (spectral radius typically
significantly above 1) [168]. Learning occurs by adapting the weights to the
output neurons in an online fashion with the feedback connections intact.
The authors also show how FORCE learning can be adapted to more complex
network structures in which the error is not defined locally. The next chapter
relies on the RLS algorithm and its details will be explained there.

3.4 Conclusion

Reservoir Computing is a recurring theme throughout this dissertation and
this chapter presented the core ideas, properties and training methods. More
precisely, I have provided an overview of Reservoir Computing implementa-
tions, discussed the underlying principles and presented a review of common
training methods for Reservoir Computing systems. Reservoir Computing is
in essence a simple approach to exploit the computational resources of a dy-
namical system. Due to the limited number of assumptions on the underlying
substrate, Reservoir Computing has a wide range of possible applications.

The software implementations of Reservoir Computing have been well
studied over the last decade. However, it is my opinion that the main
innovation in recent years has been the move towards studies of the Reservoir
Computing properties of physical systems. The central topic of the next two
chapters is Physical Reservoir Computing for tensegrity robots. In this
respect, this chapter serves as a basic reference for the terminology and
algorithms used there.

3The Teacher Forcing method tends to highly depend on an optimal choice of
the regularization parameter.
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Tensegrity Structures as

Computational Devices

The goal of this chapter is to demonstrate how tensegrity structures can
be seen as computational devices. The methods presented are applied to
the lowest level of control, at which sensor data feeds back to the motor
drivers through simple static functions. This results in robust controllers for
rhythmic motions, which can be integrated with higher level controllers such
as Central Pattern Generators or more classic control schemes.

This chapter is organized as follows. First I provide a general overview
of the methods and ideas in Section 4.1. This is followed by a discussion of
related work in Section 4.2. Afterwards, I introduce Central Pattern Gener-
ators (Section 4.3) and define the Physical Reservoir Computing concept in
the context of tensegrity robots (Section 4.4). I continue with an extensive
experimental Section (4.5) before ending with my conclusions (Section 4.6).

4.1 Overview

The experimental setup is analogous to Reservoir Computing with artifical
Neural Networks, which is why I will discuss the concept of Physical Reservoir
Computing in the context of tensegrity robotics to link physical systems
and artificial Neural Network techniques. The objective is to demonstrate
that sufficient computational power can be provided by the nonlinearities
and memory in the system dynamics. This statement will be validated by
locomotion experiments in simulation.

I believe compliant tensegrity robots to be a natural fit for such simple,
low level control methods. My first argument for this is that compliant
tensegrity robots are similar to soft robots for which precise control is often
not needed or not feasible. The compliance of soft robots allows to cope
with small control errors, model inaccuracies or complex environments [178].
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For example, a robotic trunk based on a muscular hydrostat can manipulate
objects of various shapes without accurate knowledge about the object at
hand [120, 187].

However, unlike typical soft robots, tensegrities have well defined and
controllable mechanical properties. I showed in Section 2.7.6.2 how the
stiffness and related properties of a tensegrity can be tuned. This opens
up a straightforward path to match a (rhythmic motion) controller to the
(oscillation) properties of a structure and vice versa. For the sake of simplicity,
the properties of the structures in this chapter are fixed, except for the
actuated spring-cable assemblies.

From a mathematical or control theory perspective, the methods pre-
sented in this chapter are extremely simple: I only consider linear feedback
methods (for non-linear systems). Additional benefits of the presented ap-
proach are that it provides a simple way to use low cost, nonlinear sensors
in a useful manner and that it provides insights into how controllers (brains)
and structures (bodies) integrate and can work together.

As explained in the previous chapter, Reservoir Computing is originally a
very simple approach in which the Neural Networks are fixed during training.
The consequence of this is that the results are typically sub-optimal, by which
I mean that an optimally trained Neural Network could solve a task with
fewer computational units. The benefit of the Reservoir Computing inspired
approach stems from its simplicity and direct applicability to various prob-
lems. One does not need precise knowledge of the computational substrate
(robot, Neural Network. . . ) to obtain results.

Throughout this chapter the assumption is made that the target or
desired motor signals are known. This means that the often difficult question
of finding optimal motor signals for a desired behavior (e.g. through inverse
dynamics calculations) should be solved by other means. The main focus
here are techniques to emulate or replace an external controller by exploiting
the dynamics of a compliant tensegrity robot. In the next chapter, this line
of work will be extended to directly learn feedback controllers based on a
single reward signal.

4.2 Background and Related Work

Various partner labs have been working on related methods within the Eu-
ropean Union FP7 AMARSi project. This both shows the interest in such
simple control methods for compliant robots and provides useful validation ex-
periments on various hardware and software platforms. Hauser et al. [68, 67]
have shown that spring-mass nets have universal computational power. They
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linear, static

sensorimotor loop

Figure 4.1: Overview of the approach.

have demonstrated that with reasonable assumptions, spring-mass nets can
be used to approximate any non-linear filter with fading memory. This pro-
vides a theoretical foundation for Morphological Computation by casting it
as a form of Reservoir Computing. To be more precise, Reservoir Computing
methods allow to simplify the control problem by exploiting computations
inherently present in the dynamics of a spring-mass net. Tensegrity robots
are highly similar to spring-mass nets, but have the considerable advantage
that they are free-standing. The tensegrity approach thus makes it possi-
ble to construct physical devices that are highly similar to a widely used
theoretical model.

The Artificial Intelligence Lab at the University of Zurich has applied
this approach to two platforms: quadruped spines and soft robotic arms.
The quadruped spine experiments are interesting, because a compliant spine
could be retrofitted into various existing robots (e.g. the Oncilla robot devel-
oped within the AMARSi projects). For the quadruped spine experiments,
force sensitive resistors were used as sensor devices [199, 200]. The soft
robotic arms are based on the muscular hydrostat principle [127]. Muscular
hydrostats are continuous soft systems in which stiffness and forces are gen-
erated by the constant volume constraint of the system. Common examples
of muscular hydrostats are tongues, octopus arms and elephant trunks.

Building on these findings, I show that Morphological Computation can
be used to effectively control compliant tensegrity structures. An overview
of the set-up can be seen in Figure 4.1. Contrary to the experiments at the
University of Zurich, this chapter focuses on online learning. The reason for
this is that it is both more natural from a biological perspective and also
tends to be more robust. My examples also go significantly further than the
now classic demonstrations from Paul, who was the first to conceive simple
robots that performed computation through the body [134]. Indeed, Paul
also considered tensegrity structures for morphological computation, but the
controller in her set up was still external [136].
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Note that in this work I only focus on pattern generation through feed-
back to the body. I do not develop the sensing aspect in this dissertation,
although I did some initial work on the topic [23]. More precisely, I showed
that it is possible to extract high-level environment information, such as
detecting surface properties, directly and linearly from the state of the body.
This was possible even while generating locomotion patterns in parallel. I do
not continue this line of work here for two reasons. First, this line of work
was already explored in a compliant robot by Fuyima Iida [81]. Secondly,
sensing is inherently embedded into my closed loop control approach.

To sum up, the main goal of this chapter is three-fold. First, I show
that the results of Hauser et al. are not merely a theoretical result and
demonstrate that compliant robots indeed have real computational power
which can be easily exploited using simple learning algorithms. Secondly, I
will study the generation of cyclic motion patterns (similar to the patterns
generated by Central Pattern Generators (CPGs)) as an example to demon-
strate the available computational power. These rhythmic patters are then
used to achieve locomotion. By using the morphology to generate CPG-like
signals, the design of the controller can be drastically simplified. Indeed,
integrating sensor data into CPGs is not an easy problem, and by integrating
the body dynamics in the control structure, the robot intrinsically synchro-
nizes to properties in its environment. Finally, by using tensegrity structures,
I provide an implementation of the general principle of Physical Reservoir
Computing that is very close to the pure mass-spring nets from Hauser et al.

The structure of this chapter is as follows. I first provide a brief overview
of central pattern generators. I then introduce a number of learning rules
for simulating CPG-like motor patterns with tensegrity structures. Next, I
provide a set of example applications. I show that the gait can be modu-
lated by changing the equilibrium length of a subset of springs, which can
prove useful to train robots to adapt their gait depending on the terrain.
I optimize gaits using an external controller and then learn the equivalent
gait with morphological computation to show that the control can literally
be outsourced to the body. In the same spirit, I show an example of the
control of an end-effector. Finally I empirically show that the presented
methods work over a large parameter space and in non-linear regions when
the structures are driven far from their equilibrium state.

4.3 Central Pattern Generators

Central Pattern Generators (CPG) are neural circuits typically found in
the spine of vertebrates that generate rhythmic activation patterns without
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sensory feedback or higher level control input [82]. My prime goal is to show
that a lot of computational power can be exploited in compliant structures.
The more computations that can be outsourced to the body, the less effort
one needs to put in the construction of CPGs (for robotics applications) and
the less external computational power is needed.

Robotic systems are not often as compliant as the ones I study here and
the available morphological computational power might be insufficient to
allow for the desired behavior with a static linear feedback. I argue that one
should however try to keep the body’s dynamics as much (and as soon as
possible) in the loop to be able to exploit the morphological computational
power. Indeed, in the case of compliant tensegrity structures, one can go as
far as leaving out the external CPG completely.

4.3.1 Matsuoka Oscillators

The non-linear Matsuoka oscillator is considered here as a model CPG [116,
117]. It is one of the most fundamental oscillator structures, based on a
simple integrating neuron with fatigue. Synaptic fatigue is a form of negative
feedback in a Neural Network. It regulates the activity of highly excited
neurons. The dynamics of this oscillator are given by (dropping the time
indices):

ẋosc = −xosc +Woscyosc + γ − ιvosc
τ1

(4.1)

v̇osc = yosc − vosc
τ2

(4.2)

yosc = max(xosc,0), (4.3)

where x represents the internal state of the neuron. HereWosc is the matrix
describing how the neurons are connected. It is typically sparse, as Matsuoka
mostly analyzed small regular connection patterns. The positive semidefinite
weight matrixW was constructed similar to the stress matrix of the tensegrity
structure with the diagonal (self feedback) removed. More precisely:

Wosc = CTdiagv(h)C − diagv(diagm(CTdiagv(h)C)) with h ∈ [0, 1]s,(4.4)

where C is the connectivity matrix as defined in Section 2.1.3.2. As in
Chapter 2, the diagv operator transforms a column vector into a diagonal
matrix. Similarly, the diagm operator extracts the diagonal of a matrix into
a column vector. Hence, the neurons are connected in the same way as the
spring-cable assemblies connect the nodes of the tensegrity structures. The
choice of this connection pattern was inspired by the symmetric structures
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used in [116]. In fact, it is a common approach to reflect the physical structure
in the oscillator connectivity [83]. Additionally, random connection patterns
tend to generate chaotic trajectories.

The integrating neuron and the fatigue have time constants τ1 and τ2
respectively. The steady state firing rate of the neuron is determined by ι
and γ is called the impulse rate of the tonic or slowly varying input [116].
These parameters are constant, i.e. the oscillator itself is not modulated.
The parameters are: ι = 1,τ1 = 0.5, τ2 = 5 and γ = 1. Figure 4.2 shows an
example of CPG signals generated by the above procedure. There were a
total of 12 dimensions (5 shown) and the connection pattern was taken from
the tensegrity icosahedron (e.g. as shown in Figure 4.3).
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Figure 4.2: Sample Matsuoka oscillator signals. A linear combi-
nation of such signals is used as CPG signal for robot locomotion.
There were a total of 12 dimensions (5 shown) in CPG of this
example and the connection pattern is taken from the tensegrity
icosahedron (Figure 4.3).

The vector yosc contains the firing rate of the neurons and vosc models
the fatigue. The firing rates yosc are the outputs of the oscillator and these
signals are used to construct the target motor signals. The output signals
yosc were resampled such that the signals had the correct frequency for the
experiment (normally 1Hz). The desired output signals are random linear
combinations of this p-dimensional signal yosc.

Based on the signals yosc I construct target motor signals as a simple
linear combination:

ytarget = Wtargetyosc. (4.5)

In practice, a constant bias variable is added to yosc. Wtarget is random
(normally distributed values) in most of this work (i.e. I assume the desired
CPG signal to be known), except in Section 4.5.2, in which I optimize the
CPG signal. The fundamental difference is that yosc is generated by a random
oscillator. These signals will take values between 0 and 1, while the motor
signals will need a correct offset and amplitude. This is solved by Wtarget,
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which combines the signals from yosc into meaningful motor commands.
I chose the Matsuoka type oscillator because of its simple structure

which can be chosen to be similar to the connection pattern of the tensegrity
structure itself. While I did not explore this path further, one interesting
extension is to integrate the morphological communication idea from Rieffel
et al. [144]. In that work, Rieffel et al. use controllers based on spiking
Neural Networks that interact only through body dynamics.

4.4 Physical Reservoir Computing

Reservoir Computing was introduced in Chapter 3. The core idea of RC was
originally applied only to Neural Networks, but has since been extended to
other non-linear dynamical systems, leading to what is called Physical Reser-
voir Computing (PRC). There have been demonstrations of the Reservoir
Computing approach applied to different domains such as photonics [181]
and more abstractly electronics [6]. All these implementations share the
common idea that a system with complex and rich dynamics is perturbed
externally but left untouched otherwise, and a simple readout mechanism is
trained to perform the desired computational task. While the idea of PRC
originated in the context of Neural Networks, recent theoretical results have
extended the applicability of this computational framework [32].

Recall the most common implementation of Reservoir Computing. The
discrete time network dynamics are given by:

x[d+ 1] = tanh(Wresx[d] +Winu[d+ 1] +wbias) (4.6)
y[d+ 1] = Woutx[d+ 1]. (4.7)

RC can be used to implement functions that do not necessarily have the
fading memory property by feeding the output back into the system:

x[d+ 1] = tanh(Wresx[d] +Winu[d+ 1] +wbias +Wfby[d]) (4.8)
y[d+ 1] = Woutx[d+ 1]. (4.9)

The feedback weights Wfb are typically chosen randomly and, again, only
Wout is trained. This type of system can be used to autonomously generate
desired signals. As persistent oscillations are needed to emulate CPG signals,
this last set of equations forms the foundation of the Physical Reservoir
Computing approach I present here.

Figure 4.3 shows how tensegrity structures can be used for Physical
Reservoir Computing. The equilibrium length of a subset of the spring-cable
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Figure 4.3: Overview of physical Reservoir Computing with
compliant tensegrity structures. The thin green lines are passive
spring-cable assemblies with a sensor measuring the force and its
derivative on the spring. The thick red lines are non-compliant
bars. The dotted lines are actuated spring-cable assemblies. The
(new) equilibrium length of the actuated spring-cable assemblies
is computed as a linear combination of the sensor values.
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Figure 4.4: Absolute values of the correlation coefficients be-
tween the different state/sensor values as defined in Eq. 4.10.
The left graph shows the correlation between the state vari-
ables at the current time step ([fT (t) ḟT (t)]T ). The image on
the right illustrates the correlation between different time steps
(t t−∆ . . . t− k∆).
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assemblies is used as feedback/input to the system. Differently from [68],
I use only linear spring-cable assemblies (Eq. 2.19). In my experiments,
the non-linearities arising from the changing geometrical configuration and
inertia are sufficient for good performance. The time evolution of the tension
on each spring-cable assembly and its derivative are used to define the state
x of the dynamical system (cf. Eq. 4.8):

x(t) = vec


f(t) ḟ(t)

f(t−∆) ḟ(t−∆)
. . . . . .

f(t− k∆) ḟ(t− k∆)

 , (4.10)

where f(t) are the spring forces measured at time t. The parameter ∆ =
20ms is the controller time step and k is the number of delay steps used.
The vec operator concatenates all columns of a matrix into a vector. For
the tensegrity icosahedron simulations, k = 9 was used (maximum delay
of 200ms) and k = 3 for the snake robots. The main reason for this is
that this allows the feedback to filter out noise due to ground collisions to
some degree (by averaging over the delayed inputs). I have also performed
a number of simulations with k = 0 (see also [23]) to verify that the system
does not depend fundamentally on this delayed sensor information. This was
indeed not the case, but the ground collisions tend to render figures such
as Figure 4.7 less intelligible. One can see from Figure 4.4 that the time
delayed sensor information is indeed highly correlated. According to 2.19,
each element of f(t) can be written as:

fi,j(t) = max(ki,j(‖ni(t)− nj(t)‖ − l0,(i,j)(t)), 0), (4.11)

where (i, j) indicates the spring-cable assembly connecting end caps i and j

I have explicitly used the time index for the rest lengths l0,(i,j)(t), because
a subset of the spring-cable assemblies is actuated and thus has a varying
rest length. The subset of passive, fixed rest length spring-cable assemblies
are now denoted by the subscript pas and the subset of actuated spring-cable
assemblies by the subscript act. l0,pas is a constant vector defined by the
equilibrium state of the structure. l0,act(t) is time-varying and is given by:

l0,act(t) = lmaxg(y(t)) + l0,act(0). (4.12)

lmax is the maximum change in rest length of the spring-cable assemblies
(w.r.t. the initial lengths in l0,act(0)) allowed by the actuators. For this
to work one must have g : Ra → [−1, 1]a, with a the number of actuated
spring-cable assemblies. Now y(t) will in general be a linear combination of
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x(t) and a constant bias input:

y(t) = Wx(t). (4.13)

The goal of most of the algorithms studied here is to find the matrix W .
Terminology It might appear strange to define the state of the dynam-
ical system (Eq. 4.10) as a set of measurements, while the state of the
robot evolves according to the equation of motion presented in Section 2.8.
In Reservoir Computing for Neural Networks, it is common to observe the
full state of the system. However, this is not a requirement and one is free
to observe a subset of the neurons or to apply a (non-)linear, memoryless
transformation to the output of the neurons. In this case the dynamical sys-
tem (the black box) consists of the Reservoir and the transformation. For
Echo State Networks, such a transformation preserves the Echo State Prop-
erty. Assume that x[d] is the vector containing the state of the neurons in
an ESN at time step d as defined in Eq. 3.1. Then a non-linear, memoryless
transformation is simply a function f : Rn → Rn′ that maps x[d] ∈ Rn onto
x′[d] = f (x[d]) = f (tanh(Wresx[d] +Winu[d+ 1] +wbias)) ∈ Rn′ . The
output is now based on x′[d] instead of x[d], which gives y[d] = Woutx

′[d].
The same applies to Physical Reservoir Computing for tensegrity structures.
The computational black box is the robot in its environment, combined with
the measurement equipement. Section 2.8.1 explained how the dynamics
of the robot are computed and Eq. 4.10 defines the non-linear, memoryless
transformation (f). As the internal (full) state of the robot (n and ṅ) is
not used or observed at any point in the learning algorithms, I directly
defined the non-linear transformation of the internal state as the state of
the system x. This prevents cluttering the notation by using x′ everywhere
and makes the equations consistent with the standard RC results.

For the experiments presented in this chapter, I have used g(y(t)) =
tanh(x). It is important to justify the use of a non-linear function1, as it can
provide computational power (as in the RC approach). Therefore, I have
also tested the setup with both a hard limit: g(y(t)) = min(max(y,−1), 1)
and with the identity function (no limit). Both cases yielded quantitatively
similar results to those presented in the experimental Section 4.5. The
identity function was discarded because it does not guarantee boundedness
of the feedback and spurious sensor data can make the structures collapse.
In practice I have noticed that with the identity function, the structure
would operate correctly for e.g. 30 s after training and then collapse because

1Note however that the non-linear function is applied after the linear feedback
and could thus be considered part of the motor driver.
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of an extreme sensor value during a ground collision. However, a physical
implementation will always be limited by the maximum offset of the motor
to ensure safe operation, which validates the use of g(y(t)).

To conclude this section, I note that for the PRC setup x[k] from Eq.
4.8 is replaced by sensor measurements of the tensegrity structure and the
output y(t) is a linear combination of these values. Differently from the
classic RC or ESN implementations, the feedback enters the system through
a physical modification of the system by modifying the equilibrium lengths of
a set of actuated springs. The system itself operates in continuous time, but
the spring-cable rest lengths are updated at discrete time steps and smoothly
interpolated in between the control time steps — i.e. the spring-cable rest
lengths are the set points of a constant velocity motor controller.

4.5 Experiments

The experimental section of this chapter consists of three parts. First, I intro-
duce a set of algorithms to train tensegrity structures to produce rhythmic
patterns. Next, I discuss possible applications for locomotion. I end with a
comparison of different parameter combinations to study the importance of
non-linearities in the system.

All experiments in this chapter and the next one were performed using
a simulator based on the Euler-Lagrange formulation introduced in Sec-
tion 2.8.1.

4.5.1 Outsourcing Motor Pattern Generation

4.5.1.1 Recursive Least-Squares Approach

The first training algorithm I will consider is based on the Recursive Least-
Squares (RLS) algorithm [96]. When the same samples are presented to the
RLS algorithm, it will compute the same weights as batch linear regression
(which is used by [68]). As such, it is in the first place a method for the efficient
computation of the least-squares solution for a sequential data problem. The
advantage of RLS is that it allows a gradual transition from a completely
teacher forced structure (the desired signals are fed into the system) to a
system generating its own control signals and to restart training if needed.

I now describe the RLS algorithm in detail. During training the feedback
signal is a mixture of the target feedback signal and the actual feedback
output signal which is being trained (see Figure 4.5). The influence of the
target signal on the feedback signal is gradually reduced until the output
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Figure 4.5: Overview of the Recursive Least-Squares (RLS)
approach for motor signal generation tasks. Sensor measure-
ments are linearly combined using the matrix Wrls, which is
updated using the RLS algorithm. The objective of this lin-
ear combination is to approximate the desired motor signals
(training data). During the training phase of the algorithm, the
effective motor commands are a mixture of the training signals
and the linear combination of sensor measurements. Once the
system is trained, the motor commands only depend on the
sensor measurements.

signal is only given by the trained signal:

αrls = 1
1 + τrlst

if t < training time else 0 (4.14)

yi(t) = αrlsyi,target(t) + (1− αrls)
∑
j

W(i,j),rls(t)xj(t). (4.15)

At each time step the weights Wrls are updated using the RLS equations:

Lrls(t) = Prls(t)x(t)
1 + x(t)Prls(t)x(t) (4.16)

Prls(t+ ∆t) = Prls(t)−
Prls(t)x(t)xT (t)Prls(t)

1 + xT (t)Prls(t)x(t) (4.17)

erls(t) = ytarget(t)−Wrls(t−∆t)x(t) (4.18)
Wrls(t) = Wrls(t−∆t) +Lrls(t)erls(t). (4.19)

There is only a single parameter: the teacher forcing decay time constant
τrls. The precision matrix Prls was initialized using the identity matrix. The
dimensions of this square matrix are 2k dim (f)× 2k dim (f), where dim (f)
indicates the number of spring-cable force transducers. I note the difference
w.r.t. FORCE learning [168] in which initially chaotic systems are used. The
main reason for this is that tensegrity structures are inherently damped and
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to create chaos, one would need a feedback loop to drive the system. From
a practical point of view this might be inefficient or even dangerous, as one
would need additional actuators which are only used to keep the system
active. In this sense, the RLS approach used here is closer to the teacher
forcing approach ([194] and Section 3.3.2.1). In this approach the desired
output is fed into the system during training and the state of the system
x(t) is stored. Then, regression is used to approximate the desired output
from the system state. Finally, during testing the approximate output based
on the system state is fed back into the system and the system will generate
the desired patterns autonomously. The testing phase is also called free run,
as the system is no longer forced by the external input.

The gradual change from teacher forcing to free run used in this work
allows the structure to take over the control in a smooth way and to restart
learning in a straightforward way. I noticed that the RLS algorithm becomes
unstable if learning continues with αrls too low (i.e. αrls . 0.03). So I
simply switch to free run when αrls drops below the threshold. The most
likely explanation for the instability is that this is caused by the phase drift
between the output and the teacher signal when the system is unforced.
When αrls is low, the feedback loop is trying to improve upon itself. This
fails when the target and observed signals go out of phase. To continue
learning at this point to build a system that can adapt to small changes over
time or to fine-tune the performance, an interesting approach might be to
use the reward based techniques presented in the next chapter.

A demonstration of the RLS approach is shown in Figure 4.6 and Fig-
ure 4.7. In this case 6 actuators were used (i.e. 6 output dimensions). One
can observe that the output signal gets out of phase with respect to the
target signal due to collisions with the ground. The ground collisions and
the control time step (20ms) generate noise in the system. Due to these
effects, additional regularization is not needed.

Figure 4.7 shows a phase portrait of two output signals from Figure 4.6.
The output signals stay in phase w.r.t. each other, which is important for
locomotion. The RLS rule can capture the complex details of the target
signals through the non-linearities provided by the structure.

In my opinion, there are two disadvantages associated with the RLS
approach. First, one needs to update the precision matrix of the observed
variables, which does not scale well. The second and more fundamental
disadvantage is the dependence on explicit knowledge of the target function,
because one needs to know the difference (error) between the optimal motor
signal and the current signal generated by the RLS algorithm. In a practical
setting the target signals are not always known and often only some global
performance measure is available. These two issues are the objects of study
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Figure 4.6: Demonstration of the RLS algorithm. 6 outputs
were trained for 250 s, followed by 150 s of testing. Shown is the
output at the end of the testing (free run) phase. The dashed
line is the target signal, which is generated as in Eq. 4.9. The
solid line is the output signal, which is sent to the actuators.
Notice that the phase of the target signal is not matched, but
that the relative phase of the outputs is fixed. This effect is due
to the tensegrity structure synchronizing to ground collisions.
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Figure 4.7: Demonstration of the RLS algorithm as in Fig-
ure 4.6. Shown are two output dimensions out of the total of
6 during 20 s of testing. The light line is the target signal, the
dark line the output signal. Clearly the system has learned the
attractor robustly. The small perturbations are mostly due to
ground collisions.
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of the next chapter.

4.5.1.2 Gradient Descent Approach

As a means to overcome a disadvantage of the RLS algorithm, namely its
complexity vis-à-vis its biological plausibility, I have used stochastic gradient
descent on the error signal. The following equation, which can replace the
update ofWrls, is trivially obtained by differentiating the quadratic error at
a time step:

Wgd(t) = Wgd(t−∆t)− αgderls(t)xT (t). (4.20)
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Figure 4.8: A comparison of the performance of the RLS ap-
proach compared to the less computationally demanding GD
rule. The objective is to emulate the desired two-dimensional
attractor (yellow dashed line). While both the GD and RLS
rules capture the phase and global shape of the signals, it can
be seen that only RLS is capable of reproducing the details by
exploiting the covariance structure of the state variables.

Because the learning rate αgd has to be chosen small enough to prevent
instability, the GD rule tends to converge more slowly than the RLS rule.
Figure 4.8 shows an example of the RLS and GD rules applied to the same
problem. A two-dimensional feedback loop is trained on a tensegrity robot to
emulate a desired attractor. The GD rule captures less details of the target
signals as it cannot exploit the covariance structure of the state variables.

4.5.2 Applications
In this section I present a set of practical applications of morphological
computation in tensegrity structures. I first show that the structure can
modulate its gait patterns when the equilibrium length of a few spring-cable
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assemblies is changed. Next I look at gait optimization. I optimize the gait
pattern with an external controller and then outsource the resulting gait to
a static, linear feedback controller. Finally, I discuss a basic end-effector
control application.

4.5.2.1 Modulating Motor Patterns

An important question is whether the trained tensegrity structures can be
controlled by adapting their gait to different configurations of the structure
or e.g. the slope of a hill? To test this I have added a single input signal to
the system. This signal was fed into the tensegrity structure by modifying
the equilibrium length of 2 actuated spring-cable assemblies. The target
motor patterns had to be modulated by the structure to linearly interpolate
between two CPG patterns with the same frequency.

I have again used the tensegrity icosahedron to show that such modula-
tions are possible even in relatively small systems. Figure 4.9 shows a result
from a run of the algorithm. I have trained the system for only 400 s. At
each time step, the system switches to another random input (i.e rest length
changed) with probability 0.005. Therefore the time between gait changes is
variable. This also shows the robustness of the system, because accidental
fast switches between input states disturb the system.

The experiment demonstrates a natural way to incorporate input or
environmental feedback for controllers based on the Physical Reservoir Com-
puting principle. One of the main advantages of this approach is that the
input or feedback is directly available to the feedback loop. No special
treatment of the inputs is required nor does the feedback loop increase in
complexity. More general modulations can be implemented based on a vari-
able feedback loop instead of a constant weight matrix, but the learning
procedure becomes more involved [92, 93].

4.5.2.2 Gait Optimization

Gait optimization in robots is a complex problem, because small changes to
e.g. the relative phase of two limbs or the duration of support phases can
result in different locomotion patterns or failure in legged robots (see e.g.
[3] for reviews of animal gait patterns). For example, an animal typically
positions its legs during locomotion to reduce the magnitude of joint moments
and as such the required muscle forces [10].

Optimizing all aspects of gait properties is beyond the scope of this
chapter. I therefore assume the robot’s configuration as well as the CPG
frequency to be known. Figure 4.10 gives an overview of the applied training
procedure. My goal is to optimize the weights of the matrix Wtarget for
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Figure 4.9: Modulating gait patterns through morphological
computation. A single input signal was applied to the sys-
tem by modifying the equilibrium length of two springs. The
structure had to linearly interpolate between two CPG signals
(3-dimensional) with the same fundamental frequency. The sys-
tem was trained for 400 s with random inputs. The phase is
not perfectly matched, because fast input changes disturb the
system. Note that both the signal offset and shape are changed.
A random tensegrity with 6 bars was used. At approximately two
thirds of the sample, there is an apparent glitch in the lowest
signal. The RLS output signal mismatches the target because
of a sudden large drop of the input signal. The reason for this
is that RLS output is based on the state of the physical system
and thus intrinsically smooth. As such the RLS feedback will
naturally interpolate between target signals.
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Figure 4.10: Overview of the training principle for gait opti-
mization. The CMA-ES algorithm optimizes the CPG pattern
and then RLS is applied to train a feedback to approximate this
target pattern using morphological computation. If the robot
has rich enough dynamics, the same gait will be obtained using
the static feedback loop.
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Figure 4.11: Robot trajectories (center of mass) for three runs
of the algorithm on different structures (a tensegrity icosahedron
and two snake-like structures). In red (dotted) the trajectory
during training, in blue the trajectory during testing. Morpholog-
ical computation is powerful enough to maintain the same gait
which was found by optimizing the external CPG using CMA-ES.
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a given basic CPG. I will then outsource the optimal gait to the structure
with the RLS algorithm. The obtained gaits using only morphological com-
putation match those observed during training. Therefore the structure can
approximate the required motor patterns well enough to enable locomotion.

To optimize Wtarget I use the well known CMA-ES (Covariance Matrix
Adaptation Evolution Strategy) algorithm [66]. The choice for this algorithm
stems from the fact that no explicit teacher is required and that the method
is almost parameter-free. Furthermore it has shown excellent performance
on a variety of related problems [42, 161]. The fitness function used is simply
the distance travelled by the center of mass of the tensegrity. Because of the
compliance of the tensegrity structures, I did not need to include penalties
for e.g. falling. Later (Sections 7.4.2 and 7.4.3) coevolutionary algorithms
are used when distributed control is emphasized [132].

Figure 4.11 shows the trajectory of the center of mass of three different
tensegrity structures. On the left, the tensegrity icosahedron with a number
of additional springs. Remarkably, the gait was obtained after only 10
iterations of the CMA-ES algorithm. The population size was 50 and there
were 4 actuators. The gait was evaluated during 30 s. This means that only
4 h of exploration time would be necessary to obtain this locomotion pattern
on a hardware platform.

The two other plots are from snake-like tensegrity structures which were
constructed by stacking tensegrity prisms. Figure 4.12 shows the center
structure in action, while the third result was a snake-like structure with 5
segments.

To show that the same gait is indeed maintained, I have compared
(Figure 4.13) the (vertical) ground reaction forces on the endpoints during
training and testing of the large snake-like tensegrity from Figure 4.12. This
system has 20 actuators in total. Due to the complexity of the structure,
there is some variation in the ground reaction forces, but there is a clear
pattern. The relative phase between of the ground contacts is identical during
training and testing. The training sample is taken from the beginning of the
training (almost completely teacher forced), while the testing sample is from
the end of testing (free run).

4.5.2.3 End-Effector Control

To end this applications section, I show that the same technique can also be
used to control an end-effector. The objective is now to control the position
of the endpoint of a bar with respect to two other endpoints. For this I
measure the length along two springs connecting the endpoint of the bar
with the endpoints of the other bar. This is similar to controlling the position
of the wrist with respect to the shoulder.
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l1

l 2

n1

n2

Figure 4.14: End-effector control in a tensegrity robot. In this
example I seek to control the lengths l1 and l2 of two spring-
cable assemblies, i.e. the relative position of the end cap of a bar
(large dot) w.r.t two other end caps (n1, n2) of the structure.

I do not assume a model of the system to be known and use CMA-ES to
optimizeWtarget. The CPG has the same frequency as the target movement.
Because the CPG only has a limited number of basis signals and the structure
is underactuated, it is to be assumed that the target trajectory cannot be
perfectly matched. In this example I have used a 30-dimensional CPG, based
on a connection pattern from a stacked tensegrity prism.

To compute the fitness, I have simulated the system for 100 s and com-
puted the MSE over the last 80 s. The system was in free fall — gravitational
and ground contact effects were not simulated — and the springs along which
I have measured the position were not actuated. A tensegrity icosahedron
with a total of 13 actuators (Figure 4.14) was used for this example (24 DOF,
because the rigid body movements are ignored).

The result is shown in Figure 4.15. While the target trajectory cannot
be perfectly matched due to underactuation and the limitations of the CPG,
the result is very encouraging. The end-effector is part of the computational
system itself and the springs along which the position is measured also
influence the system. Only 75 s of training with RLS was needed to transfer
the control from the external CPG to morphological computation.
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Figure 4.15: Trajectory of the end effector during testing after
75 s of training.

4.5.3 The Importance of Complex Dynamics
To complete this experimental section, I wish to demonstrate that the non-
linearities can indeed improve the computational power of the system. Such
a statement is of course task-dependent, e.g. to generate sine waves, it is
obviously not advantageous to have non-linear dynamics in the system. I will
again consider the generation of CPG-like signals based on the Matsuoka-type
non-linear oscillator in combination with the tensegrity icosahedron.

Sultan et al. [166] indicated that the linearized dynamics of tensegrity
deviate more from the non-linear dynamics of the system at higher (general-
ized) velocities and lower pretension. While typically, one would restrict the
velocities and deformations of the system such that the linearized dynam-
ics are a good model of the system, the PRC technique benefits from the
opposite.

Many parameters of the structure can be tuned, and optimizing the
configuration of the structure itself is a daunting task. In this section I only
consider the importance of two parameters, the oscillator frequency and the
maximal change of the actuator equilibrium length. The physically plausible
regions of operations for both parameters are defined by the capabilities of
the targeted hardware platforms. The objective is to study whether within
these regions of operation, there are significant changes of computational
performance.

The task is again the simulation of 12-dimensional random Matsuoka-
type non-linear oscillators. The tensegrity icosahedron with a random number
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of actuators is used, varying from 4 to 8 motors. I have swept the frequency in
steps of 0.1Hz from 0.1Hz to 3Hz. The maximum spring-cable assembly rest
length offset (lmax) was varied in steps of 3.5 cm from 5.5 cm to 37 cm. These
approximately match the capabilities of the ReCTeR robot which I introduce
in Chapter 6. For each tuple (frequency, distance), I have performed 50 trials,
for a total of 15× 103 trials. I computed the normalized mean squared error,
defined as:

NMSE = (x− y)T (x− y)
Nσ(y) , (4.21)

with N the number of samples, x the vectorized output and y the vectorized
target signal. For each set of 50 trials, only the 30 best are kept to prevent
failures (e.g. collapsing) from influencing the results. The results are shown
in Figure 4.16.

So what can be learned from this? First, it can be seen that for the task
at hand, it is advantageous to work in a non-linear region by increasing the
frequency of the oscillator or the maximum spring equilibrium offset. It is
important to note that, although the frequency is a determining factor, the
technique is not constrained to the natural frequency of the system. There
is a region of frequencies with similar performance. One might consider the
bottom right region of operation, with only very small amplitudes. The
practical use of this region is however limited, as the movement of the robot
will be very limited.

On the other hand, going beyond the 30 cm range, often causes instability
(collapsing) and colliding bars. In practice, the performance will be restricted
by a diagonal line going down from near the top left to the bottom right
(approximately represented by the blue line in Figure 4.16), because of prac-
tical limitations such as motor output power. So within this region, better
performance can be obtained by increasing the frequency or the maximum
spring equilibrium offset.

Interestingly, for the lower frequency range (which might be interesting
for energy efficiency reasons) it is advantageous to increase the maximum
offset. Larger deformations of the structure — during which even the kine-
matics are highly non-linear as shown in Figure 2.8 — cause the error to
decrease.
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Figure 4.16: Exploiting non-linearity. Plots of the normalized
mean squared error of the first 10 s of testing after training with
RLS as a function of the oscillator frequency and the maximum
spring equilibrium offset. Top: contour plot showing the differ-
ent regions. Bottom: result for each combination (frequency,
max. offset). The frequency is swept from 0.1Hz to 3Hz in
steps of 0.1Hz and the distance from 5.5 cm to 37 cm in steps
of 3.5 cm. All tests are performed on the tensegrity icosahe-
dron with a random number of actuated spring-cable assemblies
(between 4 and 8 motors). For each (frequency,distance) tu-
ple, 50 trials were performed (15× 103 total), of which the 30
best were retained to reduce the influence of marginal cases.
The target was a linear combination of random Matsuoka-type
oscillators (12-dimensional). For the task at hand, the system
clearly benefits from increasing the frequency of the oscillator
and the maximum offset. Very good (computational) results are
obtained for a region (bottom right) with only small offset. This
region might however not be suited for locomotion applications
(limited shape changes). The line in the bottom graph shows
the approximate safety (significant risk of a collapsing structure)
and actuator limits (based on data from Chapter 6).
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4.6 Conclusion

In this chapter, I have introduced an extreme form of embodiment, allowing
for so-called Physical Reservoir Computing in a very pronounced sense. This
principle was demonstrated by using highly dynamic and actuated tensegrity
robots. As the dynamics of these systems provide exploitable computational
resources, it becomes possible to use simple learning rules to train complex
locomotion patterns or desired end-effector trajectories.

This provides a number of advantages from a robotics standpoint: The
control complexity can be highly reduced and the learned control law is
robust to perturbations and can easily synchronize to external inputs. The
next chapter will extend these results to allow for reward-based learning. In
this case, no explicit knowledge of the desired signals is needed and learning
can be based solely on observations of the system’s (global) behavior.

From a conceptual point of view, the conclusions are more profound. By
demonstrating that dynamic “bodies” only require extremely simple “brains”
to implement computations, I have effectively opened up a whole spectrum
of potential trade-offs between brain-based computation and body-based
computation. The powerful computational results from the field of Reservoir
Computing [32, 67, 94, 113] can then be used to actually quantify and reason
about the computations implemented by the physical dynamical system.

To conclude this chapter it is important to reflect on the meaning of the
word “computation” in the context of a physical system. Computation can
be defined as the process of transforming input symbols into output symbols,
where the word symbol is to interpreted in a broad sense. Symbols are objects
(data streams, characters, sensor values. . . ) to which we — as users — attach
a meaning. In this sense, physical systems, such as tensegrity robots, perform
computations if we define the symbols and their meaning. The tensegrity
robots in this chapter convert input data streams through their dynamics
into sensor data and thus compute, if we define the meaning of the inputs
and outputs. Nevertheless, the actual goal for robotics is to obtain optimal
behavior of a robotic system and not to optimize computational performance.
The key insight is that Physical Reservoir Computing borrows computational
tools and methods from the Neural Network and machine learning fields and
interprets control problems as computational tasks.





5
Reward Modulated

Hebbian Plasticity

Hebbian theory has been around for over half a century [69], but it still
sparks the interest of many researchers today.

First of all, the basic Hebbian plasticity rule is simple and can be effi-
ciently implemented on various platforms in hardware and software. This
simplicity also allows for detailed analyses. Secondly, small changes to the
basic correlation learning rule result in various well known algorithms, such
as principal [130, 150] or independent component [28, 79] extractor net-
works. Finally, the rule is biologically plausible as are some of its variations
[109, 119].

The previous chapter has demonstrated that compliant structures can
be used as a computational resource. The feedback weights were learned
by applying online learning rules to approximate the target motor signals.
However, genetic algorithms were necessary to find those motor signals in
the first place.

I now show that simple Hebbian-like learning rules are capable of di-
rectly learning controllers for both Recurrent Neural Networks and compliant
robots. First, this demonstrates that a biologically plausible learning rule
can indeed be used to control a compliant system. Next, I show that it allows
for hierarchical control in compliant robotics, by combining a feedforward
kinematic controller with a feedback controller to handle the dynamics.

The learning rules I consider fit into the class of Reward Modulated
Hebbian plasticity rules [53, 74, 102, 160]. I specifically target this type of
learning rule, because of the limited number of assumptions it makes about
the substrate to which it is applied. Reward modulation is also an active
research field in biology. It is beyond the scope of this work to attempt to
explain how the learning rules presented in this chapter can be implemented
by biological substrates. However, it is worth mentioning that different
reward signals and centers seem to exist in the brain [154], with dopamine
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playing an important role in reward signaling [190]. Interestingly, it has been
proposed that dopamine signals the reward prediction error or how surprising
a reward is [33, 155], which is closely related to the reward estimation on
which the learning rules presented herein rely. So while I certainly do not
claim that the learning rules presented in this chapter occur in the brain or
biological Neural Networks, all major components do have known biological
counterparts.

It is vital to define or explain the term reward. Throughout this chapter,
a reward is a scalar signal R that provides information about the current
performance of the system. A reward can be instantaneous, in which case
R(t) is a signal that provides a measure of the performance at time step t.
Alternatively, a reward can reflect the performance over multiple consecutive
time steps, also called a trial. In this case, a single reward value R becomes
available at the end of the trial. Both cases are studied in this chapter. The
reward signal should be a monotonic function of the performance (i.e. an
increase in performance should increase the reward signal and vice versa).

In short, this chapter solves a crucial missing aspect of the learning rules
presented before. Previously, the problem of finding the desired motor signals
was solved by using Evolutionary Algorithms. Here I directly optimize the
feedback controller, thus bypassing this problem. Specifically, I will discuss
the instantaneous reward case in Section 5.1. Distal (delayed) reward tasks
for Neural Networks are addressed in Section 5.2, followed by examples of
distal reward learning for tensegrity robots (Section 5.3). I then describe
a stabilized version of the basic learning rule used throughout this chapter
in Section 5.4. Before presenting my conclusions in Section 5.6, I discuss
the results and implications of this chapter and of the previous chapter in
Section 5.5.

5.1 Instantaneous Reward

Based on the previous observations, Legenstein et al. [102] introduced a
learning rule to train relatively large (compared to my tensegrity structures)
Neural Networks. The EH-rule (Exploratory Hebb) at the core of Legenstein’s
work is given by:

WEH(t) = WEH(t−∆t)− αEH(y(t)− ȳ(t))(R(t)− R̄(t))xT (t). (5.1)

In this equation R̄(t) is the short time average (baseline) of the reward signal.
Similarly ȳ(t) refers to the short time average of the activity y(t) of the
neurons which can be observed and controlled (their incoming weight can be
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tuned). However, remark that y(t) typically contains all the neurons in the
network as there does not need to be a distinct output layer. Unfortunately,
the naming can cause some confusion at this point. Previously y typically
referred to a set of output neurons, while here y(t) should be interpreted as
the observable or controllable set of neurons. In a neuroscience context, x(t)
contains the presynaptic neurons, while y(t) are the postsynaptic neurons.
To put it more simply in the setting of this work: y(t) contains the state
variables of the system that can be observed and modified to optimize the
reward R(t).

One fundamental aspect that is not explicitly mentioned in Eq. 5.5 is that
exploration noise — which will be denoted by the variable z — needs to be
injected into the system for the learning rule to work. Noise causes variations
of the state of the neurons y(t) and y(t)− ȳ(t) will thus be non-zero. At the
same time the noise can have a beneficial or decremental influence on the
reward. The result of this is a non-zero R(t)− R̄(t) factor. What happens
next is that the learning rule strengthens or weakens a connection between
neurons in x and those in y if variations of y(t) correlate with x(t). The
weight updates are modulated by the variation of the reward signal. If the
reward is above its short term average (or expected value), then positive
correlations between x(t) and y(t) − ȳ(t) are reinforced and negative ones
cause a decrease in the connection weight. The factor y(t) − ȳ(t) should
really be interpreted as an approximation of the injected noise. Indeed, it
is simply the immediate effect of the noise on the behavior of the observed
neurons. For moderate noise amplitudes and well-behaved analog neurons
(e.g. sigmoidal) the relationship between the noise and y(t) − ȳ(t) will be
almost linear.

Covariance and noise based rules have a strong biological foundation [109,
108, 159]. For example, it is well known that Neural Networks in biology
have intrinsic noise sources [38]. While this type of noise can be measured by
external means (e.g. voltage clamps), a plasticity rule within the biological
substrate cannot generally observe the noise signals, hence the y(t) − ȳ(t)
factor in Legenstein’s rule. Remark that Legenstein’s learning rule extends
various earlier techniques with similar mathematical formulations [53, 108,
110]. Note that [110] also provides non-Hebbian variations on this rule.

The Reward Modulated Hebbian rule (RMH) used in this work for PRC
applications was inspired by Eq. 5.5 and is given by:

Wrmh(t) = Wrmh(t−∆t)− αrmhz(t)(R(t)− R̄(t))xT (t), (5.2)

where the state x was defined in Eq. 4.10. The short term average reward
R̄(t) is computed by taking the average of the rewards during the last 100ms.
Gaussian white noise is used as noise source z(t), with a decreasing standard
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deviation as function of time. The noise z(t) is not only used to update
the weights, but it is also fed into the structure (y(t) = Wrmh(t−∆)x(t) +
z(t)). Indeed, if this were not the case, one would need some critic that
provides rewards based on hypothetical motor outputs. The rule depends
on exploration noise, which unlike in Legenstein’s approach is assumed to
be known in all but one experiment1. Hence, z(t) replaces y(t) − ȳ(t).
Motor babbling is the physical realization of the exploration noise and as
this type of noise is actively generated, it is straightforward to record it [148].
Furthermore, the number of noise sources corresponds to the number of
actuated spring-cable assemblies and is thus limited. Therefore, the PRC
framework differs from the large biological Neural Networks considered by
Legenstein et al.

The adapted rule will allow to train a set of weights in case an instanta-
neous reward signal R(t) is available at all times. The reward R(t) should
be a monotonic function of the error, i.e. the reward should decrease if the
error increases. It is instructive to address two intrinsic limitations of the
rule, before delving into the implementation details. First, the instantaneous
reward requirement limits the set of problems that can be optimally trained.
For example, consider the generation of a pulsating signal. An appropriate
reward function for this problem would be based on the frequency spectrum
computed over an amount of time. Secondly, in systems with higher order
dynamics (e.g. the second order dynamics of a tensegrity structure), there
is a time delay before a noise sample at the input/feedback causes a change
in the state of the system. In robotic systems such as a tensegrity robot,
subsequent time step tend to have highly correlated reward values because
of inertial effects. The practical consequence of this is that a learning rule
that considers a single time step at a time, can have suboptimal performance
for practical PRC tasks. However, in practice the rule performs well for
PRC applied to tensegrities if the reward function is based on the input sig-
nals. Furthermore, it is instrumental for the introduction of more elaborate
Hebbian plasticity rules later in this chapter.

The learning rule from Eq. 5.2 can be used in two ways. First, one can
simply use it to replace the learning rules introduced in Chapter 4, when
outsourcing the computation to the structure. In this case a teacher is still
needed to drive the system during learning, which limits its practical use and
it is more or less a replacement for the GD rule. Secondly, it can be used to
train feedbacks without knowledge of the target signal at the neural level.

To apply RMH or similar techniques to a Recurrent Neural Network,
one typically starts from a chaotic network [74, 168] and the trained instan-

1To demonstrate that the rule can indeed be adapted to the unknown noise
case.
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taneous feedback drives the network toward a cyclic attractor. However, it
is reasonable to assume that for robotics applications chaotic movements
might be undesired or unsafe. Therefore, I took a slightly different training
approach. I first trained the system (using RLS as explained in Chapter 4) to
maintain an oscillatory pattern while noise was injected through additional
actuators. Hence, I obtained robust but non-chaotic patterns. There are
however variations in the oscillations caused by the injected noise. Then,
learning through RMH starts on the additional actuators.

One might argue that the use of RLS at this point negates the advantage
of RMH. However, RLS is only used to keep the system active during RMH
learning and the target signals of RLS and RMH are independent (except for
the fundamental frequency). A simple oscillator (e.g. a sine wave or coupled
neurons) could also be used instead of a trained feedback controller. In a
typical RC setup (with hyperbolic tangent neurons), it is possible to scale up
the connection weights to start the learning process in a chaotic regime. In
the case of tensegrity structures, I have tried using a random feedback loop
which I then scaled to find a chaotic regime. Unfortunately, while doing this
the structures often collapsed or did not stay active and I therefore concluded
that this method would be cumbersome on a real platform.

The presented approach can be useful in robotic applications in which
there is already some oscillatory behavior in the system. This can for ex-
ample be generated by a very simple CPG signal. The RMH algorithm
can then directly be applied to refine the motion. Hence, it is one possible
application of the combination of a simplified CPG with my approach. The
basic movements can also be provided by a controller based on linearized
dynamics, where again RMH can be used to optimize the match between the
actual plant and the linearized model.

The three major phases of training using the reward based technique
are shown in Figure 5.1. The feedback consisted of 2 trained signals using
the RMH rule (out of a total of 8 actuated spring-cable assemblies). RLS
was used to train a random motion pattern (with the same frequency) on
the 6 first outputs during 200 s (left figure). Then RMH learning starts and
initially the target signals are not at all matched. During training (center
figure) the outputs begin to match the desired signal more closely, yet there
is still some visible error. During testing (right figure), the noise source is
disabled and the output almost exactly matches the desired signal. In this
example, the tensegrity was in free fall to remove the disturbances from
ground collisions to show that the desired signal can be closely matched.

Figure 5.2 shows a phase portrait of the two trained outputs during
40 s of testing compared to the desired output. The target signal is almost
perfectly matched. In Figure 5.3 it is shown how the RMH rule is performing
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Figure 5.1: The RMH algorithm during training and testing.
Training of the two RMH feedbacks starts after 200 s of training
with RLS to maintain activity in the system. The tensegrity
was in free fall to clearly show the difference between the three
phases without influence from ground collisions. A random 6-bar
tensegrity was used. The exploration noise decreased linearly as
a function of time.

gradient ascent on the reward signal. The signals were smoothed over 2 s
to illustrate the evolution of the reward. The figure on the right shows the
reward signal with the (estimated) baseline removed. For convergence, the
(short-term) mean should approximate zero as otherwise the magnitude of
the weights will continue to rise or oscillate. For Figure 5.2 an informative
reward was used, namely the sum of absolute errors of both signals:

R(t) = −
∑
i

|yi(t)− ytarget,i(t)| . (5.3)
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Figure 5.2: Plot of the 2 trained outputs with the RMH algo-
rithm. The system was trained for 2000 s. Yellow: the target
signal. Black: the output signal during the final 40 s of testing.
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Figure 5.3: The Reward Modulated Hebbian algorithm perform-
ing gradient ascent on the reward. The signals were smoothed
by averaging over 2 s. From left to right: reward signal, reward
signal minus its short term average, reward signal without explo-
ration noise. The reward signal minus the short term average
should approach 0 to assure convergence of the weights.
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Figure 5.4: Plot of the 2 trained outputs with the EH rule and
a less informative reward signal (Eq. 5.6). Hence no knowledge
of the target signal, the noise or the precise reward is used. The
system was trained for 3000 s. Yellow: the target signal. Black:
the output signal during the last 40 s of testing.

Such an informative reward signal as in Eq. 5.3 need not be available
for the RMH or EH rule to work. In Figure 5.4, I have applied a binary
version of the EH rule with a less informative reward signal (Eq. 5.6). The
reward signal only contains information about the observable variable with
the worst performance. Additionally, the noise is estimated at the feedback
to demonstrate that this does not significantly complicate the problem. The
modified learning rule is given by:

Wrmh(t) = Wrmh(t−∆t) (5.4)
−αrmh (y(t)− ȳ(t)) sign

(
R(t)− R̄(t)

)
xT (t) (5.5)

R(t) = −max
i
|yi(t)− ytarget,i(t)|2 . (5.6)



100 5 Reward Modulated Hebbian Plasticity

The result is clearly less precise compared to the application of the original
RMH rule (Figure 5.2) and learning is slower. However, no knowledge of
the noise is used in the learning rule and the information contained in the
reward signal is limited. The delta version can further reduce the computa-
tional/communication power needed as only a single binary signal needs to
be exchanged.

This section has demonstrated how the Recursive Least Squares algo-
rithm from the previous chapter can be replaced with a Reward Modulated
Hebbian plasticity based learning rule. However, the advantages of the pre-
sented learning rule are limited as the reward was instantaneous and although
the reward need not contain a lot of information (binary reward), it has to
be possible to compute it at the input/feedback for higher order systems.
The main contribution of this section was therefore to introduce a reward
based version of the learning rules studied in the previous chapter. The next
sections overcome these issues by delving into the question of distal reward
learning by extending the method presented above.

5.2 Distal Reward Learning for Recurrent
Neural Networks

I begin the discussion of the distal reward extension of the Hebbian plasticity
rule by applying it to various Recurrent Neural Network topologies. As the
learning rules presented in this and the previous chapter only rely upon
the existence of a computational black box, it is interesting to verify that
similar rules indeed work when applied to both physical substrates (tensegrity
robots) and Neural Networks. Originally, the Recurrent Neural Networks
implementation was only meant as a verification tool for this. However, as
it shows promising results for constrained network topologies, I decided to
further investigate this. These results are presented now and although they
deviate from the main theme of this dissertation, they do further strengthen
the analogy between software (Neural Networks) and hardware (compliant
robots) computational substrates.

I start this section by presenting the learning setup shown in Figure 5.5.
The central element is the Neural Network to be trained. The network
receives input, which I denoteU and a readout function provides observations
of the network state. Additionally, exploration noise Z is injected into the
network.

The term distal reward indicates that there is a delay between the action
that caused the reward and the actual reward signal [34, 78, 122]. In the
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Figure 5.5: Overview of the learning setup for Recurrent Neu-
ral Networks. The initially random Recurrent Neural Network
receives the inputs U and the exploration noise Z. The state
of the postsynaptic neurons is computed by applying the hyper-
bolic tangent function to the sum of the inputs, the noise and
the weighted sum of the presynaptic neurons. Observations are
made of the state of the network and after every trial (fixed
number of time steps), a reward is computed based on the ob-
servations made during the last trial. In parallel, a simple reward
prediction network predicts the expected reward for the given
input. The learning rule then updates the weights between the
presynaptic and postsynaptic neurons, by using the reward, the
expected reward, the exploration noise and the states of the
presynaptic neurons.

context of this section, a reward is provided after a trial, based on the
observations of the network (cf. robot). A trial is defined as a number
of time steps which correspond to a period of time in which the network
tries to perform a task of interest. In parallel to the network, a reward
prediction system estimates the expected reward based on the network inputs.
The reward prediction system can often be of low complexity. For the
instantaneous reward problems, the reward predictor was simply the short
time average of the reward signal. Similarly, I will maintain multiple short
time average estimators for discrete input spaces. For the continuous input
space task, which is presented later in this chapter, a linear reward estimator
is trained in parallel with the main system.

The learning rule combines information from the network state, explo-
ration noise, reward and estimated expected reward to compute an update
∆W of the network weights. Because of the limited duration of a trial and
the fixed reward frequency, the scope of this work is limited to distal rewards
in which the maximum delay between the reward delivery and the cause of
the reward is the length of a trial.

The term observations will be used to define a function of the state of the
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Neural Network (or robot later on in this chapter). Rewards are based on
observations and are therefore not restricted to functions of e.g. the output
of the network (in fact there need not be an output).

5.2.1 Neural Networks
The Neural Networks studied here have the same dynamics as the Reservoir
Computing networks introduced in Chapter 3, with the addition of a noise
source. The network update equation is given by:

x[k + 1] = tanh (Wx[k] +Winu[k + 1] + z[k + 1]) . (5.7)

Following the Reservoir Computing approach [185], the weights are ini-
tialized randomly (i.i.d. standard normally distributed samples) and the
weight matrices W are then rescaled to match the desired spectral radius.
The same performance was observed for initial spectral radii in [0.95, 1.2].
This differs from related approaches such as [102] and [74] as the networks are
not required to be initially chaotic (in case they are input-driven). The input
weight matricesWin are sparse (20% non-zero elements) with i.i.d. normally
distributed values with standard deviation 0.05. All networks contain 100
neurons.

5.2.1.1 Network Architectures

Three Neural Network architectures are studied on three tasks (one task
per architecture). The objective of using different network architectures
for the different tasks is to demonstrate the versatility of the learning rule.
Each architecture follows the setup described in the previous section, but
with different constraints. The networks for the three tasks are shown in
Figure 5.6. All networks are updated using Eq. 5.7 and only differ by how
observations are made and by which weights can be modified by the learning
rule. The first two networks are observed in the same way, by computing
the sum of two neurons of the network. The third network is observed by
multiplying three of its neurons.

In all networks, the weights to and from the neurons generating obser-
vations are fixed and recurrent. This prevents the learning algorithm from
generating solutions in which the observation neurons become a pure output
layer, which does not influence the state of the rest of the network.

The weights to and from the other neurons in networks 1 and 3 are
modifiable, except for the input weights, which are fixed in all experiments.
Therefore there are 982 and 972 connections to train in networks 1 and
3 respectively. Network 2 further complicates the problem by fixing the
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Figure 5.6: Network structures for the Recurrent Neural Net-
work tasks. The networks are simulated in discrete time with
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connections, while dashed lines are trained. The reward is eval-
uated at the output neuron over the green period of time (one
reward per trial). A) Network structure for the 2 bit delayed
XOR task. The output equals the sum of two neurons (yellow
nodes at the right), but only the internal connections can be
modified by the algorithm. The RNN consists of 100 neurons
and the bit period is 10 time steps. B) Network structure for
the 3 bit delayed classification task. The output equals the sum
of two neurons as in the XOR task, but now only half of the
internal weights can be modified. The RNN consists of 100 neu-
rons and the bit period is 10 time steps. C) Network structure
for the continuous input task. The network has to reproduce
the time reversed input from the first 5 time steps of each trial.
A trial consists of 12 time steps in total, of which the last 7
have to be ignored by the network.
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weights of half of the network. Of the 98 remaining neurons besides the ones
generating observations, 49 have modifiable input weights, while the other
49 have fully fixed weights. This means that about half of the network is a
random Recurrent Neural Network (i.e. a Reservoir). Note that having a
learning rule that handles delayed rewards is crucial, as the input does not
directly, nor immediately define the observations.

It is possible to solve the tasks using any of the three network architec-
tures. In fact, task one and two are highly similar in nature (task two is more
complex) and use the same basic network architecture, but with additional
constraints for task two. This was done to highlight the aforementioned
versatility of the learning rule.

5.2.2 Learning Rule
I now derive the learning rule to solve these distal reward problems. Hebbian
plasticity is a biologically plausible learning methodology for Neural Networks.
Capital X and Y will be used to indicate that the learning rule can work
on multiple time steps at once:

X =
[
x [k] x [k + 1] . . . x [k + i]

]T
. (5.8)

Recall that a learning rule is called Hebbian if it modifies the weights between
a set of presynaptic neurons x and postsynaptic neurons y as a function of
their joint activity. Although, Hebb did not provide a precise mathematical
formulation of his postulate, a relatively general form can be written as [69]:

∆WHebb = f(X,Y ). (5.9)

As Recurrent Neural Networks are used, the sets of presynaptic and post-
synaptic neurons are the same, shifted by a single time step, i.e. Y [k] =
X[k + 1].

Similarly to the instantaneous reward case, noise is injected at the post-
synaptic neurons for exploration. More precisely, the noise causes variations
δy of the postsynaptic neurons, and thus variations of the observations and
reward. If the exploratory noise causes an improvement in behavior, this
will result in a higher reward (and vice versa). A basic learning rule based
on this idea is

∆W = RzxT , (5.10)

where R is the reward. This rule is similar to the RMH rule described in
Eq. 5.2.
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This rule however suffers from a number of basic flaws to be able to solve
distal reward problems. First, a notion of memory of the relationship between
exploration noise and the presynaptic neurons is needed. For this, the sample
covariance XTZ can be used to estimate how the exploration noise and the
presynaptic neurons correlate. Secondly, note that in its current form, any
significant bias of the reward R, will cause unfavorable results. The solution
to this issue is to predict the reward and subtract this from the obtained
reward, resulting in a learning rule of the form:

∆W = α(R− R̄)ZTX, (5.11)

in which R̄ is the predicted reward and a learning rate parameter α was
added.

The predicted reward is sometimes ambiguously referred to as the (short
term) average reward. More precisely, it is the average (or expected reward)
of the trial with noise present in the system. In the RMH learning rule
(Eq. 5.2), R̄ was indeed simply the short term average reward, because the
rule was applied on a sample-by-sample base, under the assumption that noise
only influenced the reward of the next time step. As will be demonstrated
in Section 5.2.4, the average reward is typically highly dependent on the
noise level of the system. The learning rule therefore optimizes the expected
reward while noise is present in the system (i.e. arg maxW E[R|z]), under the
assumption that this also optimizes the performance when the exploration
noise is removed (i.e. arg maxW E[R|z = 0]).

In this work, I apply the learning rule on a trial-to-trial basis, by evalu-
ating the sample covariance XTZ of a number of samples and then applying
the learning rule once. Thus, a single reward R is available at the end of
a trial and the learning rule performs one update using the recorded state
information X and noise Z. It is not hard to see that — in case the reward
signal can be computed at every time step — one could apply the algorithm
at every time step, similar to the Rare Correlation learning rule of [160].

However, there is a distinct difference between the Rare Correlation
learning approach (and similar techniques) and the method studied in this
dissertation. The basic interpretation I attach to the Reward Modulated
Hebbian techniques studied in this dissertation is that if noise induces a
correlation between X and Y which leads to an increased performance, then
the weights are adapted such that this correlation occurs naturally in future
trials. For very long trials this method will tend to fail or become significantly
less efficient, as inherent averaging during the computation of the sample co-
varianceXTZ will cause the useful information to be lost. I have successfully
tested the method for trials of up to 60 time steps (Section 5.3.3), but it can
be expected that the method will break down at longer trial lengths. Rare
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(or spurious) Correlation learning on the other hand is aimed at detecting
instances of rare concurrent events in presynaptic and postsynaptic neurons.
It is a good fit for spiking Neural Networks as one can look at the spike times
to detect unexpected instances of postsynaptic neurons firing within a short
time after a presynaptic one. In such a framework, the concurrent activity of
presynaptic and postsynaptic neurons can significantly predate the delivery
of a reward and the method is thus well adapted for problems in which a
particular event is the cause of a reward. Notwithstanding the differences in
interpretation and objective, the resulting learning rules are mathematically
highly similar.

5.2.3 Discrete Input Space

I now address two problems with discrete input spaces: the 2 bit delayed
XOR problem and a 3 bit delayed classification task.

5.2.3.1 Network Input and Reward

For these problems, the Recurrent Neural Network receives a stream of input
data that represents a bit stream. A zero bit is encoded as the negative
half period of a sine wave, a one bit as the positive half (see the top row of
Figure 5.8). This input encoding provides synchronization information to
the network as there is a clear distinction between consecutive bits. Thus
the resulting networks will be input driven even when the input bit sequence
is constant. This can be particularly important when the network has fading
memory. Secondly, it is straightforward to change the time scale of the input
encoding.

In the 2 bit delayed XOR task, the Recurrent Neural Network has to
compute the exclusive OR function applied to the last two bits of its input
stream. More precisely, the observations of the network should be as close
to plus one or minus one during the last half of the second bit. Similarly,
the 3 bit task requires the Neural Network to approximate 8 non-linearly
separable values within the range [−1, 1]. For each trial, a random sequence
is selected out of the 4 (2 bit XOR) or 8 (3 bit classification) input sequences.

Various reward functions are used in this section. The main reason for
this is to show that the learning rule is not dependent on a specific reward
function, though some reward functions are more appropriate for a specific
task. If a less informative or less apropriate reward function is used (cf.
Eq. 5.6), the performance of the learning rule will decrease. For the 3 bit
task, the reward value R3bit is defined as minus the mean squared error of
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the observations during the last five time steps:

R3bit
k = −1

5

4∑
i=0

(t[i]− xo0[25k + i]− xo1[25k + i])2, (5.12)

where k indicates the number of the current trial and xo are the neurons
that generate the observations (see next section). For the results presented
for the 2 bit XOR task, I use minus the mean squared hinge loss, as the hinge
loss is a more appropriate reward function for a binary classification task:

R2bit
k = −1

5

4∑
i=0

max (0, 1− t[i] (xo0[15k + i]− xo1[15k + i]))2
. (5.13)

However, I have also successfully applied the mean squared error reward
function for this task. The target values are indicated by red crosses in the
bottom row of Figure 5.8.

Estimating the expected reward is trivial in the case of a modest number
of different inputs: For the results presented here, I have averaged the last
50 rewards per input sequence.

It is true that these reward functions are rather informative. Nevertheless,
they convey only minor information about how the task can be solved (a single
performance indication based on the observed neurons per trial). The reward
functions do not indicate how the internal weights (the only ones that can be
modified) need to change to optimize the expected reward. This is reflected
in the state trajectories as shown in Figure 5.8. The state trajectories of the
two neurons which generate the observations for the 3 bit classification task
are unique and distinct. There is no direct link between the reward function
used and the resulting patterns.

5.2.3.2 Discrete Input Space: 2 bit Delayed XOR

The XOR task is a common test or benchmark, because the inputs are not
linearly separable. A linear network cannot obtain optimal performance for
all inputs. Therefore, this task is a simple test to verify whether the learning
rule can exploit the non-linear effects of the network.

Secondly, the task requires the network to remember a specific part of
the input, while ignoring inputs over one bit length in the past.

Figure 5.7 shows the evolution of the reward and the spectral radius
while the system learns the 2 bit delayed XOR task. The noise level was
σ = 0.01 and the learning rate was α = 0.05. The initial spectral radius was
set to 0.95 to show how the spectral radius evolves as the average reward
increases. Every run of the algorithm for different initial random weights
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Figure 5.7: Left: Evolution of the reward and the spectral
radius for the 2 bit delayed XOR task. Right: Detail of the
reward and expected reward for a single input sequence.

resulted in a final spectral radius of ρ ≈ 1.2, which indicates that the learning
rule indeed tunes the memory of the network.

For this particular run, a drop in performance can be seen after about
125 000 trials. This is probably a significant change in network behavior
due to only a minor weight change, a typical phenomenon in non-linear
Recurrent Neural Networks. However, the algorithm successfully continues
to learn afterwards.

In the right column of Figure 5.7, a detailed view of the reward and
expected reward for a single input sequence is shown.

5.2.3.3 Discrete Input Space: 3 bit Delayed Classification

I now analyze in more detail the performance and robustness of a more
complex task with discrete input space. The Recurrent Neural Network
now has to classify 3 bit patterns and the learning rule is only allowed to
modify half of the internal weights of the Recurrent Neural Network. A
fundamental question is whether the RNN can effectively learn to solve the
task by recognizing the input patterns or whether the computations were
already present in the network as in a standard Reservoir Computing setup?

Figure 5.8 shows the results of overlaying 50 random orderings of the
input sequences. It can be seen that each additional bit reduces the number of
possible states of the system by half. Furthermore, the network has learned
the correct time window, as the states only depend on the two previous
bits and not on older inputs (the random inputs were fed into the system
sequentially). Interestingly, the two neurons that generate the observations
have different state trajectories, because the learning rule only quantifies the
performance based on the observations, without directly enforcing a specific
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Figure 5.8: State trajectories for the 3 bit classification task.
The top row shows the 8 input sequences. The next two rows
show the state trajectories of the 2 neurons which are summed
to compute the observations (see Figure 5.6) for the given input
sequence of the top row. The bottom row shows the observa-
tions (the sum of the two middle rows). The desired observation
at the end of the trial is indicated by red crosses. It can be seen
that each additional bit reduces the number of possible states
by half. Interestingly, the two neurons that generate the obser-
vations have different state trajectories, because the learning
rule only quantifies the performance based on the observations,
without directly enforcing a specific behavior of the neurons
responsible for the observations. The plots were generated by
overlaying 50 random orderings of the input sequences.
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Figure 5.9: Evaluation of a trained network for the 3 bit classi-
fication task under the influence of input noise. As exploration
noise drives the learning rule, the trained networks are generally
robust against both input and state noise. The noise amplitude
increased from left to right. The 8 possible inputs are shown
from top to bottom. The gray area indicates one standard de-
viation around the observations for each of the different state
trajectories (thick lines). The red crosses indicate the target
observations at the end of the trial.
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behavior of the neurons responsible for the observations.

The behavior of the network with various levels of input noise is shown
in Figure 5.9. It turns out that even when a large amount of noise is
present in the input, the system state still evolves along a fixed number of
trajectories/attractors. The network is robust against high amounts of noise
on the input data (σ = 0.5), as the original trajectories are maintained. This
plot was generated by applying k-means clustering on the trajectories and
then estimating the variance of each centroid. The various centroids and
their respective standard deviations are shown. It is remarkable that the
network is robust against these levels of input noise as no input noise was
present during training. The learning rule appears to significantly regularize
the solution and is thus inherently robust.

5.2.4 Continuous Input Space

My third example has a continuous input space and a more complex readout
function. The task at hand is to reproduce part of the input in reverse
after a delay (see Figure 5.10). To solve this task, the network receives two
inputs. The first input contains input sequences of 12 time steps per trial,
the first 5 of these steps are straight lines of which the start and end points
are uniformly sampled from [0, 1]. The first input is kept constant during
the next 2 time steps and during the final 5 time steps this input linearly
interpolates between the value at time step 6 and a random value in [0, 1]
at time step 11. The network must learn to recall the input during the first
5 steps of each trial and ignore the remaining 7 steps.

The second input is a binary signal that is used to inform the network
that it has to generate the desired observation (i.e. a trigger). A second
input signal is needed, because the trials are fed into the system, one-by-one.
Therefore, it is not clear to the network when a trial starts.

The complete network structure is shown in Figure 5.6. The observations
are computed by multiplying the state of three internal neurons with fixed
incoming and outgoing connections. The reward function used here is minus
the mean absolute error of the observations:

Rk = −1
5

4∑
i=0
|u[12k + i]−

2∏
j=0

xoj [12k + 11− i]|, (5.14)

where k indicates the number of the current trial and xo are the neurons
that generate the observations.
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Figure 5.10: Overview of the continuous input space task.
The network has to reproduce part (first 5 time steps) of the
first input (solid line in the left figure) in reverse at the end
of the trial (dotted line in the right figure). The total length
of a trial is 12 steps. The task input space is the unit square
[0, 1]2 and the first 5 steps of the first input encode this input
by applying the first coordinate during the first step and the
second coordinate during the last step, with linear interpolation
during the intermediate steps. Task input (0.4,0.8) is shown
in the above example. A second input (dashed line in the left
figure) acts as a trigger and indicates when the network has to
start producing the desired observations.

Figure 5.11: Recurrent Neural Network continuous input task
results. Top: average reward (negative mean absolute error)
for each input combination. Bottom: sample distribution of
the rewards for all inputs. The amount of injected state noise
increases from left to right. The average reward level shifts to
the left (lower rewards).



5.2 Distal Reward Learning for Recurrent Neural Networks 113

5.2.4.1 Prediction of the Expected Reward

The expected reward R̄ estimates the performance of the system given the
noise level σ. Furthermore, the reward is input dependent, therefore R̄
estimates the following quantity:

R̄ = E[R|u, x, σ]. (5.15)

Various algorithms can be used to estimate this quantity. I have used
the Recursive Least Squares algorithm to learn a simple online estimator of
this quantity. More precisely, RLS was used to estimate the reward R based
on the input sequences u and the network state x at the end of a trial. The
estimator is trained in parallel with the main algorithm as this can be done
significantly faster than solving the actual task. In Figure 5.5 only the input
was connected to the reward estimator. The additional connections from
the observations to the reward estimator are indeed not strictly necessary,
but they increase the performance of the system, because the estimator can
take the state of the network into account (e.g. the influence of the previous
trial).

5.2.4.2 Results and Robustness

Figure 5.11 shows the reward distribution for various state noise levels during
testing with 105 random inputs per noise level. The internal neurons of the
network, except for the 3 neurons that generate the observations, were dis-
turbed. The network was first trained for 106 time steps with an exploration
noise level σ = 0.05 and a learning rate of 0.005.

There are two interesting conclusions that can be made based on Fig-
ure 5.11. First, one can see that the performance of the network is almost
uniform over the input space. Only a small region of diagonal lines near
(1, 0) has slightly worse performance.

Second, it becomes clear that R̄ is indeed the expected reward under the
influence of noise for the given input sequence. The expected reward shifts as
a function of the amount of noise in the network. The learning rule evaluates
the performance with respect to the expected reward for the current noise
level.
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5.3 Hebbian Plasticity with Distal Rewards
for Tensegrity Robots

I now discuss the adaptation of the distal reward Hebbian algorithm to
a tensegrity robot control problem. The general setup is shown in Fig-
ure 5.12 and is similar to the Neural Network approach that was presented
in Figure 5.5. The Recurrent Neural Network is replaced with a simulated
tensegrity robot and the rewards are based on an end-effector trajectory.

0
1

U: input

Z: exploration noise

reward prediction R: predicted reward

observation

ΔW: learning rule

modify weights
R: observed reward

trajectory

l0 = WX + U

actuated spring-cable

l0 = wX+ u

spring-cable & sensor

x = force

Figure 5.12: Overview of how the learning rule is applied to
compliant Tensegrity structures. The setup is fully analogous to
the Recurrent Neural Network setup of Figure 5.5. The Neural
Network has been replaced with a compliant structure. Force
transducers on the spring-cable assemblies act as presynaptic
neurons and the actuator signals correspond to the postsynaptic
neurons. The learning rule adapts the feedback weights from
the force sensors to the motor signals. The observations are
based on the trajectories of an end-effector.

As before, spring-cable force transducers provide the readout signals
of the computational black box. A minor difference with respect to the
previous experiments (Chapter 4) is that no feedback from the derivatives of
the spring-cable tensions are used (which gave no significant improvement in
performance). Actuators changing the equilibrium lengths of the spring-cable
assemblies replace the postsynaptic neurons and motor babbling takes on
the role of the exploration noise:

l0 = linit +Wx+ u+ z. (5.16)
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5.3.1 Tensegrity Structure
The structure used for these experiments has 4 struts and is shown in Fig-
ure 5.13. It is based on the standard 3-strut tensegrity prism to which a
shorter rod is added that acts as a compliant end-effector. The bottom 3
nodes of the original prism are fixed to the ground through ball-joints (i.e.
the robot is standing on the ground and movement of its base is constrained).
The resulting structure has 17 k = 20Nm−1 spring-cable assemblies, 14 of
which are actuated (the 3 bottom spring-cable assemblies are irrelevant).
The controller time step was 50ms.

Figure 5.13: Tensegrity structure used for the experiments.
The top node of the center rod is used as an end-effector to
draw in the XY plane. In this example, the robot draws an
"S" as can be seen on the left. The center and right figures
show other perspectives to demonstrate that the reward does
not depend on the vertical position.

5.3.2 Writing Characters
The task I consider is writing characters with the top node of the rod sus-
pended in the tensegrity structure. More precisely, the node has to trace
letters in the XY plane. The characters were taken from the UCI Character
Trajectories dataset, integrated (using the velocity values in the dataset) and
then subsampled and rescaled.

The reward function used for the next experiments tries to bring the
end-effector close to the desired trajectory:

R = −1
s

s−1∑
i=0

max (‖n[i]− c[i]‖ − 0.01, 0) , (5.17)

where s is the number of steps of the current character, c[i] the vector
containing the target position at time i (relative to the beginning of the trial)
and n[i] the position in the XY plane of the end-effector at time i. This
reward function will cause the learning rule to stop improving a feedback
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controller w.r.t. a point on the trajectory in case the end-effector is within
1cm of the target position.

5.3.3 Kinematic and Feedback Controller
The robot is controlled by combining a feedforward kinematic controller and
a learned static linear feedback controller. 100 random spring lengths were
sampled to create a set of configurations for the kinematic controller. To write
a character, the kinematic controller selects a combination of spring lengths
that move the end-effector as close as possible to the desired position when the
structure is in equilibrium. This was implemented in a straightforward way by
sampling 100 random combinations of spring rest lengths and observing the
resulting equilibrium position of the end-effector. The kinematic controller
then simply chooses the sample which moved the end-effector closest to the
target position.

As can be seen from the top row of Figure 5.14, the initial performance of
the system with only this basic kinematic controller is low. In fact, the main
goal of this controller is not achieving optimal performance, but rather to
inject some energy into the structure. When the RMH rule was presented in
Section 5.1, I showed an example with instantaneous reward function in which
I first trained a feedback controller with known target signals using recursive
least squares, and then proceeded to learn additional feedback signals using
a Reward Modulated Hebbian rule. The reason why an additional energy
source is employed in both cases, is that it is hard to consistently learn pure
feedback controllers with simple Hebbian-like learning rules. A small change
in a feedback weight can cause the system dynamics to fade out, which often
results in instability.

Therefore, an easy and efficient solution is to use an additional input that
consistently pumps energy into the system. This can be accomplished using
a feedback controller as in Chapter 4, a simple feedforward controller as I use
here, or another controller such as a Central Pattern Generator. Furthermore,
this allows for a layered control architecture in which the learned feedback
controller handles the fine-tuning of the movement. From a practical point of
view it is physically unfeasible to start from a chaotic regime as in FORCE
learning [168].

5.3.4 Learning Rule
While the robotics setup is fully analogous to the Neural Network setup, the
robot has significantly fewer neurons or observable variables. Furthermore,
the observations tend to be highly correlated, which can slow down learning.
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Figure 5.14: Writing characters with a tensegrity end-effector.
Top left: characters drawn with only the kinematic feedforward
controller active. Bottom left: characters drawn with the kine-
matic feedforward controller and the learned feedback controller
active. Right: learning curves for the different characters. The
legend indicates the length of a trial.

For example, stiffening the structure, will typically cause an increase in most
sensor values. Decorrelating the observations can overcome this issue. I take
a pragmatic approach and decorrelate on a trial-by-trial basis, while a more
biologically plausible solution is possible using a decorrelation layer trained
using the Generalized Hebbian Algorithm [150].

The resulting learning rule is given by:

∆W = αH(R− R̄)(XTX + λI)−1XTZ, (5.18)

where H is the Heaviside step function2. The use of the Heaviside step func-
tion disregards trials with less than nominal performance. This modification
has shown to have slightly better performance for the problem at hand, but
is not a requirement.

The learning rule is similar to ridge regression, the difference being that
the algorithm will try to reproduce the noise Z (instead of a desired output)
proportionally to the relative performance with the injected noise w.r.t. the
expected reward. It turns out that unlike the influence of this parameter
in normal ridge regression (see Section 3.3), the exact value of λ has little
influence on the final result in this case. The regularization parameter was
thus manually tuned to find the correct order of magnitude. I found λ = 1 (or
any value in that order of magnitude) to perform well for the robotics tasks
discussed here. However, it is imperative to find a good λ in case the method
is applied to a different task or another system (it is highly dependent on the
scale of the state x and the length of a trial). The reason why the method
introduced here has a reduced dependence on the exact value of λ compared
to normal ridge regression is that it is an online learning method. In ridge

2Note that H(R − R̄) is a scalar.
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regression, one should optimize the regularization parameter to maximize the
performance on a validation set [18]. Here, λ is a parameter of the learning
algorithm, similar to the learning rate α. High values of the regularization
parameter will tend to increase the learning time (the dimensions are not
decorrelated anymore), but can also make the procedure more robust as(
XTX

)−1 can be unstable for short samples.
The matrix inverse in Eq. 5.18 makes any claims of biological plausibil-

ity unfeasible. However, a biologically plausible decorrelation layer can be
used to undo the need for the factor (XTX + λI)−1. This was discussed
in [22][Appendix I].

5.3.5 Results and Robustness
Figure 5.14 shows how the learning rule allows the tensegrity end-effector to
draw various characters between 20 and 68 time steps in duration (1 s to 3.4 s).
A different set of feedback weights was learned for each character, therefore
it is easy to predict the expected reward. To clarify, I have estimated the
expected reward by averaging the rewards obtained during the previous 30
trials.

The plot on the right of Figure 5.14 shows the learning curves for the
various characters, indicating that for most characters good results were
obtained after 1000 to 1500 trials (less than one hour real-time for most
characters). Figure 5.15: Robustness of the learn-

ing rule for the writing task. Initially a
feedforward controller is optimized using
gradient ascent. A failure is then sim-
ulated by making a single actuator fol-
low its initial trajectory from trial 1000
onwards. At the same time, the learn-
ing rule starts learning a set of feedback
weights to compensate for the actuator
failure. Similarly, I simulate a failure
of 2 actuators after trial 2000. At trial
3000, a failure is simulated of an actua-
tor directly attached to the end-effector.
The top row shows the results for writ-
ing an "a" character, while the bottom
row shows the results for a "b". The
left column shows the results when the
feedback includes the spring forces and
the square of the spring forces, while
the right column only includes the spring
forces.

It is possible to accelerate learn-
ing by further tuning the learning
parameters. A conservative level of
exploration noise (σ = 5mm) was
used, while the learning rate was
α = 1. This consistently resulted
in stable feedback controllers.

The learning rule did not
achieve the same final reward for all
characters (e.g. the "m"). This is
due to physical limitations enforced
on the motor commands (maximum
velocity).

To demonstrate the robustness
of the controllers and a more practi-
cal application of the learning rule, I
have simulated various actuator fail-
ures. Figure 5.15 presents the re-
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sults of these experiments. Initially, a feedforward controller is optimized
using a gradient ascent approach applied to the spring lengths at each time
step, again starting from a simple kinematic controller.

Next, communication/actuator failures are simulated, by having one or
two actuators follow their initial trajectories instead of the optimized ones.
As can be expected, the performance immediately drops significantly. By
applying the learning rule, the system is able to recover from the various
failures. To investigate the stability of the learning rule, each experiment
was performed 30 times.

5.4 Extending Oja’s Rule: a Stabilized/Reg-
ularized Reward Modulated Hebbian
Rule

Oja’s rule [130] and its extension — the Generalized Hebbian Algorithm or
Sanger’s rule [150] — provide a single layer Neural Network implementation
to compute principal components. Contrary to pure Hebbian plasticity, these
learning rules are stable, because they force the norm of the weight vectors
to unity. In this section, I provide a similar derivation for the learning rules
studied in this chapter. Unlike in the unsupervised learning case, Reward
Modulated rules tend to be stable in practice (i.e. the trained weights remain
bounded). However, it can still be useful to control the norm of the weights as
this can have practical implications. For example, in a robotics application,
this would allow to limit the required feedback gain and thus the required
motor power. From a theoretical point of view it is also instructive to see
how the learning rules from the previous sections resemble the now classic
rule discovered by Sanger more than 20 years ago.

To simplify the notation, I start by defining a number of variables (E is
not related to the stress matrix from Chapter 2):

E = ZXT (5.19)
R′ = R− R̄. (5.20)

The basic learning rule used for distal reward learning can now be written
in element-wise form as:

W j
i [n+ 1] = W j

i [n] + αR′Eji . (5.21)

Oja’s rule is a first order approximation to the normalization of the
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weights at every update step:

W j
i [n+ 1] = bj

(W j
i [n] + αR′Eji )

||W j [n] + αR′Ej ||
, (5.22)

where b contains the desired L2 norms of the weight vectors.
Now consider the linearization of this rule for small learning rates α. To

further simplify the notation, I drop the time index and focus on a single
output dimension:

wi ≈ b
wi + αREi
||w + αRE||

|α=0 + αb

(
δ

δα

wi + αREi
||w + αRE||

)
|α=0 (5.23)

A straightforward calculation shows that the part inside the parentheses
of the second term can be written as:

δ

δα

wi + αREi
||w + αRE||

|α=0,||w||=b = 1
b
REi −

(∑
k RwkEk
b3

)
wi (5.24)

assuming ||w|| = b and α = 0.
The complete learning rule can therefore be written as:

wi = b
wi
b

+ αb

(
1
b
REi −

(∑
k RwkEk
b3

)
wi

)
(5.25)

= wi + αR

(
Ei −

wi
b2

∑
k

wkEk

)
. (5.26)

The matrix form of the rule for multiple outputs is given by:

∆W = αR′(E − diagv(b)−2diagv(diagm(EW T ))W ), (5.27)

which is of the order O(mn), withm the number of outputs and n the number
of inputs. The diagm operator extracts the diagonal of a matrix into a vector
and the diagv operator converts a vector into a diagonal matrix. Therefore
diagv(diagm(EW T ) is a diagonal matrix containing the diagonal elements
of EW T . The stabilized learning rule therefore has a similar form as the
Generalized Hebbian Algorithm.

Figure 5.16 provides a toy example of the stabilized RMH rule derived
above. In this example, the objective is to train a single layer linear feedfor-
ward network for a regression task with 10 inputs and a single output. The
reward function used was minus the MSE and the trial length was 1000 sam-
ples (the full train set). The figure shows the short term average reward (with
noise) as a function of the norm of the weight vector. The thin black line
shows the performance during unbounded training (the basic RMH rule from
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Figure 5.16: Example of the stabilized/regularized Reward
Modulated Hebbian Rule from Eq. 5.27. The learning rule is
applied to implement weight decay for Reward Modulated learn-
ing. The problem at hand is a feedforward regression task with
10 inputs and a single output. The initial unbounded learning
phase is shown in thin black line and the thick line traces the
performance when the norm is constrained. More precisely, b
is gradually reduced starting from the norm at optimal perfor-
mance during unbounded training.

e.g. Eq. 5.21) which starts from an all-zero weight vector and reaches optimal
performance when the norm is approximately 1.55. Afterwards the learning
rule from Eq. 5.27 is used to implement weight decay. Beginning from the
optimal weight vector obtained during unbounded learning (b ≈ 1.55), the
target norm b of the weight vector is gradually decreased. This entails a
decrease in performance (thick green line). This change in performance is
clearly non-linear and near-optimal performance can be maintained until the
norm b is forced below 1.

5.5 Discussion

Compliant robots have been of interest to the robotics community for over
a decade. Many exciting examples have appeared in the literature of very
simple control laws leading to complex behavior and of robustness against
external perturbation. Compliance offers multiple advantages over classic,
stiff robotics: it can allow for safer robot-human interactions by simplifying
control laws, increased energy efficiency, and inherent robustness against
external perturbations.



5.5 Discussion 123

Notable examples of compliant robots that have very simple control laws
are Puppy [81], Reservoir Dog [193], Wanda [201] and a recent elastic beam
robot [140]. The control of the Reservoir Dog in irregular and unknown
terrain was simply based on a sine wave with different phase and offset for
each leg, while a similar stiff robot would need complex sensory equipment
and an elaborate controller [19].

In this and the previous chapter, I have used tensegrity structures to
model compliant systems. However, two important remarks need to be made.
First, the exact dynamics of the system need not be explicitly known to the
learning algorithm. This is the underlying idea of Reservoir Computing: A
dynamic system can be used as a computational black box, encoding a non-
linearly expanded history of environment interactions in the instantaneous
state of the system. Such an abstraction has many advantages, as one can
change substrates or construct hybrid systems, while still using the same read-
out learning algorithms. It also does not define how the read-out mechanism
is actually implemented, and would allow e.g. a neural substrate, electrical
wiring or mechanical connections.

Secondly, one can exploit the fact that, historically, tensegrity structures
have been used to model a plethora of complex systems from the micro
to the macro scale. Even though tensegrity structures were initially only
used in art and architecture, they have now also been successfully applied
as a model for cellular cytoskeleton structures [84, 85, 188]. At the micro
scale, the equations of motion are different and their exact form is often
unknown, but one still finds compressive elements (e.g. microtubules) and
tensile elements (e.g. microfilaments). Inside a single celled organism, there
is no central nervous system, but chemical and mechanical interactions define
the cell’s behavior, and flagella or cilia allow locomotion [103, 146, 169, 170].
Micro-organisms such as nematodes are often capable of rich movement
patterns and interaction with the environment while only possessing very
simple nervous systems [36, 46]. Based on this, I hypothesize that the
results of my work could provide insight into the fundamental mechanisms
underlying the locomotion of simple organisms by interpreting their behavior
as a computational problem.

When taking a higher-level viewpoint on the nature of certain aspects
of cognition and computation, my results can offer additional, empirically
validated arguments in the quest for understanding cognition in biological
organisms. Indeed, I have given several examples of systems in which the
computational aspects of locomotion are for the most part physical in nature,
making the structures discussed here prime examples of the idea of embod-
ied cognition. Moreover, my analyses allow to quantify the nature of the
computation occurring in the substructures, most notably the controller and
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the physical system. This viewpoint is in my opinion applicable to many of
the interactions between the body, sensory inputs and early cognitive layers,
but will probably not suffice to fully explain the complete array of cognitive
capabilities of human-level intelligence.

When considering cognition as performing computation in the broadest
sense, it is clear from my results that this computation is very much divided
across the explicit linear control and the implicit non-linear transformations
of interactions with the environment, mediated by the physical properties of
the structures. Indeed, the idea underlying the principle of Physical Reservoir
Computing is precisely that the range of possible dynamical systems which
can be used for computation is extremely broad, as are their properties
regarding non-linearity or memory.

The significance of the combined feedforward and feedback controller
presented in Section 5.3.3 is yet to be addressed. Two questions come to
mind: Is there a biological analog of this architecture and are there practical
applications of this method?

The answer to the first question is that there are examples of layered
control systems in human motor control. Indeed, the cerebellum fine-tunes
motions based on sensory input and control signals from higher level brain
regions. This process is architecturally similar to the combined kinematic
(high-level) and feedback (sensor feedback) approach in Section 5.3.3. Fur-
thermore, it is known that the cerebellum processes reward signals and also
communicates with the basal ganglia [16, 77, 153].

This leads to the second question. It turns out that various domains
may benefit from the proposed layered control architecture. One obvious
domain is robotics, as the dynamics of a robotic platform are often only
known approximately. Therefore, one possible use of the learning rules is
mitigation of model accuracy issues. However, the most appealing application
seems to be that the method can be used to design systems that can adapt
to minor changes of their dynamics through time. Such effects appear in
multiple domains due to temperature fluctuations (e.g. in Photonic Reservoir
Computing), material fatigue. . . . The presented learning rules are highly
suited for this type of problems, as they can be implemented at a very low
level with little computational requirements.

5.6 Conclusion

Hebbian theory is a well-established theory to explain synaptic plasticity
between neurons. Over the years, many variations of the basic learning rule
have been developed. Each of these had a specific application, ranging from
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unsupervised feature extraction to reinforcement learning. In this chapter, I
have presented Hebbian-like learning rules in which the synaptic plasticity
is based on the correlation between the presynaptic neuron states and an
exploratory noise signal. The plasticity is modulated by a reward signal,
resulting in a learning method that maximizes the expected reward of a trial.

After discussing how to extend an existing rule to instantaneous reward
based learning in input-driven Recurrent Neural Networks, I focused on distal
reward learning in Recurrent Neural Networks and compliant robots. The
main conclusion is that Reward Modulated Hebbian plasticity provides a
simple, yet effective tool for bridging learning in Recurrent Neural Networks
and compliant robotics, thus strengthening the belief that highly compliant
robots can benefit from a computational approach to control problems.





6
The ReCTeR Robot

This chapter describes the design of a compliant tensegrity robot, nicknamed
ReCTeR (Reservoir Compliant Tensegrity Robot). ReCTeR is an untethered,
compliant tensegrity robot constructed in the context of this dissertation to
study the practical aspects of tensegrity robot design and control.

ReCTeR was designed and built at Ghent University. Michiel D’Haene
provided significant input on the electronic designs of the robot. Hardware
tests were performed at Ghent University and the NASA Ames Research
Center. More precisely, the robot was constructed at the Reservoir Lab
(Electronics and Information Systems department) and the motion capture
experiments at Ghent University were performed using the equipment of the
Institute for Psychoacoustics and Electronic Music (IPEM). The hardware
was tested at the NASA Ames Intelligent Robotics Group (IRG, Code TI).
For motion capture, the equipment and lab space of the Human Systems
Integration division (Code TH) was used.

This chapter is organized as follows. I first discuss the motivation and
objectives of ReCTeR in Section 6.1. Next, I review a number of related robot
designs to illustrate the original aspects of my robot design in Section 6.2.
Section 6.3 then presents the hardware design of ReCTeR, followed by an
overview of its features in Section 6.4. This leads to a series of experiments
in Section 6.5. Finally, I present my conclusions in Section 6.6.

6.1 Motivation & Objectives

After a number of initial experiments in simulation, it quickly became clear
that a physical prototype of an actuated tensegrity robot would be desirable.
As only a few complex tensegrity robots have been built to date, this platform
should provide valuable information about the physical limitations and issues
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of compliant actuated tensegrities. ReCTeR should also serve as a validation
of the Physical Reservoir Computing principle.

As such, I began the design and construction of ReCTeR in 2011. The
following set of design goals were put forward at that time:

Cost
The cost of materials should be less than 5000 EUR.

Untethered
ReCTeR should be fully untethered. Wires would impede locomotion
experiments and would have a significant influence on the dynamics of
the structure. The wireless interface should provide low-latency access
to sensor data and accept motor commands at a rate of at least 50Hz.

Sensors
The simulation experiments relied on spring-cable assembly tension
measurements, although the Physical Reservoir Computing approach
can handle various types of sensor data. However, to minimize the
reality gap between the simulations and the hardware, it is desirable
to have similar sensors available on the robot.

Actuation
The robot should implement the spring-cable assembly model described
in Section 2.3. As each motor has a global effect, underactuation (in
the sense that not each spring-cable assembly is actuated by a motor
on a bar1) is permitted. The motors should be able to significantly
deform the robot in a dynamic regime, ideally allowing it to actively
fold.

Distributed
Each rod of ReCTeR should be electrically independent, such that the
platform can be extended to other configurations or provide a fallback
mode in case of failure.

Compliance
ReCTeR should be as compliant as possible. This is a rather ambiguous
statement which merits some clarification. The design should maximize
flexibility, while guaranteeing that the robot does not collapse under
its own gravitational load.

1An actuated spring-cable is a spring-cable assembly attached to a motor on a
bar. Similarly, an actuated bar contains end caps with a motor that can change
the rest length of spring-cable assembly. See Section 2.3 for the general actuated
spring-cable model.
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Robust
The robot should safely handle extreme or experimental motor com-
mands and should be robust against moderate drops and impacts. In
practice, this means that any motor command should not result in me-
chanical or electrical failure. Moderate drops are drops in the order of
the size of the robot. For example, the robot should survive accidental
falls when picked up.

Lightweight
A person should be able to carry the robot.

Safety
The actuated spring-cable assemblies should not pose a safety risk.

Long Battery Life
It should be feasible to validate learning approaches. In practice, an
individual active battery life of more than 30min is required as the
variance between the battery supplies of the individual bars reduces the
global runtime. In addition to this, live battery switching is desirable
for longer experiments.

I will recall these objectives in Section 6.4, which discusses the features of
the physical platform in its current state.

While the design requirements (distributed & untethered) allow ReCTeR
components to be rearranged in various topologies, I specifically targeted
the tensegrity icosahedron configuration from the start. The reason for this
is that this topology is symmetric, can be folded into a flat star shape and
has a relatively small number of members. The compressive elements are
also spaced far apart, which allows for large shape deformations without the
risk of colliding bars [71]. More spherical structures exist (Figure 6.1), but
they are generally shell-like (similar to a geodesic dome) with all members
closely knit together tangent near its surface. In Chapter 2, I have discussed
a minimal 6-strut tensegrity structure (also called a tensegrity tetrahedron).
This topology (Figure 2.1) has fewer members than the tensegrity icosahe-
dron, but has a smaller internal volume and its large faces make it unfit for
locomotion.

6.2 Related Platforms

Two tensegrity robots have had a particular influence on ReCTeR’s design and
a brief overview of these platforms allows to situate ReCTeR’s development.
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Figure 6.1: A tensegrity dome structure. Note that all the mem-
bers are tightly packed in the shell of the structure. Shell-like
tensegrities tend to be easy to build, because one can generally
build such structures in tension. However, such a topology is
not ideal for tensegrity robotics based on actuated compressive
members, due to the relatively small range of motion (without
risking bar-to-bar collisions) of individual members. (Credit:
Bob Burkhardt)

6.2.1 Cornell IcoTens

Simon Fivat at The Creative Machines Lab at Cornell University has de-
veloped the IcoTens robot [55]. As its name suggests, the IcoTens is an
icosahedron tensegrity robot. More precisely, it has a total of 24 members,
12 of which are actuated. This is similar to the proposed initial configuration
of the SUPERball robot introduced in the next chapter.

The end caps consist of small, off-the-shelf electrical motors combined
with a small lithium battery and electronics. These elements are held together
by custom 3D-printed parts and the robot had a diameter of 0.62m. Some
images of the IcoTens are available at http://creativemachines.cornell.
edu/icotens. Unfortunately, the development of this platform seems to
have ceased and only limited information about its capabilities is available.
It is reported to achieve a forward velocity of 29mms−1.

Due to its similar configuration, the IcoTens provided initial inspiration
for ReCTeR. However, as will become clear in the next sections, ReCTeR’s
design represents a significant improvement over the IcoTens platform. For
example, the actuated wire routing mechanism on the IcoTens is problematic.
I have tested 3D-printed enclosed end caps similar to the IcoTens’s during
the initial design phases of ReCTeR. However, such designs have proven unre-
liable as it is hard to precisely guide thin wires when they go slack. ReCTeR
therefore only uses a minimal number of 3D-printed parts and instead engi-

http://creativemachines.cornell.edu/icotens
http://creativemachines.cornell.edu/icotens


6.3 Hardware Design 131

neering plastics (POM/PTFE) were machined for smooth surfaces in contact
with actuated wires. Moreover, ReCTeR’s different actuation pattern allows
for efficient use of low power electric motors, without working against the
prestress in the structure.

6.2.2 Pneumatic & SMA Rolling Tensegrity
Shibata, Shinichi and Koizumi first presented a simple icosahedron tensegrity
robot with shape memory alloy (SMA) actuators [156]. This structure was
able to move by slowly changing its shape. In 2012, they presented a new
design using 24 pneumatic actuators as members [73, 98]. This tethered robot
was not equipped with sensors, but did show interesting locomotion results
(rolling). Due to the different nature of the actuators and the omission
of sensors, ReCTeR does not imitate any design feature of these robots.
However, their locomotion results provided insights about which kinds of
deformations ReCTeR should be able to handle and what could be expected
of its capabilities in practice.

6.3 Hardware Design

The hardware description of ReCTeR is split into two subsections: the me-
chanical design and the electronics. The schematics of the electronic designs
are provided in Appendix A.

6.3.1 Mechanical Design

6.3.1.1 Structure

ReCTeR is based on the tensegrity icosahedron structure with 6 compressive
members and 24 tensile elements. In addition to this, the robot has 6 actuated
spring-cable assemblies. The robot is thus underactuated, as only 6 degrees
of freedom can be controlled. Disregarding the rigid body modes, twisting of
the compressive members and slack spring-cable assemblies, the robot has 24
degrees of freedom2. This considerable level of underactuation is a deliberate
choice to keep the robot’s cost, mechanical complexity and mass down.

The actuated members run through the robot as demonstrated in Fig-
ure 6.2. This allows the robot to retain its shape while powered down and
to optimally use the available actuation power, as discussed in Section 2.6.

2Each bar has 5 effective DOF, for a total of 30 in a 6-bar robot. Subtracting
rotation and translation of the whole robot results in 24 DOF.
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Figure 6.2: ReCTeR connection pattern. Left: The thin green
lines are passive spring-cable assemblies (outer shell), the thick
full red lines are struts and the dashed blue lines are actuated
spring-cable assemblies. Right: A different representation of
the connectivity, showing how the actuated members are dual
to the struts. The large circles are (approximately) equilateral
triangular faces connected by edges representing the end caps
(small circles) over which the robot has to roll to reach an
adjacent face. The thick black lines represent the struts and the
thin lines are the actuated springs, which form the same spatial
structure as the struts in the representation on the left. For
example, assign the number 5 on the right representation to the
equilateral triangular face defined by end caps (1,3,5) on the
left image. Analogously, assign the number 6 to the face (3,4,7)
on the left. Rolling from face 5 to 6 (right representation) thus
occurs over end cap number 3 (left representation).

ReCTeR has a total mass of 1.1 kg (batteries included), which is achieved
by using carbon fiber struts (8mm outer diameter). The tensegrity principle
allows to make effective use of the axial strength of the carbon fiber.

Three of ReCTeR’s struts are actuated (two actuators each), while the
other three are fully passive and sensorless. The total masses of the struts are
0.05 kg and 0.270 kg, for the passive and active struts respectively. The six
actuated springs are selected such that each end cap has exactly one actuated
spring attached to it. By further requiring the pattern to be symmetric and
preventing parallel struts from being connected, exactly one pattern was
found (up to a mirror symmetry). It can be seen that this connection
pattern allows for large shape deformations, as the actuated spring-cable
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assemblies have a larger workspace compared to shell actuation. This was
shown in Figure 2.8 (Section 2.6) for which I compared the effect of various
actuator patterns. Internal connections are significantly longer than shell
elements and a single motor can thus operate over a wider range. ReCTeR
is slightly asymmetric due to design revisions. The passive bars are all of
equal length (1m), while the actuated bars have lengths of 0.92m, 1.01m
and 1.06m.

Figure 6.2 also shows a different representation of the connection pattern.
More precisely, it connects the centers of each equilateral triangle in the
tensegrity icosahedron with its adjacent equilateral triangular faces. It can
easily be seen that the centers of the equilateral triangles form a cube. The
edges of the cube correspond to the end cap over which the robot has to roll
to move to an adjacent equilateral triangle. In this representation it is easy
to see that the actuated pattern is a dual to the strut connectivity pattern
and is therefore an effective way to deform the structure with low power
actuators.

Following the rules set out in Section 6.1, ReCTeR should be as flexible
as possible while not collapsing under its own gravitational load. This is
achieved by using inline, low stiffness tension springs. More precisely, the
passive and active cables have inline springs with low spring constants at
28.4Nm−1 and 81Nm−1, respectively. As a result, the natural frequencies
of oscillatory modes for the structure are on the order of a few Hz. While it is
not necessary to add springs to the actuated cables, I found that removing the
stiffer springs of these cables results in a significant reduction in compliance
of the structure, which can be problematic during impact.

Using the analysis techniques presented in Chapter 2, the modal stiffness
of ReCTeR can be studied. Figure 6.3 shows the modal stiffness of the robot
as a function of the spring constants of the outer shell elements. The actuated
tensile elements running through the robot were not taken into account, as
they go slack when the robot is powered down. In this figure the pretension
is kept constant at the levels used for the experiments described in this
chapter (≈ 10N). Note that for very low stiffnesses, some modal stiffnesses
become zero, due to negative rest lengths of spring-cable assemblies. However,
these flexes are not finite due to the irregularities of the structure. The figure
illustrates that to stiffen the most flexible modes of the structure, significantly
stiffer springs are needed. To confirm this, ReCTeR has been reassembled
with stiffer springs (≈ 80Nm−1). As can be expected, the result is that the
modified robot stands more upright under gravitational loading. However,
this modification impedes folding as this plasticly deforms the new springs
and requires excessive motor power. The low 28.4Nm−1 spring stiffness is
thus a choice that optimizes the flexibility of the robot to maximize the effect
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of the actuators, while allowing the robot to be free-standing.
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Figure 6.3: The modal stiffness of ReCTeR as a function of
the spring constants of the outer shell tensile members (the
actuated spring-cable assemblies are not taken into account)
for a constant level of pretension. This figure shows that to
stiffen the most flexible modes of the structure, significantly
stiffer springs are needed. For the experiments described in this
chapter, 28.4Nm−1 springs were used for the passive spring-
cable assemblies (indicated by the box).

I have used 200N UHMWPE3 wires for the passive outer shell cables.
The actuated spring-cable assemblies are 70N UHMWPE wires (0.13mm
diameter).

6.3.1.2 End Cap

ReCTeR is equipped with low power DC motors (4.5W brushed DC, Maxon
216 000) with a single stage plastic gearbox (4.4:1, Maxon 112 862). It is
crucial to prevent the tensile forces on the actuated springs from exerting an
excessive radial load on the motor axis. Therefore, two miniature ball bear-
ings secure the motor axis (one is mounted inside the bottom of the spindle,
one is mounted at the end of the spindle). The current design can shorten
the actuated cables at a rate of 0.3ms−1 (under 10N of tension) and I have
observed active unwinding speeds of over 0.6ms−1. The estimated effective
(gears and bearings) nominal motor output is 3.5W. Stated differently, the
power-to-weight ratio of ReCTeR is relatively low (approx. 20Wkg−1).

3UHMWPE: Ultra-high-molecular-weight polyethylene. The fibers are commer-
cialized under the Dyneema and Spectra brand names. While this type of wire can
resist high tensile forces, it is subject to significant creep.
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I have opted for an open node design to prevent wires getting caught. To
this end, a PTFE cap fits tightly around the top and bottom of the spindle,
separating the ball bearing and axis from the cable and providing a low
friction surface for the wires when the robot is highly deformed.

Figure 6.4 shows an exploded view drawing of a ReCTeR end cap. In this
figure, the components on the right fit on top of those on the left. Consider
the parts starting from top (top right) to bottom (bottom left).

A protective silicone cap protects the tip of each bar and provides addi-
tional friction (Shore 36). The top of the end cap also contains a custom force
sensitive resistor to sense ground reaction forces. Next, a 24mm diameter
PCB contains the microcontroller (Microchip 24F), a 24 bit ADC (Analog
Devices AD7192) for the strain gages and a magnetic motor position encoder
(AMS AS5050). Another circuit board contains the voltage references, sol-
der terminals for the strain gages and a miniature ball bearing for the wire
spindle. The strain gages are glued to a custom aluminum part which snaps
around this circuit board (see Figure 6.5[D]). The wire spindle is machined
out of POM4 and as is secured with two ball bearings, the bottom one of
which is press fitted into a custom aluminum part on top of the gear box. As
discussed before, this double bearing design is crucial to protect the actuator
against impact forces (no radial loading of the motor axis) and allows the
use of light weight plastic gears.

The wire (0.13mm UHMWPE) is attached to the spindle and can slide
over two PTFE surfaces, one above the gear box and one underneath the
strain gages. The wire spindle has a 5.5mm diameter, which results in an
actuated spring-cable stall force of approximately 25N. The custom motor
driver PCB is soldered directly to the bottom of the actuator and has the
same diameter as the DC motor (17mm). A small PCB directly underneath
the motor driver connects the end cap electronics to the center PCB. The
whole end cap assembly slides onto a hollow, square carbon bar (8mm outer,
6mm inner width) and the wires between the center module and the end
cap electronics run through this bar. The PCB underneath the motor driver
provides a single connection point between the center module and the end
cap. Note that a press fit is sufficient to join the end caps to the main bar
as this whole assembly is in compression.

6.3.2 Electronics
Each of the robot’s actuated bars contains 11 small circuit boards to fit all
the required electronic components. The center module contains the most
complex PCB (Figure 6.5[B]). Two batteries connect to this board: the main

4Polyoxymethylene



Figure 6.4: Exploded view drawing of a ReCTeR end cap. The
components on the right go on top of those on the left. A
detailed description of the assembly is given in the main text
(Section 6.3.1.2).
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battery (a single cell 3.7V lithium-ion) and a small backup battery (138mAh
single cell lithium-ion). This configuration allows live battery switching
without loss of calibration. In addition to this, the center also allows the
robot to be powered externally and can charge both batteries.

Processing power is provided by a microntroller from Microchip (PIC
24F). This device distributes the messages received over the wireless interface
to the end caps, handles the IMU data (also located on this module) and
controls the DC/DC converters and power switches. More precisely, the
board boosts the battery voltage to 12V for the actuators in the end caps
and provides, stable 5.5V and 3.3V lines for the electronics and strain gages.

The end caps each host 5 boards. One of these boards only serves to
connect the wires coming from the center modules from within the bar to the
4 other boards. The next board contains the motor driver and fits directly
onto the bottom of the actuator. The next PCB fits into the aluminum strain
gage mount (Figure 6.5[D]) and hosts the precision voltage references for the
force transducers. On top of this board, the second to last PCB contains
the magnetic motor encoder, the 24bit strain gage ADC and microcontroller.
The last PCB contains the force sensitive resistor used as a ground reaction
force sensor and a pair of bright LEDs. The end caps transmit their state
information (motor position, strain gages. . . ) at 200Hz to the center mod-
ule over a serial connection. The center module transmits the main state
variables of the full bar in a single 32B message.

6.4 Features

I now recall the objectives set out in Section 6.1 and discuss to what extent
ReCTeR achieves these goals.

Cost
The cost of the passive bars is negligible. On the other hand, the
cost of the actuated struts is defined by the motors, the electronics
and the materials. The price of the Maxon motors is approximately
100 EUR/motor (with gearbox). It is hard to accurately estimate the
material cost, as most materials were bought in bulk. However, it is
safe to assume that this cost is under 100 EUR/bar. The machining
was done in-house and this cost is therefore not taken into account.
The production cost of the circuit boards was 44 EUR/bar, while
components account for approximately 100 EUR. Therefore, the final
total cost per bar excluding manufacturing is below 500 EUR.

Untethered



Figure 6.5: A) Bar design with all wires embedded into the
carbon fiber bar. The center module hosts the battery, wireless
interface and IMU. B) Close-up of the center module, with the
RF module on the left and the backup battery on the right.
The main battery sits in line with the carbon tubes connecting
the center module and the end caps. This keeps the center of
mass of the bar collinear with the carbon tubes and end caps.
C) Deployed end cap. D) Close-up of the strain gage force
transducers. The wire spindle fits into the ball bearing. E) Top
view of the end cap with the protective silicone cap removed.
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The robot is wireless and an experimental control/measurement rate
of 100Hz was achieved.

Sensors
ReCTeR has 24 spring-cable force transducers (4 per actuated end
cap) and each bar has a 6 DOF IMU. A custom force sensitive resistor
in the end caps allows to detect impact forces.

Actuation
A smart connectivity pattern with 6 actuated spring-cable assemblies
allows for efficient use of the available motor power. As the actuators
to not need to work against the main tension connections, the robot
maintains its original icosahedron shape when powered down and the
full actuation power can be used to deform the structure.

Distributed
The programming of each bar and end cap is identical and the bars
are fully independent (mechanically and electrically). Additionally,
it is possibly to reprogram the parameters (ID, sampling rates. . . )
wirelessly. A generic ROS5 interface was developed to efficiently control
up to 16 bars.

Compliance
This was discussed in detail in Section 6.3. The chosen spring stiffnesses
result in a high level of passive compliance and efficient use of the
actuators. At the same time the structure is stiff enough to resist
collapsing under its own gravitational load.

Robust
The experimental section will provide more details on this issue. ReCTeR
has been dropped multiple times from up to 1m without mechanical
failure. The robot has been disassembled for transport at various
occasions, again without causing mechanical failure. The low power
DC motors are capable of plasticly deforming the springs, but cannot
break the wires or end caps.

Lightweight
ReCTeRs total mass is 1.1 kg. The batteries account for 0.15 kg. An
actuated bar has a mass between 0.25 kg and 0.3 kg.

Safety
The low power actuators do not pose a safety risk and the amount
of elastic potential energy stored in the springs is too small to cause
harm.

5Robot Operating System: A common open source robot middleware developed
by Willow Garage and available at http://ros.org.

http://ros.org
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Long Battery Life
An effective battery life of 1 h was achieved using Panasonic NCR-
18650A lithium-ion cells (3100mAh). In standby mode (all sensors
active) the battery life increases up to multiple hours.

6.5 Experiments

After presenting the hardware design and features of the ReCTeR robot, I now
discuss the main experimental results obtained with this platform. As will
become clear, the main experimental focus was on validating the simulators,
verification of the hardware capabilities (e.g. folding) and proof-of-concept
of the feedback controllers studied in the previous chapters. This implies
less attention to sustained locomotion. The reason for this is that after the
experiments discussed here, I redirected my focus toward the development
of the SUPERball robot (studied in depth in the next chapter). SUPERball
is specifically aimed at dynamic locomotion and it therefore makes sense to
use ReCTeR as a validation and testing platform.

6.5.1 Experimental Setup

For the experiments which report position information, an active marker6

motion capture setup was used. The hardware setup was based on the
PhaseSpace Impulse X2 system with 15 active markers and 11 cameras.
More precisely, each passive strut was fitted with 2 markers, while each
actuated strut received 3 markers.

6.5.2 Demonstration of Capabilities

Figure 6.6 demonstrates the capabilities of ReCTeR. The top images (A &
B) show the robot in deployed and actively folded state. The next sequence
(C) demonstrates the rolling (open loop) from right to left, while mostly
maintaining its spherical shape. In contrast with this, sequence (D) illustrates
open loop rolling through large shape deformations. Finally, the last series of
snapshots (E) shows the robot being dropped to demonstrate its robustness.

6In a typical passive marker system, light (typically infrared) is emitted by an
external source and reflected by the markers. The motion capture system detects
and tracks the highly reflective markers. An active marker system directly tracks
light sources (LEDs) located on the subject.



Figure 6.6: Overview of ReCTeR’s capabilities. A) Robot fully
deployed on the NASA IRG RoverScape (Credit: NASA). B)
Actuated folding of the robot. C) Rolling (right to left). D)
Rolling with large shape deformations (left to right). E) Drop
test of the structure. The robot has proven robust against
repeated drops of up to 1m (≈ 4.4ms−1). For reference, a
tensegrity probe for Titan would sustain an estimated terminal
velocity of 15ms−1 which is equivalent to a 10m drop on Earth
(see [167] and Chapter 7).
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6.5.3 ReCTeR Kinematics
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Figure 6.7: Verifying the equilibrium state of the hardware pro-
totype and the NTRT simulator. A maximum error (Euclidean
distance) of 0.04m was observed over all the end cap positions.
Note that the error appears larger in the image on the right due
to camera distortion.

After an initial test of the equilibrium state of ReCTeR in simulation
and hardware (Figure 6.7), I focused on the first validation experiment: A
comparison of the forward kinematics of the Euler-Lagrange (Section 2.8.1)
and NTRT simulators (Section 2.8.2) and motion capture data from ReCTeR.

The six-strut ReCTeR robot was placed on one of its triangular faces and
two of the top spring-cable assemblies were actuated, as shown in Figure 6.8.
The vertical displacement of an end cap not directly actuated by one these
two members was tracked. The incident strut was suspended in the air by a
total of 10 spring-cable assemblies.

The lengths of the two actuated spring assemblies were varied from the
point of no tension in the given configuration (slack) to 0.32m beyond this
length. Each range was sampled at 10 equally spaced lengths, resulting in
100 measurement positions in total. These ranges were manually tuned to
maximally deform the robot, without causing it to roll. This experiment
was repeated three times, with no significant difference in the observed
displacements.

The average observed difference between the motion capture data and
the Euler-Lagrange simulator was 6.5mm. For NTRT, an average error of
15mm was obtained (0.5% and 1.3% of the robot’s diameter respectively).

6.5.4 Dynamics
Next, the dynamics of the NTRT simulator and the ReCTeR hardware were
compared. This experiment was designed for two purposes: To verify that
the simulator can replicate ground interactions, and second, that it can
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Figure 6.8: Kinematic comparison of the Euler-Lagrange and
NASA Tensegrity Robotics Toolkit simulators and ReCTeR mo-
tion capture data. The top left plot shows the experimental
setup. The rest length of two actuated spring-cable assemblies
(dashed lines) is modified. The full range of motion of the
tracked end cap during the experiment is shown in light yellow
(convex hull). The end caps indicated by small black squares
are on the ground. The 3 other plots show the vertical displace-
ment of the end cap indicated by the large black dot in the
top left plot as a function of the lengths of the two actuated
cables. The end cap of which the displacement is traced, is not
directly actuated and is floating. The nodal displacement as a
function of the actuator position is non-linear, even for modest
displacements. Note that the leftmost point (0.05,0.05,0) is the
reference point, as the displacements are relative to this initial
state.
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simulate the conversion of potential energy into kinematic energy when a
spring is released. The experimental setup is shown in Figure 6.9. The robot
initially has a non-minimal ground contact (four end caps on the ground
instead of just three), and three of the actuated spring-cable assemblies are
tensioned. Next, one of the tensioned, actuated springs is loosened by its
actuator, which causes the robot to roll over.

As the experiment also depends on the initial state of the robot, the
observed initial state from the motion capture data was copied to the NTRT
simulator. The ReCTeR model in the NTRT simulator was then released
from this initial configuration, allowing it to reach the simulated, predicted
equilibrium. Therefore, the simulator first had to match the kinematics of
the hardware platform. The recorded motor positions from the physical test
were then applied into the simulator, causing a similar rolling-over motion.
A time averaged error of the end caps’ vertical positions of less than 5% of
the robot’s diameter was observed for all end caps.

In addition to this experiment, I performed dynamic and static measure-
ments of a single actuated ReCTeR strut suspended by four spring-cable
assemblies — two passive ones attached to the ground and the two actu-
ated ones to the ceiling. The results of these experiments indicated a close
match between NTRT, the Euler-Lagrange simulator and the hardware for
the lowest resonance frequencies and the kinematics. The simulators could
not accurately reproduce the very low amounts of damping of the physical
system. However, this does not appear to be a significant issue for the assem-
bled robot, due to the increased damping due to friction between the robot
and the environment.

6.5.5 Physical Reservoir Computing

This section presents an implementation of the Physical Reservoir Computing
(PRC) principle on the ReCTeR hardware (see Section 4.4). Closed-loop feed-
back control is used in which the motor signals are generated by a Matsuoka
oscillator. This demonstrates a successful adaptation of the simulation re-
sults from Chapter 4 to a physical platform (ReCTeR), with similar learning
times and robustness.

A static linear feedback controller is designed, which robustly generates a
set of desired oscillatory motor signals after a short learning phase. For this
experiment, the target spring-cable rest lengths (`i) are generated using a
random Matsuoka oscillator [117] (see Section 4.3.1 for oscillator parameters
and motivation). These signals represent the desired actuator signals. I
manually scaled the target signals such that the resulting behavior corres-
ponds to a motion pattern with large shape deformations, while keeping the
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Figure 6.9: Comparing robot and NTRT dynamics. The ten-
sioned spring-cable assembly indicated by the dashed line is
released (0.32m to 0.535m at 0.6ms−1), causing the robot to
topple. Two other actuated members are also tensioned, while
the other three actuated springs are at their initial lengths, re-
sulting in two slack springs. A time averaged error of the end
caps’ vertical positions of less than 5% of the robot’s diameter
was observed for all end caps.

physical structure from moving too fast (as this impeded motion tracking).
The resulting gait was a slow crawling motion, which allowed motion-capture
tracking of the full experiment. Note, that the robot’s behavior was evalu-
ated using the motion capture setup described in Section 6.5.1, but that no
motion capture measurements were used in the control loop.

The algorithm proceeds by first applying the target rest lengths to the
actuators in an open loop setup, which causes the robot to start moving.
Next, online learning is applied to approximate the desired signals based on
the sensor readings. These approximations are the feedback signals. The
ratio of open loop versus feedback signals is gradually decreased until the
signals are generated by the feedback loop alone. At this point, the robot
will robustly maintain the oscillatory patterns. The precise equations and
parameters used in the experiment are provided in Chapter 4.

The controller feedback signals are obtained from ReCTeR’s 24 force
transducers. As these sensors are mounted perpendicularly to the robot’s
struts, the output values depend on the angle of attack and the tension of
the attached spring-cable assembly. Thus, the sensors provide a readout of
the robot’s state similar to to the state observations in RC, albeit non-linear.

Figure 6.10 shows the result of an experiment in which I first outsource
the motor signal generation to the feedback loop by online learning of the
feedback weights. After training, I disturb the system (lifting the robot
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Figure 6.10: Fast online learning of a static feedback controller
for a Matsuoka oscillator on the ReCTeR robot based on uncali-
brated strain gauge sensors. The top left plot shows the fraction
of feedforward vs. feedback control. During learning, both the
feedback and feedforward controllers (training signals) are active.
The influence of the open loop feedforward controller decreases
and when its fraction is below 0.2, learning stops and only the
trained feedback controller is active. The left plot on the second
row shows the vertical coordinates (in mm) of the four end caps
with the largest vertical displacements as a function of time.
The five surrounding plots are details of this plot, showing the
different training and testing phases. A) Fully open loop control.
B) Switch from partially open loop and feedback control to full
feedback control, learning stops. C) The robot is perturbed by
pushing it down, preventing all movements. D) The feedback
controller recovers after the robot was lifted up from the ground.
E) The behavior of the robot after 250 s (170 s closed loop).
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up and constraining it). The robot stops moving in this case and switches
back to its original mode of oscillation when it is released, demonstrating the
robustness of the learned feedback controller, corresponding to my simulation
results.

This experiment is a first demonstration of a simple and robust feedback
control strategy implemented in both hardware and simulation for this class
of untethered tensegrity robots. Additionally, this result shows the usefulness
of tension sensors for tensegrity robot control. These PRC experiments are
part of a continuous effort to develop low-level controllers for compliant
robots that maximally exploit the robots’ proper dynamics, and which allow
to mitigate stringent sensor requirements. Many variations and extensions
of the hardware experiment presented were discussed in Chapters 4 and
5. Only the fundamental result from Chapter 4 was reproduced as priority
was given to the simulator validation experiments. The simulator validation
results allow control strategies for the new robot platform presented in the
next chapter to be developed in parallel to the hardware.Note that none of
the experiments detailed in Chapters 4 or 5 make more assumptions about
the hardware capabilities of ReCTeR than those needed for the experiment
successfully reproduced here, except for the duration of the experiments.

6.6 Conclusion

ReCTeR, a compliant and untethered tensegrity robot, was introduced in
this chapter. The design goals made it clear that this robot was designed
to be a unique platform that significantly advances upon prior actuated
tensegrity designs. As shown in the experimental section, the simulators were
successfully validated by comparing the motion capture data of ReCTeR with
simulation results. In addition to this, the basic control setup described in
Chapter 4 was transferred to hardware to verify the statements made about
Physical Reservoir Computing in simulation.

It might have taken the reader by surprise that only minimal attention
was given to locomotion results. This was a deliberate choice as ReCTeR’s
capabilities have been sufficiently demonstrated and I decided to focus on
the hardware and software development of SUPERball. SUPERball is a
tensegrity robot under development at the NASA Ames Research Center
and its design has to a large extent been inspired by ReCTeR. The next
chapter revolves around this work.





7
SUPERball: Tensegrity for

Space Exploration

In this last chapter, I present the work performed in collaboration with the
Intelligent Robotics Group at the NASA Ames Research Center. I had the
opportunity to visit the Intelligent Robotics Group between June 2013 and
January 2014 to collaborate on the design of the SUPERball platform. As
such, most of the work discussed in this chapter is the result of the joint
efforts of the tensegrity team at NASA.

In particular, the mechanical designs and electronics were developed in
collaboration with Jonathan Bruce (University of California, Santa Cruz/U-
niversities Space Research Association) and Andrew Sabelhaus (University
of California, Berkeley). For the controls and simulations, Atil Iscen (Oregon
State University) and Jérémie Despraz (Ecole Polytechnique Fédérale de Lau-
sanne) were my prime co-workers. Significant input also came from In Won
Park (NASA Ames Research Center/Oak Ridge Associated Universities) and
the team leads Vytas SunSpiral (NASA Ames Research Center/SGT Inc.)
and Adrian Agogino (NASA Ames Research Center/University of California,
Santa Cruz). To reflect that this chapter is the result of a collaborative effort,
I will use the first person plural.

SUPERball (an acronym for Spherical Underactuacted Planetary Explo-
ration Robot) is a next generation tensegrity robotics research platform. It
is a terrestrial research prototype for concept mission development on Earth.
While it incorporates various design aspects of ReCTeR, the main focus is
different. ReCTeR is a prototype and proof of concept for locomotion and
sensing in compliant tensegrities. SUPERball is a robust, modular and high
powered platform aimed at dynamic locomotion and extensibility. This dif-
ferent focus is seen at all levels of the design. Significantly more importance
is given to ease of assembly, safety factor, material selection. . .

I will begin this chapter with an overview of the anticipated advantages
of tensegrity robotics for space exploration (Section 7.1). Next, I go over
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some of the lessons learned from ReCTeR for robust tensegrity robot designs
(Section 7.2). This leads to the mechanical and electronic design in Section 7.3.
The mechanical design section starts with an overview of the design goals.
Before presenting the conclusions (Section 7.5), I provide an overview of the
various control strategies for SUPERball (Section 7.4). As the full robot
is being manufactured at the time of writing, the control strategies are
restricted to simulation results.

7.1 Tensegrities for Space Exploration

Figure 7.1: Mission scenario – Tightly packed set of tenseg-
rities, expand, spread out, fall to surface of moon, then safely
bounce on impact. The same tensegrity structure which cush-
ioned the landing is then used for mobility to explore planetary
destinations.

NASA mainly sponsors research into tensegrity robotics through funding
from the NASA Innovative Advanced Concepts program (NIAC). Initial work
within the context of this NIAC project [1], has shown that the controllable
compliance and force distribution properties make for reliable and robust
environmental interactions, such as those involved in landing and surface
mobility during NASA missions. The initial financial backing for this research
was provided in 2012 in the form of NIAC phase 1 funding awarded to Adrian
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Agogino, Vytas Sunspiral and David Atkinson. In 2013, the funding was
renewed for an additional two years in the form of a NIAC phase 2 award.
The project was one out of only six projects obtained this renewed support1.

A key goal for this work at NASA is to develop a tensegrity probe in which
the tensile network can be actively controlled, enabling compact stowage for
launch followed by deployment in preparation for landing. Due to their
natural compliance and structural force distribution properties, compliant
tensegrity probes can safely absorb significant impact forces, enabling high
speed Entry, Descent, and Landing (EDL) scenarios where the probe itself
acts much like an airbag [167]. However, unlike an airbag which must be
discarded after a single use, the tensegrity also provides rolling mobility
(Figure 7.1). This motion maintains the structure’s original ability to safely
absorb impact shocks, such as those that might occur during exploration
of a planetary surface. This enables compact and lightweight planetary
exploration missions with the capabilities of traditional wheeled rovers, but
with a mass and cost similar to a stationary probe. As a result of the dual use
of the structure, a tensegrity mission can have a high mass fraction between
science payload and overall weight (as measured at atmospheric entry.) This
leads to less expensive missions, or new forms of surface exploration that
utilize the tensegrity’s natural tolerance to impacts [167].

These two aspects — compact stowage and airbags — have been crucial
to earlier missions and mission concepts. For example, the Apollo 15 Lunar
Roving Vehicle had an intricate stowage mechanism (Figure 7.2), which had
to be deployed by the astronauts on the lunar surface.

Airbags were used to facilitate the landings of the Mars Pathfinder and
Mars Exploration Rover (Figure 7.3). Note that these airbags were made
out of Vectran, the same material used for the spring-cable assemblies of
SUPERball (Section 7.3) [76]. In this spirit, various soft robot prototypes for
planetary exploration have been developed, most of which are either wind-
driven designs inspired by tumbleweed or airbag-like [4, 7, 65, 95]. Figure 7.4
illustrates various designs considered by a NASA Langley Research Center [4].
If we turn to biology, it can be seen that nature provides relatively few
examples of animals or plants using rolling as a main means of locomotion.
Notable instances are tumbleweed, the wheel spider and some caterpillars.
Some of these examples have led to capable robot designs [106].

Tensegrities do not exactly fit in any of these categories. Spherical
tensegrities behave similarly to airbags at impact and will roll like a ball
when made sufficiently stiff. They can also crawl at lower stiffness, which is of
interest for rough terrain locomotion. At moderate and low stiffnesses, they

1The list of NIAC projects is available at http://www.nasa.gov/content/
niac-2013-phase-i-and-phase-ii-selections/.

http://www.nasa.gov/content/niac-2013-phase-i-and-phase-ii-selections/
http://www.nasa.gov/content/niac-2013-phase-i-and-phase-ii-selections/


Figure 7.2: The Apollo 15 Lunar Roving Vehicle in its folded
stated (Credit: NASA).

Figure 7.3: Left: Testing of the airbags for the Mars Pathfinder.
Right: Deflated airbags of the Mars Pathfinder after landing in
Ares Vallis in 1997 (Credit: JPL/NASA).

Figure 7.4: Prototypes of tumbleweed like structures for space
exploration by NASA Langley [4] (Credit: NASA).
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can conform to and grip the terrain, which differs from the rolling locomotion
at higher stiffness. In addition to this, tensegrities are open structures, which
allows the scientific instruments to directly interact with the environment.
This shows that tensegrities are versatile systems, which can combine the
advantageous properties of various types of structures.

7.2 Lessons Learned from ReCTeR

While ReCTeR exceeds its design goals — sensor feedback, locomotion and
folding — it has a number of limitations, which prevent it from being used
as a general modular tensegrity robot platform.

First, the lightweight design cannot transport any significant scientific
payload, which is a major feature for any planetary exploration mission. For
example, initial calculations showed that the scientific payload could repre-
sent up to 50% of the atmospheric entry mass for a tensegrity mission [167].
In practice, this means that a considerably heavier robot is required to
transport a meaningful payload.

The Mars Science Laboratory has a scientific payload (rover mass with-
out mobility equipment) of 723.4 kg [101]. This is an extreme example and
beyond the scope of the NASA Innovative Advanced Concepts project. How-
ever, significantly smaller scientific payloads have carried out fruitful projects.
For example, the CubeSat picosatellites have a mass of up to 1.33 kg and
have provided researchers the possibility to quickly design and deploy (in
under 2 years) scientific equipment in space [31, 129]. Our current aim is
therefore to design a robot capable of transporting a payload of this order of
magnitude as it demonstrates the ability to carry a useful scientific payload,
while allowing for testing in a normal laboratory setting. Furthermore, the
possibility to fold tensegrities for long-term storage allows to launch multiple
devices each carrying a reduced scientific payload.

In addition to this, the internal volume (the void between the bars) of
ReCTeR is small (approx. a cube with 0.5m sides) and it therefore makes
sense to construct a larger robot to allow for reasonably sized payload. In fact,
icosahedron tensegrities have advantageous scaling properties as increasing
the length of the bars does not significantly influence the total mass of the
structure (because the mass is concentrated in the end caps).

The exposed spring design of ReCTeR becomes a safety issue when in-
creasing the robot’s mass (and thus spring tension). It is also difficult to
mechanically limit the maximum spring extension to prevent plastic defor-
mation (e.g. in case of a heavy external load). SUPERball will therefore
feature an encapsulated spring design, which overcomes both problems and
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simplifies assembly.
Robustness was not a primary design goal, but the prototype turned

out to be more robust than expected. Extensive experiments (drop tests,
rolling, reassembly and folding) have not resulted in any major mechanical or
electrical failure. In future designs, we will aim for even more modularity and
decentralization, as a failure of a central module will now result in the failure
of two actuators. We also aim to implement part of the control algorithms
(e.g. CPG generation) locally, as to enable robust locomotion even in case
of temporary communication failure. ReCTeR is modular in the sense that
the bars can be rearranged and the electronic and mechanical designs allow
for differently sized robots. However, the modularity is predominantly a
construction feature. It is not trivial to exchange a failing end cap or replace
a sensor.

ReCTeR is capable of dynamic locomotion, but has to achieve this by
making use of the elastic potential energy stored in the springs. As our
calculations show that almost all parts of a tensegrity robot scale favorably
in terms of specific strength, our goal is to obtain a final power-to-weight
ratio about four times higher in SUPERball (±100Wkg−1 vs. 25Wkg−1

for ReCTeR). This allows for locomotion and manipulation experiments in
any situation and state (i.e. outside an energy efficient regime).

7.3 Design

In order to develop SUPERball from ReCTeR’s design limitations as well as
our need for rapid experimentation of various tensegrity configurations and
morphologies, we came up with a modular tensegrity platform to research
large scale robotic tasks; e.g. a tensegrity planetary probe to explore Saturn’s
moon Titan.

7.3.1 Design Requirements
We obtained design requirements through an iterative approach involving
NTRT simulator (Section 2.8.2) and the ReCTeR robot. As we recently
validated our NTRT simulator by experimental validation with ReCTeR [21],
we can now quickly evaluate various tensegrity configurations in simulation
to find optimal mechanical design goals. Next to the NTRT simulator, we
also incorporated results obtained with the Euler Lagrange solver based on
Skelton’s work [157].

The design requirements obtained from the NTRT simulations are given
in Table 7.1. We are confident that a tensegrity robot achieving the following
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conditions will be capable of dynamic locomotion, as shown by our evaluation
of control policies in Section 7.4.

Table 7.1: SUPERball Design Requirements

robot lstrut ∆l kpassive Ctrl. freq. max τ
ReCTeR 1m 0.3ms−1 28.4Nm−1 40Hz 0.03Nm
SUPERball 1.5m ≥0.3ms−1 ≥500Nm−1 100Hz ≥3Nm

In Table 7.1, lstrut is the length of a strut, ∆l the rate of of length change
(the change in rest length of the inline spring) of an actuated cable and max τ
the maximum spindle output torque.

7.3.2 Mechanical Design
SUPERball is an icosahedron tensegrity structure comprised of 12 motors at
the end of the robot’s 6 rods. Each rod is comprised of three main elements,
2 modular end cap assemblies containing all the mechanical and electrical
systems and a connecting aluminum 2024 tube as a support structure. As
shown in Figure 7.7, SUPERball’s current target configuration is the standard
tensegrity icosahedron pattern.

The main structural elements of the end caps were kept simple and split
up into sections. This enables each end cap to be modular, as well as self
contained, so that the end cap may be removed from the connecting rod as
one whole unit. The end caps are held onto the connecting rods by a tube
collar for easy removal with a single bolt. There are 5 sections to the modular
end cap which are, a spring holder, battery holder and power distribution,
motor and electronics element, cable actuation section, and a ground contact
section. These sections as they are designed for SUPERball are shown in
Figure 7.5. Each of these 5 sections can be removed from the rod as a full
sub-assembly and replaced with a new component, increasing the versatility
of each rod.

We will now discuss the main mechanical components (starting from the
left in Figure 7.5). An overview of the electrical aspects is given in the next
section.

7.3.2.1 Motor Assembly

Figure 7.6 displays the motor assembly, which at its core is similar to
ReCTeR’s. However, the new design is significantly more robust and versa-
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Figure 7.5: SUPERball end cap design. Each end cap is fully in-
dependent. A) CAD design B) Hardware prototype with wiring
and protective cap removed. The spring assembly (on the right)
slides into an aluminum (2024) tube connecting two end caps.
A single bolt is sufficient to secure the end cap on the tube.
The main structural components are made out of sheet metal
(2mm 6061-T6 aluminum). Some load bearing parts such as
the cable guide bracket use 7075-T7 (the top part of the cable
guide bracket is clearly visible in B). Note that the actual cables
are not shown, except for the actuated wire in the hardware
prototype. In the current design, two cables run through the
cable guide and along the battery and finally into the spring
assembly inside the tube. Each has two main wireless interfaces:
One provides high bandwidth with variable latency, the other is
a low latency network for inter strut communication. A CAN
bus provides a robust 1Mbit/s communication line between the
various circuit boards. To ensure safe operation each end cap
has a wireless and physical kill switch.
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tile. As on its predecessor, the motor axes are secured by two ball bearings.
One is press fitted into the plate on top of the spindle and one integrated
into the gear box.

The spindle is machined out of POM and has a diameter of 0.03m. A
1.4mm Vectran cable (Cortland 7012 Vectran HT, Type 150) with a breaking
strength of 2227N attaches to the spindle. It is important to prevent tight
bends (knots) of the cable, as this reduces its strength. Therefore, the cable
can slide into the spindle from the side and come out on top of the assembly
(underneath the protective rubber cap). This allows to safely clamp the cable
without damaging it. Note that the mass of the cable is only 1.7× 10−3 kg/m,
which implies that the mass of the cables can be neglected in most simulations
(it represents around 0.5% of the total mass of the robot). Vectran has lower
creep than Dyneema (used on ReCTeR), but without protective coating it
is sensitive to UV light [50, 149]. It has been successfully used in space
applications (e.g. Mars Pathfinder airbags) due to its excellent thermal
properties.

To further protect the cable and prevent it from getting stuck, the spindle
is embedded into two smooth POM surfaces, with a 0.5mm gap between the
spindle and the surfaces. This allows the cable to slide smoothly in almost
any direction without excessive friction. A torque sensor is integrated in the
bottom sliding surface. Currently, this sensor is mounted on a rigid, cross-
shaped motor mount. Each actuated spring-cable assembly is effectively a
series elastic actuator, because it attaches to a spring inside another bar.
As such, it is in theory not needed to provided an elastic element on the
motor mount. However, it is possible to replace this basic torque sensing
element with a torsion spring design (e.g. as featured on the Robonaut [39]
or the COMAN humanoid robot [179]). Another anticipated extension is
a ratcheting mechanism to make it possible to mechanically disconnect the
actuators from the spring-cable assemblies. This can be useful for drop tests
or long-term stowage.

The assembly is powered by a 100W brushless DC motor (Maxon 386674,
EC 22mm) reduced by a 109:1 planetary gear box (Maxon 370784). The
optical encoder is a Maxon 201940. In combination with the given spindle
specifications, the assembly is rated up to 200N of cable tension. As this is
the first hardware iteration of SUPERball, we chose to optimize torque over
speed. This gives us significant headroom to explore the robot’s behavior
with stiffer springs or under loading. More precisely, the nominal output
speed (cable retraction) is 0.42ms−1 with a cable tension of approximately
140N. However, the large output torque poses a significant safety risk and
we have taken various measures to allow for safe operation of the device.
This is explained in more detail in the electronics Section 7.3.3.
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Figure 7.6: Close-up of the motor assembly. Left: CAD design
showing the additional attachments, the cable guide, the spindle
etc. Right: Top view of a motor assembly with the spindle and
the cable surfaces removed. Strain gages are glued onto the
arms of the cross-shaped motor mount for torque measurements.

A total of three circuit boards fit onto the motor bracket: the motor
driver, a BeagleBone Black and the sensor PCB.

7.3.2.2 Battery Holder & Shaft Collar

The battery holder sits underneath the motor bracket and as it name implies
it hosts the batteries of the end cap. It is a simple design, with one open
side to allow easy main battery replacement. The battery holder also hosts
the power distribution PCB. This circuit board provides battery protection
and failover as well as wireless and wired kill switches. The main battery is
a 3Ah 22.2V lithium polymer battery and it is the heaviest component in
the end cap (approximately 0.5 kg). The backup battery is a small, single
cell (3.7V) lithium polymer battery. This battery allows for hot swapping
of the main battery. The expected battery life is between 30min and 1 h.

7.3.2.3 Cable Guides & Attachments

While one cable attaches to the motor spindle, the remaining cables need to
be attached to a spring inside the bar (explained in next section). Vectran
is used for the part of each cable running in between two bars and on each
spindle. However, Bowden cable connects the Vectran cable to the springs.
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The reason for this is that in between the bars, lightweight, flexible cable is
desired, which can be tightly wrapped around a spindle. On the contrary,
the cables running inside a bar should be easy to guide and should maintain
their shape when slack. In practice, we use common bicycle brake cable,
which has an ultimate tensile strength similar to Vectran.

Each motor bracket has two PTFE tubes slightly protruding from each
side. These tubes guide the Bowden cables downwards into the assembly.
The tubes are in fact two nested tubes, which allows the inner tube to guide
the cable, while the outer one protects the inner tube and friction locks onto
the motor bracket. The Bowden cables run alongside the motor and then
go through (while crossing) the opening between the motor bracket and the
battery holder. In the battery holder, the cables run in a protective sleeve
along the sheet metal (at opposite sides) and finally cross again while going
into the springs assembly through the shaft collar.

It is also possible to attach cables directly to the motor bracket, which
is useful to suspend a single bar or the robot for testing. This is shown on
the left part of Figure 7.6.

7.3.2.4 Spring Assemblies

A lesson learned from ReCTeR was that externally exposed springs are not
ideal for a robotic system. The exposed springs get caught on objects and the
assumption of massless cables can no longer be applied. On the modular end
cap for SUPERball, an enclosed compression spring system was developed
to alleviate these issues. Compression springs were chosen so that during an
unknown impact, the springs would not plastically deform. For SUPERball,
a spring with a spring constant of 613Nm−1 is attached to a passive cable
element and a 2850Nm−1 spring is attached to an actuated cable. The
passive spring has a much higher compressive range to allow for pretension
to be instated into the passive springs. A working prototype of our spring
holder system can be seen in Figure 7.7. Note that this design allows to stack
springs with different characteristics, to easily add damping or to increase
the number of compliant spring units per end cap.

A spring is attached to a cable coming from another bar running through
the end cap (as explained in detail before). In our current design with two
spring units per end caps, the brake cable of the bottom one (the short spring
in Figure 7.7) runs through the top spring. Each spring assembly is mounted
onto a custom compression force sensor, which provides feedback about the
current spring force or equivalently the tension on the cables connecting the
bars.



Figure 7.7: SUPERball design characteristics. Top right: Im-
pression of SUPERball in deployed state. The orange/green
cables show a connection pattern actuating half of the equi-
lateral triangular faces. Top left: Internal strut design with 2
compression springs for two independent spring-cable assemblies.
Brake cables run into the bar and attach to one end of a spring.
Pulling the Vectran cable attached to the other end of the brake
cable, compresses the spring. This results in a compliant assem-
bly with no exposed springs. Bottom left: Compression force
sensor design. Bottom right: Close-up CAD design of a spring
assembly (brake cables not shown).
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7.3.3 Electrical and Sensor Design
SUPERball was developed with distributed controls in mind. Each rod end
cap houses multiple circuit boards: a motor driver, a sensor and commu-
nications board, an ARM board providing processing power and a power
distribution board. We anticipate further integration of these circuits in
future hardware revisions, but favored discrete boards — which allow for
partial upgrades — for the first iteration.

The boards are interconnected by a 1Mbit/s CAN bus, which allows for
loose coupling and thus increased flexibility. We opted for this bus as it has
a proven industrial and automotive track record and is widely supported on
both microcontrollers and microprocessors. Other buses are less robust or
don’t provide sufficient bandwidth. While newer robust protocols such as
EtherCAT provide significantly higher bit rates, they are not yet as widely
supported on embedded devices as the CAN bus. Furthermore, the CAN
bus bit rate is sufficient for signalling and transport of sensor values within
an end cap. We use CANopen as the higher level protocol to transfer state
and control commands. This protocol is supported by various manufacturers
of high quality motor controllers and sensors (e.g. Maxon EPOS and Elmo
controllers). As some newer interfaces can transport CAN bus protocols (e.g.
CANopen-over-EtherCAT), the choice is also future proof.

A separate power distribution board was designed to support three main
functions. The primary function is to safely switch the connection between
the main battery and the motor driver. This is achieved by integrating two
hardware kill switches and the ability to enable or disable the power in soft-
ware (but not override the hardware switches). The wireless kill switch is
based on a standard 433MHz receiver, which is fully independent of the mi-
crocontroller or other components on the power board. As pushing a button
on a compliant robot can be difficult, the wired kill switch instead uses a
lanyard which breaks the circuit when pulled. This design is commonly used
on speed boats and motor cycles. The second function is to provide a stable
5.5V line to the other boards. More precisely, the power distribution board
provides up to 3A per line (4A total). The choice for 5.5V allows to use
small and low-cost linear regulators on the other boards. The board can inde-
pendently switch 4 5.5V outputs. Finally, the PCB provides measurements
of the current draw and power consumption of the actuator (using an Allegro
ACS711 bidirectional Hall current sensor) and the 5.5V lines. The board is
controlled using a 70 MIPS Microchip microntroller. All communication and
power lines use positive-locking connectors (Molex MicroClasp) to prevent
faulty connections due to vibrations and shocks. Note that the choice for a
single supply voltage, connector type and communication bus significantly
simplifies the wiring.
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The motor driver is a custom BLDC/PMSM driver board capable of
block commutation and sensorless sinusoidal control. It is based on the
DRV8303 chip from Texas Instruments which is controlled by a 70 MIPS
microcontroller from the Microchip dsPIC33EP series. As can be expected,
this microcontroller has significant headroom to implement complex control
strategies. In fact, the same microcontroller series is used on all boards to
allow code merging in case further integration of the electronics is desired.
The board has been tested with brushless DC motors of up to 200W.

The third PCB on the end caps is the sensor board, which hosts the
main sensor equipment and provides a wireless interface. The main sensor
equipment consists of a high precision ADC (24 bit Analog AD7193 in com-
bination with the AMS AS1359) for the strain gages and a 9 DOF inertial
measurement unit (InvenSense MPU6000 and Freescale MAG3110). The
ADC provides the board with up to 8 pseudodifferential analog channels. In
addition to this, the board hosts a wireless interface using the XBee pinout.
Currently, XBee WiFi modules are used, but we anticipate to replace these
with a lower level wireless interface (e.g. based on the nRF24l01+ or TI
CC2520 chipset). The goal is to have a high bandwidth, variable latency
wireless channel (explained next) in tandem with a lower bandwidth, but
fixed, low-latency wireless interface. This allows for periodic transmission
of all sensor data to an external observer over the high bandwidth interface,
while providing a signalling at a latency similar to the local CAN network.

Finally, the last board is an off-the-shelf BeagleBone Black ARM based
single-board computer. This board has a 1GHz ARM Cortex A8 processor
and runs the Ångström Linux distribution. We opted for this board as it low-
cost, physically fits the end cap design and has an extensive user community.
A USB WiFi stick is plugged into the USB board and acts as the high
bandwidth channel to and from the end cap. The sensor board is designed in
the shape of a cape (extension board) for the BeagleBone. Both boards thus
simply slide onto each other. The sensor board controls the power to the
BeagleBone, to allow for remote power cycling. Note that this is one of the
reasons why a second wireless interface is available on a different board. The
BeagleBone connects to the CAN network using a physical interface hosted
on the sensor board.

A standard WiFi network is used to remotely control the robot. The
CanFestival CANopen implementation allows to use the same codebase on
the microcontrollers and the Linux boards. High bandwidth sensors (e.g. a
camera) can directly connect to the BeagleBone to access the WiFi network
and the CAN bus is thus primarily used for signalling and transmission of low
bandwidth, low latency data. On a higher level, ROS (the Robot Operating
System) is used to provide a convenient interface to the robot.
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7.3.4 Modularity
SUPERball’s current design configuration is the tensegrity icosahedron with
12 actuated spring-cable assemblies. However, one of our future objectives
is to experiment with new actuator designs (e.g. two actuators per end cap,
ratcheting devices. . . ). This is made possible by a distributed mechanical,
electrical and controls design.

On the mechanical side, this is achieved by allowing the end caps to
easily slide into the tube connecting to another end cap. An end cap can be
released with a single bolt. Electrical separation is obtained by integrating the
batteries in the end caps. Furthere, it is straightforward to upgrade different
parts of the electronics, as the connections between the circuit boards is
limited to a CAN bus and power lines. Finally, the controls can be fully
distributed because each end cap has independent wireless communication
interfaces and processing power.

7.4 Controls Overview

As the first iteration of the hardware of a single SUPERball bar has only
recently been completed, no hardware experiments besides static loading
and sensor tests are currently available on the SUPERball platform and this
section therefore focuses on simulation results. The main idea is to validate
the simulator using experiments on ReCTeR (Chapter 6) and then scale the
robot to the size, actuation power and mass of SUPERball. This allowed to
estimate the design requirements of SUPERball, by developing and testing
multiple control strategies in simulation. Moreover, this makes it possible to
explore the most appropriate current and future sensor equipment, as well
as the behavior of the structure with a payload. This section provides a
qualitative description of the most promising control results we obtained.

The common assumption in these control methods is that the full outer
shell can be actuated (24 actuated spring-cable assemblies), while the hard-
ware is currently limited to 12 motors. Furthermore, the first control tech-
nique (Section 7.4.1) discusses an actuated payload. ReCTeR demonstrated
that underactuation doesn’t necessarily limit the locomotion capabilities of
a tensegrity robot. The main reason to initially develop control strategies
for a fully (i.e. all tensile members) actuated robot is that it simplifies the
control problem: The structure is fully symmetric and rolling from any equi-
lateral or isosceles triangular faces can be obtained with the same controls.
The main types of knowledge which can be obtained from these fully actu-
ated simulations are: insight into the behavior of different control methods,
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bounds on the energy consumption and forces in the system, behavior of the
robot under member failure, required control frequency and communication
bandwidth. In this context, it is worth mentioning that hardware extensions
of the end caps to two actuators are currently being studied at the University
of California, Berkeley.

The results presented here are primarily due to Atil Iscen (Oregon State
University) and Jérémie Despraz (EPFL). More precisely, I primarily pro-
vided input about the physical constraints, available sensor information,
control frequencies and interpretations of the results. I therefore refer to
Atil Iscen’s PhD dissertation and papers, Jérémie Despraz’s master’s the-
sis and a recent paper of the NASA tensegrity group for in-depth discus-
sions [21, 86, 87, 88, 89].

7.4.1 Bio-Inspired Controls

The goal of the first three related techniques is to control an icosahedron
tensegrity structure with a payload. State feedback will be used to increase
the rolling performance of the tensegrity robot, which is simulated with the
NASA Tensegrity Robotics Toolkit. The idea behind the control laws is to
create a torque by moving the center of mass of the robot with respect to the
ground contact surface, in order to cause the robot to roll as illustrated in
Figure 7.8. This motion is achieved by a two layer control architecture: The
robot’s heading and speed is controlled by the displacement of the central
payload using the inner spring-cable assemblies, and the motion is simplified
by actuating the outer shell. The outer shell refers to the 24 spring-cable
assemblies of the standard icosahedron configuration, while the inner or
payload members connect the payload to the tensegrity structure.

Three control approaches are tested for the inner spring-cable assemblies:
reactive controls, inverse kinematics (IK) based controls, and CPG-based
controls. The outer spring-cable assemblies are controlled with a hand-tuned
approach. Actuation of the outer shell reduces ground contacts and not
directly influences heading or speed. This affects the motion in several ways.
First, it allows the creation of greater torques with the same payload dis-
placement. Secondly, it makes the rolling behavior of the structure smoother,
by preventing discontinuities due to excessive ground contact.

For each of the control approaches, inputs were taken as functions of
the robot state. The height of each strut is computed using simulated
omnidirectional distance sensors located at the end of each rods. The height
assigned to each spring-cable assembly is computed as the average of the
two end caps’ height. The control for the outer shell cables was designed
to tighten the bottom part of the structure when rolling, changing the lever
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Figure 7.8: Left: Standard icosahedron configuration as used
for the current SUPERball hardware. Center: Icosahedron con-
figuration with payload suspended by 12 spring-cable assemblies.
Right: Regular icosahedron tensegrity shape with central pay-
load in the NASA Tensegrity Robotics Toolkit (NTRT). The
triangular contact surface with the ground, highlighted in green,
creates a reaction force N that, at rest, balances the weight of
the structure, represented on the figure by the red arrow mg. A
torque is created on the whole structure when a displacement
of the center of mass from its rest position occurs.

arms of the gravitational force from the robot’s center of mass, such that
the robot does not require as much force to induce a roll. Typically in the
presence of a slope, the reduction of the ground contact surface is sufficient
to cause the robot to roll down the slope. In order to take this into account,
we added a measure of speed, which is computed as the dot product between
the center of mass position and the robot’s overall heading direction vector.
With this method, the speed is a scalar number and its sign depends on the
heading of the tensegrity (positive if heading in the desired direction and
negative otherwise). It can thus be used as feedback to influence the spring
actuator command. The rest lengths of the shell spring-cable assemblies are
computed using the following actuation rule:l̇0,i = ws

(
l∗0 + min(h2

i , h
2
0)− l0,i

)
, speed ≥ 0

l̇0,i = ws
(¯̀− l0,i) , otherwise

(7.1)

where hi is the height of spring-cable assembly i as measured from the
distance sensors, l0,i is its current rest length, l∗0, h0 and ¯̀ are constant
parameters and ws ∈ R+ accounts for the time scale at which length correc-
tions occur. The constants l∗0 and h0 represent the offset rest length of the
spring and the maximum height measurement, respectively. The parameter ¯̀



166 7 SUPERball: Tensegrity for Space Exploration

represents the default rest lengths of the springs that, if given as a command
to all motors, puts the tensegrity in a stable position on the ground. This
control law will contract the side of the robot near the ground when the
robot is moving in the desired direction. The input and output values of the
above control law are updated at each time step of the simulator. Impedance
control, which was adapted to tensegrities previously [131, 173], is used to
modify the spring-cable rest lengths.

7.4.1.1 Reactive Controls

The first technique for actuation of the inner payload spring-cable assemblies
was the use of reactive controllers. We note that the only controllable
parameter is the length of a cable. The variables l0,i here are the rest
length of the inner springs. The global heading direction in a chosen inertial
reference frame is defined by the unit vector v and the orientation of each
spring in this same reference frame is represented by the vector vi. For each
inner spring-cable assembly we use the dot product di = v · vi as feedback
to control the position of the payload as follows:

l̇0,i = (l∗0 + diγ − ‖ni,0 − ni,1‖)wr (7.2)
l0,i(0) = l∗0 (7.3)

where the weight wr determines the reactivity of the system and γ < 0 is
a fixed parameter. The vectors ni,0 and ni,1 contain the coordinates of the
end caps to which the spring-cable i is attached. Thus, without any external
perturbation, the system has a stable equilibrium position at l∗0 + diγ. The
rest length of the spring-cable assemblies of which the orientation aligns
with the global heading, is reduced. Vice versa, the springs pointing in the
opposite direction are elongated. The global result is a displacement of the
payload in the direction of the heading vector as shown in Figure 7.9. Note
that the heading direction v can be chosen arbitrarily and can be adjusted
dynamically. This method resulted in stable and smoothly rolling gaits
allowing the tensegrity to roll up to 1ms−1 over flat terrain. The robot
could also handle slopes up to 8◦, bumpy terrain, obstacles and collisions.

The main disadvantage of the reactive method is the type and amount
of sensor feedback required to implement this approach in hardware. This
issue is addressed by the control methods presented next, which are based
on the same physical principle but require less feedback information.
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Figure 7.9: computation of the new rest lengths according
to the spring-cable assemblies’ individual orientations ~vi (time
t(n−1)). Length modification is indicated by the colored lines,
dashed red if reduced and green if elongated. The resulting
effect is a displacement of the central payload in the desired
direction ~v (time t(n) = t(n−1) + dt).

7.4.1.2 CPG Controls

Central Pattern Generators (CPGs) have been successfully used in past
tensegrity systems [12]. Such controls are a feasible alternative to the reactive
controllers that enable the generation of regular motion patterns. For this
control, full state information is used to generate a smooth motion under
the reactive controls, and then the resulting periodic commands were stored
as a stable limit cycle of a CPG. Once this process is over, the tensegrity
can be driven by the CPG output with much less feedback. We used an
adaptive frequency Hopf oscillator [145] during the learning phase where the
tensegrity is driven by the reactive controls. This method has the advantage
of requiring minimal feedback and thus only a small amount of computations.
However, it is important to note that the dynamical system runs on a much
larger time scale than the perturbations disturbing the system. A tensegrity
driven only by a CPG would then only, in the best case, have a stable rolling
gait on a flat, obstacle free terrain. As a result, it is necessary to include
also a second control method that can work on this smaller time scale and
give an appropriate response to these external perturbations.

7.4.1.3 Hybrid CPG - Inverse Kinematics Controls

The final control method evaluated here for the actuation of the inner spring-
cable assemblies is a hybrid technique with inverse kinematics (IK). The
position of the central payload p = (nx, ny, nz) is defined as a function of
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the inner cable lengths l = (l1, ..., l12).
The outputs of the IK algorithm ξ = δl0,∞ represent the length correc-

tions that have to be made to reposition the payload at the desired location.
Here δl0,∞ is the solution of an iterative algorithm detailed in [21] to generate
a target displacement ∆p of the payload. The outputs ξ can be used together
with the adaptive frequency oscillator as presented in Section 7.4.1.2. This
approach is inspired by two previous works by Ajallooeian et al. [2] and Gay
et al. [59].

While the pure CPG implementation does not allow any steering control
of the robot, this implementation enables the guidance of the robot on
a desired trajectory on flat terrain (see Figure 7.10). This is realized by
modulating the CPG implementation of the previous section by adding the
correction ξ to the CPG outputs.

Figure 7.10: Trajectory of the tensegrity (top view). The black
curve represents the trajectory while the robot is driven by the
reactive control algorithm and the CPG is in the learning mode
(50 s). The motion is regular and the heading is maintained
throughout the whole period. The yellow and red trajectories
represent the path traveled once the CPG controller takes over
(40 s). When the CPG is coupled to the height signal and
receives inputs from the second order inverse kinematics algo-
rithm (red curve), the resulting trajectory is a long and relatively
straight line extending well the reactive control.

Table 7.2 provides a summary of the results obtained with the different
control strategies over regular flat terrain.

Note that the results do not take into account the trajectory of the path
and, as a consequence, even if the distance traveled using the CPG controller
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reactive CPG Hybrid
average speed [m s−1] 1.00 0.50 0.38
complex terrain Yes No No

Table 7.2: Bio-inspired control strategies summary

without any trajectory control is larger than with the hybrid control, the
quality of the path is not as good (see e.g. Figure 7.10). Interestingly, we
observe that the stable gait pattern obtained in simulation is a sequence of
contacts defined as energetically optimal by Koizumi et al. [98] for a tensegrity
icosahedron. With the current implementation, only the reactive controller
manages to get the robot to roll in an efficient way over complex terrain
and obstacles. To the best of our knowledge, this last result was the first
implementation of a tensegrity robot controller demonstrating such capabil-
ities. Figure 7.11 illustrates these results in the NTRT simulator. Closed
loop controllers learned using Coevolutionary algorithms now exceed the
performance reported here, but currently still require a significant learning
phase [86] and Section 7.4.3.

Experimentation showed that the hybrid controller’s performance is
highly sensitive to the choice of some parameters appearing in the CPG
equations. As a result, future work will incorporate other methods to op-
timize the feedback data and to compute the corrections, in order to more
accurately navigate in complex environments. A good example of such an
improvement can be found in Gay et al. [60] where sensory information
is preprocessed by a Neural Network and trained using particle swarm op-
timization methods before being fed back to the CPG. Alternatively, the
Physical Reservoir Computing principle (Section 6.5.5) can also be a applied
for feedback computation in this case.

Figure 7.11: Examples of successful locomotion over complex
terrains such as slopes, bumps and obstacles
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7.4.2 Open Loop Rolling
Iscen demonstrated successful rolling locomotion of a tensegrity icosahedron
based on Coevolutionary learning techniques with the NTRT simulator [87].
In his scheme, each spring-cable assembly has a controller that evolves inde-
pendently from the other controllers (i.e., in independent pools), but coop-
eration is used to optimize behavior of the entire robot [132]. The objective
function for this maximization was set to be the distance traveled during a
fixed amount of time. The simplest implementation of this technique is an
optimization of open loop control signals that are only a function of time;
sinusoidal functions performed well [88].

More recently, the effects of different complexities and frequencies of
these open loop signals were analyzed. More precisely, we optimized step-
wise functions with varying numbers of via points, which allows for more
complex motor signals than the basic sine waves. This enables the study
of computational load and scaling properties needed to estimate power con-
sumption of various controllers, as well as to investigate effects of actuator
failure.

Figure 7.12 shows the main results of this work. In this case, optimized
rest length signals had four via points. The graphs demonstrate that con-
trollers exist for which the tensions generated in the structure are within
the mechanical limits. Furthermore, the average power consumption is an
order of magnitude lower than the actuator’s rated power output. Note,
that the power is approximated as the product of the velocity of an actuator
multiplied by the tension incident spring-cable assembly (averaged over all
actuators). This approximation only estimates the mechanical power, not the
electrical power. The electrical power draw will be higher, but the current
strut design has significant headroom (100W vs. ≈6W). A more detailed
analysis of these results will be presented in [89].

While these open loop controllers demonstrated basic rolling behavior,
they commonly fail in the presence of external forces or unexpected terrain
conditions. This issue is addressed in the next section, which presents a
simple rolling algorithm that uses ground contact sensors located on the
simulated end caps.

7.4.3 Closed Loop Rolling
We show the results of a new method for learning to roll by exploiting the
symmetry of the structure, combined with Coevolutionary algorithms. A
rolling icosahedron tensegrity can be considered as consecutive flops made one
after the other over its faces. For each specific flop, we study the movement
of a static structure standing on a base equilateral triangle (i.e. one of the
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Figure 7.12: Main results of the open loop control method with
piecewise linear functions as target spring-cable rest lengths. Co-
evolutionary learning is used to optimize the actuation pattern
of each of the 24 spring-cable assemblies. The method allows
to quickly test the behavior of the robot with arbitrary con-
straints, without relying on sensor data. The top graph shows
the learning curve, which illustrates that after approximately
5000 simulations, almost all controllers in the population suc-
cessfully achieve locomotion and a reasonable average velocity
on flat terrain (distance rolled in 1min). However, the second
and third plots are of more interest as they provide insight into
the mechanical requirements of SUPERball. The second plot
shows the tensions in the structure to be below the mechan-
ical limits. The third plot presents the mean power output
of the actuators. The power is approximated as the product
of the velocity of an actuator multiplied by the tension inci-
dent spring-cable assembly (averaged over all actuators). This
approximation only estimates the mechanical power, not the
electrical power (which will be significantly higher). A more
detailed discussion will be presented in [89].
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eight faces, as shown in Figure 6.2) and rotating itself over one of the sides
of this triangle. After this move, the structure ends on another equilateral
triangle, so that same move can be repeated to do another roll. This method
will enable the structure to move from one static position to another by
destabilizing the system to flop along one side of the equilateral triangles.

Although rolling is now simplified to one flop, the control problem remains
challenging. Every action performed by an actuator propagates through the
compliant, non linear system, which makes the problem complicated for
classic control methods. Coevolutionary algorithms are a natural fit to solve
controlling this compliant, non linear system [132].

As in the open loop method, the fitness function used is the distance
that the robot rolls over a fixed period of time. Using this experimental
setup, the coevolutionary algorithms optimized the move of a flop to achieve
smooth rolling when the policy is applied for a series of flops.

The advantage of a symmetric structure is that once we have learned a
controller for rolling in a single direction, the learned policy can then be used
for rolling in any direction. The robot can be controlled to go in a specific
direction using a series of flops over the closest edge of the base triangle.
Figures 7.13 and 7.14 show the result of a controllable learned rolling motion
with low tensions. Remark that the average and maximum tensions are
similar to the open loop results presented in the previous section.

The main goal of this section was to verify if a tensegrity robot based
on the proposed design parameters would be capable of dynamic locomotion.
We omit the details of the locomotion algorithm and Coevolutionary learn-
ing here, which is discussed in depth in Atil Iscen’s PhD dissertation [86].
Iscen also extends these results to different terrain conditions and swarms of
tensegrity robots.

7.5 Conclusion

This chapter presented ongoing work on SUPERball, a modular tensegrity
robotics platform aimed at planetary exploration. The current version of
SUPERball is a robust terrestrial robot, which will be used to study control
and payload protection aspects. The ReCTeR robot discussed in the previous
chapter, demonstrated untethered rolling, folding, and sensing capabilities
in a low-cost, safe, research prototype. SUPERball builds upon these results,
but the design approach particularly focuses on robust engineering, electron-
ics and software. As a result, SUPERball is much more a dynamic tensegrity
research platform than a single robot.

One of the main premises is that tensegrity robotics research is still at



Figure 7.13: Controllable rolling with a learned controller. Af-
ter learning a control policy, the symmetry of the structure can
be used to control the direction. The plot show the robot’s
center of mass. The zigzag results from the robot rolling over
a sequence of equilateral triangular faces.

Figure 7.14: Spring tensions for the trajectory in Fig. 7.13.
A relatively low average tension of 75N keeps the structure in
tension, with peak forces up to 200N due to the actuators.
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an early stage, which justifies and in fact calls for a robust and extensible
platform which allows researchers to adapt it to their specific needs. In
addition to this the SUPERball designs are made publicly available to the
degree allowed. Similar efforts have proven successful in other domains. For
example, the e-puck robot and the iCub are open source platforms targeted
at mobile/swarm robotics and human cognition respectively. Even though
none of these platforms is economical, they have been widely adopted in
academia.

Our future outlook for SUPERball is to demonstrate dynamic rolling
within a year and then focus on payload transportation and increased drop
test robustness. In parallel, we are studying extended end cap designs that
allow full actuation of an icosahedron robot.



8
Conclusions and Future

Perspectives

I touched upon a wide range of topics related to actuated tensegrity struc-
tures. However, the two subjects which stand out are the computational
aspects of tensegrities and how to build robots based on this design principle.
At the start of my PhD research, I was unaware of the existence of tensegrity
structures and my original goal was to investigate design principles for mor-
phological computation in a more general context. When I stumbled upon a
few examples of tensegrities in my search for highly compliant free-standing
structures, I quickly became intrigued by their at times counterintuitive
properties.

Most publications on tensegrity structures either focus purely on me-
chanical properties or instead disregard their mechanical design and just
consider them as a simulation object without addressing practical constraints.
Throughout this thesis, I have tried to find a balance between these perspec-
tives. This approach is suitable for robotics as future tensegrity robot designs
have to be accessible to both mechanical and computer science engineers.
An integrated approach of electronics, mechanics and controls is needed with
a common language. Therefore, I provided background information on the
mechanical aspects (stiffness, kinematics, form-finding. . . ), computational
aspects (e.g. Reservoir Computing) and control methods. This makes the
work accessible to readers from various fields and it is my hope that this
work may also indirectly advance the tensegrity robotics field by attracting
new researchers.

More than halfway through my PhD study, I received the great oppor-
tunity to contribute to a NASA project. This was a rather unexpected
application of tensegrity robotics, but the goals and methods quickly showed
to align with the objectives set out for my thesis. I discussed my contri-
butions to this project in the previous chapter, which thus shows how the
sometimes abstract methods from the earlier chapters map onto practical
applications in a new domain.
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In the next sections I first review the main results of this work, followed
by my conclusions. I then end my dissertation with a discussion of future
research directions.

8.1 Summary of Results

Tensegrity Statics and Dynamics I provided an overview of the statics
and dynamics of tensegrities in Chapter 2. A number of original methods
were introduced to:

• Optimize the shape of a tensegrity structure, to match a desired shape
as closely as possible;

• Tune the stiffness and behavior under deformation of a redundant
(multiple states of self-stresss) tensegrity.

Computational Aspects Chapters 4 and 5 discuss the computational as-
pects of compliant tensegrity robots. I show how simple, yet robust feedback
can be designed which exploit the computations available in the dynamics
of the structures. More precisely, Chapter 4 uses the Reservoir Computing
paradigm to use tensegrity robots as computational black boxes. The follow-
ing chapter focuses on Hebbian plasticity rules to find a suitable feedback
controller for tensegrity structures. Examples are provided for Recurrent
Neural Networks and tensegrity robots to illustrate their similarity from a
computational perspective. The key result is that Physical Reservoir Com-
puting can solve control problems by interpreting them as computational
tasks.

Hardware Designs Chapter 6 and 7 present two new tensegrity robot
designs. ReCTeR is an untethered, lightweight tensegrity icosahedron robot
with 6 low power DC motors. SUPERball is a tensegrity robot platform
developed at the NASA Ames Research Center. It is inspired by some of the
design features of ReCTeR, but SUPERball is larger, highly modular and
more robust. To facilitate dynamic locomotion the actuation power has also
significantly been increased.

Validation of Simulations Chapter 6 also presents a comparison of
simulation results and hardware measurements to validate the simulators used
throughout this work. To the best of my knowledge, this is the first time that
such a study has been performed. This allows to develop control methods in
simulation with reasonable confidence that they can be reproduced by robotic



8.2 Main Conclusions 177

hardware. Though care needs to be taken to prevent learning algorithms
from exploiting unverified properties of the simulated environment.

Control Methods Control methods are discussed at multiple locations.
First, the computational aspects were presented as closed loop control method
in Chapters 4, 5 and 6. In the final research Chapter 7, I also presented
alternative control methods for tensegrity robots.

8.2 Main Conclusions

Computational Tools Although classic control theory approaches have
resulted in powerful analytical tools, there is a certain appeal to black box
and computational techniques such as those studied in this work. The view
that a robot is but a hardware extension that allows a controller or software
agent to act in the physical world, is often problematic. Indeed, it is the
combination of the controller (mind) and hardware (body) that defines the
characteristics and behavior of an agent (embodied cognition).

Today we are faced with new types of soft robots and even hybrid systems,
such as artificial limbs. This creates a demand for new control approaches
that bridge the gap between hardware and controls. How can we build
and control robots that purposefully interact with their environment in
intrinsically safe ways, without requiring excessive computational resources?
The additional degrees of freedom of compliant and soft robots do not rule
out the use of well-established control methods. However, their use can be
cumbersome, when for example a large number of state variables and stiff
equations are needed to model and control the interactions of such robots
with their environment.

There are many aspects that are not relevant to high-level controllers
and that would ideally be handled by local, distributed controllers or by the
hardware itself. It is known that this is possible, as biological systems do
not possess the computational and communication resources to act at this
timescale. Some dynamics are intrinsically handled by the musculoskeletal
system without interaction with the central nervous system, or at least with
only local feedback (e.g. CPGs in the spine).

I think that one of the main future challenges is to combine (classic)
control theory methods and computational approaches. In this thesis, I have
demonstrated very simple, yet robust low-level control techniques and also a
basic layered approach — feedforward kinematics combined with a learned
feedback controller. One of the main values of these contributions is that
they can manage the lowest levels of control with minimal computational re-
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sources. While these are promising results, control theory generally provides
deep, often theoretical, insights. I am convinced that a viable and fruitful
path to bridge these fields is to begin work on more theoretical analyses for
computational control methods and to loosen some of the strict theoretical
requirements in the (classic) control theory field.

One important point of self-criticism is that it is non-trivial to obtain
useful theoretical results for the types of control discussed in this thesis.
In practice, one often still uses (classic) control theory methods (e.g. local
linearization) when studying the behavior of the controllers studied herein.
I think that the tensegrity and spring-mass models, due to their elegant
algebraic descriptions, will allow for more in depth theoretical studies of the
computational properties of compliant robots than general soft robots (e.g.
blob-like robots).

Finally, there are significant amounts of research being performed in other
branches of Physical Reservoir Computing. In particular, I see Photonic
Reservoir Computing as one domain to which the learning rules discussed
in Chapter 5 could be of great use. There are noise sources in photonic
networks and the properties of these systems fluctuate due to temperature
changes and other factors. The reward based rules from Chapter 5 appear
particularly suited to compensate for such fluctuations, similar to adaptive
control.

Tensegrity Hardware is Complex The robot designs presented in
this thesis have been described as "a rolling tangle of rods that can take a
beating" (Wired) and "jumble of tent poles" (IEEE Spectrum). While this
might make it appear that tensegrity robot design is a simple endeavour,
this appearance is highly deceiving. Passive tensegrity structures are indeed
fairly straightforward to construct. Some geometric insight or trial-and-error
is required to assemble a prestressed structure, but the overall process is
clear.

On the contrary, actuated tensegrity designs quickly become complex for
various reasons. At first, tensegrity robots might simply appear as motors
on a stick. However, there are many hard questions to be solved to turn
these motors on a stick into a useful robot: How to power the motors, how to
efficiently use their output power, how to provide sensing capabilities, how to
provide a level of compliance that provides robustness to significant drops. . .

I provided answers to these questions in the form of two robot designs.
While I acknowledge that other solutions exist to certain problems I was faced
with (e.g. the use of pneumatic or linear actuators), the designs presented
herein provide a working solution to each issue. The result is a recipe and
baseline design for distributed, untethered compliant tensegrity robots with
rich sensor capabilities. Major parts of these designs have been made publicly
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available, to the degree allowed, to accelerate future tensegrity research.

Tensegrities Scale Well ReCTeR is a relatively small tensegrity robot
with a diameter of about 1m and a total mass of 1.1 kg, while SUPERball
is a much larger and heavier robot with a 1.5m diameter and a mass of
≈15 kg. One remarkable feature is that all structural elements of tensegrities
tend to scale well (i.e. most scale approximately linearly as a function
of the robot’s mass). Indeed, springs, cables, bars and actuators are all
available in a wide and almost continuous range. During the design phase
of SUPERball, one of the first goals was to allow a small payload to be
transported by the robot. This implied scaling up ReCTeR’s design both
in size and weight. Interestingly this did not incur any major difficulties in
the materials selection process. The carbon fiber bars were exchanged for
aluminum tubes, but the main reason for this was not mechanical. Rather,
workplace health and safety restrictions for the machining of carbon fiber
and the ease of handling aluminum determined this choice. Furthermore,
changing the level of passive compliance of the robot involves little less than
replacing a set of springs. Similarly, there do not appear to be any major
obstacles to scale down a tensegrity robot design. However, the development
of capable tensegrity robots smaller than ReCTeR (say an order of magnitude)
may become hard due to manufacturing issues. In practice, building a larger
tensegrity robot makes it easier to incorporate features such as modularity as
less time and effort needs to be spent on the miniaturization of cabling and
electronics and because actuators tend to become more efficient. However,
safety becomes an important design aspect for large tensegrities due to
the inherently distributed and untethered motor control and the significant
loading of thin tensile elements.

Tensegrities are Robust in Practice During the design of ReCTeR
robustness to impacts was only a minor concern. The main objective was
to build a compliant and actuated structure. However, the robot has been
disassembled and reassembled multiple times and underwent drop tests up
to 1m. This is remarkable because the hardware platform is not a perfect
tensegrity, in the sense that cable do not attach exactly at the center of the
compressive elements. This is an indication that the tensegrity principle is
more than a theoretical gimmick.

Tensegrities Handle Imprecise Control The control methods devel-
oped and tested in this work were all noisy or exploratory to some extent.
For example, the Reward Modulated Hebbian plasticity rules rely on motor
babbling to tune the feedback controller. In stiff robots and many compliant
robots, such controllers would risk breaking the hardware. In a compliant
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tensegrity, especially a spherical one, forces dissipate through the structure.
Each actuator causes global reconfiguration. This cuts both ways: A single
actuator error tends to have a small global effect, but coordination is needed
between to obtain a desired global motion.

Structured Soft Robots Tensegrities are made out of discrete elements,
but their behavior is much like that of soft continuous structure. Indeed,
a spherical tensegrity tends to act like a squishy ball. However, tensegrity
structures allow the behavior of a (soft) structure to be controlled. This
became apparent in Chapter 2, where I showed that tensegrities can be
reconfigured to stiffen or flex certain movements or modes. While it is possible
to do this in a continuous structure (topological optimization methods), it
is typically more complex. Common engineering materials can be used to
construct tensegrities. Indeed, the tensegrity principle allows the use of
engineering materials with well known properties in optimal axial loading
conditions. This is a significant benefit over soft robots made out of e.g.
rubber. It is my opinion that tensegrities are an exceptional tool to study
soft structures or organisms (e.g. caterpillars) without delving into the
intricacies of continuous soft body studies or simulations. For example, one
can build a tensegrity structure that approximates the behavior of the soft
body to study the main load paths. Note that I do not state that soft
biological structures are indeed tensegrities, but only that tensegrities can be
a good model for it, because of their structure and discrete set of parameters.

Distributed Controls I stated that tensegrities require a coordinated
approach to generate a desired global movement. In contrast, the distributed
nature of Class 1 tensegrity robots calls for distributed controls. This might
seem a fundamental problem at first, but it is not in practice. First, the
passive compliance in studied robots allows for relatively slow controllers.
ReCTeR’s wireless interfaces operated at 40Hz (limited at 100Hz) and SU-
PERball is targeting wireless communication at 100Hz. These are low num-
bers for today’s robotic hardware. Beyond this wireless communication
approach, there are other ways to achieve coordination between distributed
controllers in a tensegrity. For example Rieffel et al. used body dynamics
to transfer information between controllers and Central Pattern Generators
with inputs tend to synchronize.

Tensegrities Bridge Fields As becomes clear throughout this work,
tensegrities inspire and take inspiration from multiple disciplines. The prin-
ciple scales from the cellular level up to the architectural level. Therefore, it
is an ideal approach to build compliant robots which bring together experts
from different fields.
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8.3 Future Perspectives

Better Tensegrity Tools I contributed to the development of the
NASA Tensegrity Robotics Toolkit (NTRT) by comparing motion capture
measurement data with simulation results. While this was successful, it
did not capture the behavior of the actuators, nor did it provide accurate
simulations of the control architecture or power electronics. Therefore, the
developed tools need to be extended to allow for hardware-in-the-loop sim-
ulations which provide a uniform interface to the hardware and simulated
robots. Due to the intricate dynamics of compliant tensegrities in an un-
known environment, direct transfer of a simulated controller to the hardware
with similar performance is not expected. However, by providing a uniform
interface/API to the hardware and simulator(s), testing a simulated con-
troller in hardware should ideally involve little less than tuning of a set of
parameters.

Extensions of the SUPERball Modular Tensegrity Platform
Modularity was a key design feature of SUPERball and it will allow future
design improvements and variations. One of the main future goals is to add
additional motors (i.e. a fully actuated icosahedron tensegrity) and to extend
the sensor equipment. In particular, we plan to embed a ground reaction
force sensor in the tip of the end caps.

Payload Transportation Transport of a payload by suspending it in
the center of a tensegrity robot has only been studied to a limited extent in
simulation. However, it is one of the main goals to push the application of
tensegrity robots beyond locomotion capabilities. Therefore, further research
is needed to define the additional sensor and actuator equipment needed to
transport and protect a payload. While locomotion studies have up to now
mainly focused on moving a structure as fast as possible or the robustness of
the control methods, control approaches for payload transportation should
also take the resulting behavior of the payload into account.

Hardware Implementations of Robust Controls The Physical Reser-
voir Computing method was tested on the ReCTeR robot, but the other
control strategies discussed in or referenced by this thesis have only been
implemented in silico. It is clear that comparisons of hardware implemen-
tations are needed to provide definitive answers about the advantages and
disadvantages of the various approaches.

Ideal Platform for Artificial Muscle Research The most common
method to actuate tensegrity robots is by using an active tensile network.
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However, this typically involves changing the configuration (stiffness/rest
length) of linear elements connecting the compressive members. As such, it is
clear that tensegrity robotics would significantly benefit from linear actuation
techniques. Unfortunately, linear actuation methods still lag behind the
omnipresent rotational motors.

In recent years there have been tremendous efforts in the development of
artificial muscles and linear actuators in general. Unfortunately, none of the
emerging techniques currently offers the capabilities exhibited by rotational
actuators. Therefore, tensegrity robots — and in particular SUPERball —
are an ideal test platform for linear actuation techniques. Indeed, tensegrity
robots for space exploration require motors which are power efficient, robust
against temperature variations and have a large stroke distance.

In this context, the Intelligent Robotics Group at NASA Ames Research
Center was awarded a Center Innovation Fund to research carbon nanotube
yarn based multi-function tendons in collaboration with the NASA Glenn
Research Center. This type of tendon could potentially deliver power, data,
and actuation.

Tensegrities in Extreme (Drop Tests) Conditions The ultimate
goal for tensegrity based space exploration is to send a folded robot into
space, which is then deployed, lands from orbit without assistance (i.e. a
drop) and then provides rover capabilities for a scientific payload. While
successful drop tests have been demonstrated with passive structures and
ReCTeR survives moderate drops, the goal of a single device integrating
all these functions is not yet available. Some of the assumptions (e.g. no
bending of the members) may become invalid during a major impact and it
remains to be studied what the parameters, configurations and materials of
a tensegrity robot combining these features should be.

One of the primary goals of the SUPERball project is to build a robot
with locomotion capabilities, which can be deployed in a harsh environment
on Earth. This is clearly a first major step towards a versatile space-qualified
compliant tensegrity robot with these capabilities.
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ReCTeR Electronics

The ReCTeR schematics and PCB layouts are available at http://ti.arc.
nasa.gov/tech/asr/intelligent-robotics/tensegrity/ntrt/.
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Main module power distribution.
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Main module logic.
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Main module inertial measurement unit.
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End cap strain gages (1).
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End cap strain gages (2)
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End cap motor driver.
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